TRIUMF

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Ab initio β-decay calculations with SRG evolved chiral currents

INT Program INT-17-2a Neutrinoless Double Beta Decay June 20, 2017

Petr Navratil | TRIUMF

 $H = \frac{1}{10} + \frac{1}{$

Collaborators: Sofia Quaglioni, Kyle Wendt (LLNL) Angelo Calci, **Peter Gysbers**, Jason Holt (TRIUMF) Gaute Hagen, Micah Schuster (ORNL) Mihai Horoi (CMU), Jon Engel (NCU), Doron Gazit (Hebrew U)

- New high precision chiral interactions
- Chiral currents
- SRG evolution of operators
- NCSM calculations of ³H, ⁶He, ¹⁴C beta decay
- Initial double-beta decay applications

Nuclear structure and reactions

3N Force

4N Force

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_{\rm u} \approx m_{\rm d} \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_y)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data •
 - Can be calculated by lattice QCD ٠

$\Lambda_v \sim 1 \text{ GeV}$: Chiral symmetry breaking scale

N⁴LO500 NN N³LO NN+N²LO 3N (NN+3N400, NN+3N500)

5

Meson-exchange current

PHYSICAL REVIEW C 67, 055206 (2003)

Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

T.-S. Park, ^{1,2,3} L. E. Marcucci, ^{4,5} R. Schiavilla, ^{6,7} M. Viviani, ^{5,4} A. Kievsky, ^{5,4} S. Rosati, ^{5,4} K. Kubodera, ^{1,2} D.-P. Min, ⁸ and M. Rho^{1,9}

• weak axial current

- one-body: LO - Gamow-Teller

$$\boldsymbol{A}_{l} = -g_{A}\tau_{l}^{-}e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{l}}\left[\boldsymbol{\sigma}_{l} + \frac{2(\boldsymbol{\bar{p}}_{l}\boldsymbol{\sigma}_{l}\cdot\boldsymbol{\bar{p}}_{l} - \boldsymbol{\sigma}_{l}\boldsymbol{\bar{p}}_{l}^{2}) + i\boldsymbol{q}\times\boldsymbol{\bar{p}}_{l}}{4m_{N}^{2}}\right]$$

- two-body: MEC

$$\boldsymbol{A}_{12} = \frac{g_A}{2m_N f_\pi^2} \frac{1}{m_\pi^2 + \boldsymbol{k}^2} \bigg[-\frac{i}{2} \, \boldsymbol{\tau}_{\times} \boldsymbol{p} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot \boldsymbol{k} \\ + 4 \, \hat{c}_3 \boldsymbol{k} \boldsymbol{k} \cdot (\boldsymbol{\tau}_1^- \boldsymbol{\sigma}_1 + \boldsymbol{\tau}_2^- \boldsymbol{\sigma}_2) + \left(\hat{c}_4 + \frac{1}{4} \right) \boldsymbol{\tau}_{\times} \boldsymbol{k} \times [\boldsymbol{\sigma}_{\times} \times \boldsymbol{k}] \bigg] \\ + \frac{g_A}{m_N f_\pi^2} [2 \, \hat{d}_1 (\boldsymbol{\tau}_1^- \boldsymbol{\sigma}_1 + \boldsymbol{\tau}_2^- \boldsymbol{\sigma}_2) + \hat{d}_2 \, \boldsymbol{\tau}_{\times}^a \boldsymbol{\sigma}_{\times}], \qquad (19)$$

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances
 - Equivalent description in relativecoordinate and Slater determinant basis

Harmonic oscillator basis

$$(A) \bigotimes \Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances
 - Equivalent description in relativecoordinate and Slater determinant basis

Harmonic oscillator basis

$${}^{(A)} \bigcirc \Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$(A) \bigcirc \qquad \Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

 Nuclear currents are obtained consistently

IUMF

- LO: standard singlenucleon terms
- N²LO: first appearance of two-body currents
- Two-body axial vector currents predicted by NN and 3N couplings
- ³H binding energy and β-decay half-life uncorrelated
 - Used to fully constrain N²LO
 3N force (c_E, c_D) in A=3

RETRIUMF Similarity Renormalization Group (SRG) evolution

- Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis
- Unitary transformation $H_{\alpha} = U_{\alpha} H U_{\alpha}^{+}$ $U_{\alpha} U_{\alpha}^{+} = U_{\alpha}^{+} U_{\alpha} = 1$

$$\frac{dH_{\alpha}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha}HU_{\alpha}^{+} + U_{\alpha}H\frac{dU_{\alpha}^{+}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha}U_{\alpha}^{+}U_{\alpha}HU_{\alpha}^{+} + U_{\alpha}HU_{\alpha}^{+}U_{\alpha}\frac{dU_{\alpha}^{+}}{d\alpha}$$
$$= \frac{dU_{\alpha}}{d\alpha}U_{\alpha}^{+}H_{\alpha} + H_{\alpha}U_{\alpha}\frac{dU_{\alpha}^{+}}{d\alpha} = [\eta_{\alpha}, H_{\alpha}]$$
$$\eta_{\alpha} = \frac{dU_{\alpha}}{d\alpha}U_{\alpha}^{+} = -\eta_{\alpha}^{+}$$
anti-Hermitian generator

$$\frac{dH_{\alpha}}{d\alpha} = \left[\left[G_{\alpha}, H_{\alpha} \right], H_{\alpha} \right]$$

- Customary choice in nuclear physics $G_{\alpha} = T$...kinetic energy operator
 - band-diagonal in momentum space plane-wave basis
- Initial condition $H_{\alpha=0} = H_{\lambda=\infty} = H$ $\lambda^2 = 1/\sqrt{\alpha}$

The SRG transformation maintains the same eigenvalues for the Hamiltonian

$$\hat{H} |\psi_k\rangle = E_k |\psi_k\rangle \to \hat{H}_\alpha |\psi_{k,\alpha}\rangle = E_k |\psi_{k,\alpha}\rangle$$

But to extract additional observables from the wavefunction while taking advantage of the SRG tranformation, the corresponding operators must be transformed

$$\left\langle \psi_{i}\right|\hat{O}\left|\psi_{f}\right\rangle =\left\langle \psi_{i,\alpha}\right|\hat{O}_{\alpha}\left|\psi_{f,\alpha}\right\rangle \text{where } \hat{O}_{\alpha}=U_{\alpha}\hat{O}U_{\alpha}^{\dagger}$$

The transformation matrix can be extracted from the eigenfunctions of the Hamiltonian

$$U_{\alpha} = \sum_{k} |\psi_{k,\alpha}\rangle \langle \psi_{k}|$$

 H_{α} , O_{α} : 2-body part determined in *A*=2 system, 3-body part determined in *A*=3 system,

Implementation up to two-body terms: Peter Gysbers (McMaster/TRIUMF)

The matrix U is calculated blockwise, for relative coordinate two-nucleon eigenstates:

$$(A=2)kJ^{\pi}TT_{z}\rangle = \sum_{n,\ell} c_{n\ell s}^{k} \left| n\ell s J^{\pi}TT_{z} \right\rangle$$

The corresponding submatrix of \hat{H} is evolved then diagonalized to produce a matrix $U_{\alpha}^{J^{\pi}TT_{z}}$ Compute the matrix elements of the bare operator: $\langle k'J'^{\pi'}T'T_{z}' || \hat{O}^{(K)} || kJ^{\pi}TT_{z} \rangle$

Matrix elements of the evolved operator are:

$$\langle k'J'^{\pi'}T'T'_z, \alpha || U_{\alpha}^{J'^{\pi'}T'T'_z} \hat{O}^{(K)} U_{\alpha}^{\dagger J^{\pi}TT_z} || kJ^{\pi}TT_z, \alpha \rangle$$

Implementation up to two-body terms: Peter Gysbers (McMaster/TRIUMF)

The matrix U is calculated blockwise, for relative coordinate two-nucleon eigenstates:

$$(A=2)kJ^{\pi}TT_{z}\rangle = \sum_{n,\ell} c_{n\ell s}^{k} \left| n\ell s J^{\pi}TT_{z} \right\rangle$$

The corresponding submatrix of \hat{H} is evolved then diagonalized to produce a matrix $U_{\alpha}^{J^{\pi}TT_{z}}$ Compute the matrix elements of the bare operator: $\langle k'J'^{\pi'}T'T_{z}' || \hat{O}^{(K)} || kJ^{\pi}TT_{z} \rangle$

Matrix elements of the evolved operator are:

$$\langle k'J'^{\pi'}T'T'_z, \alpha || U_{\alpha}^{J'^{\pi'}T'T'_z} \hat{O}^{(K)} U_{\alpha}^{\dagger J^{\pi}TT_z} || kJ^{\pi}TT_z, \alpha \rangle$$

Converting from the two-nucleon Jacobi basis to the single particle basis:

$$\langle a'b'J'^{\pi'}T'T'_{z}||\hat{O}_{\alpha}^{(K)}||abJ^{\pi}TT_{z}\rangle \qquad a \equiv \{n_{a},\ell_{a},j_{a}\}$$
$$= \sum C_{n'\ell's'}^{*a'b'}C_{n\ell s}^{ab} \langle n'\ell's'J'^{\pi'}T'T'_{z}||\hat{O}_{\alpha}^{(K)}||n\ell sJ^{\pi}TT_{z}\rangle$$

Code NCSMV2B

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

$$\hat{O}=GT^{(1)}
ightarrow\hat{O}_{lpha}=GT^{(1)}+GT^{(2)}_{lpha}+\ldots$$

Operator:

Gamow-Teller (1-body) $\langle GT_{\alpha}^{(2)} \rangle_{A=2} = \langle (GT^{(1)})_{\alpha} \rangle_{A=2} - \langle GT_{\alpha}^{(1)} \rangle_{A=2}$

Potential: "N⁴LO NN"

 chiral NN @ N⁴LO, Machleidt PRC91 (2015), 500MeV cutoff

Hamiltonian: chiral NN+3N with SRG 2- and 3-body induced (except orange line: bare chiral NN+3N)

18

$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

Potential: "N⁴LO NN"

- chiral NN @ N⁴LO, Machleidt PRC91 (2015), 500MeV cutoff
- LEC $c_D = 0.45$ determined

Original EM 2003 N³LO NN c_D=-0.2 (3N attractive)

Determination of the c_D parameter relevant to chiral 3N force c_D =0.45 (3N repulsive)

$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

Potential: "NN+3N500"

- chiral NN @ N³LO, Entem & Machleidt PRC68 (2003), 500MeV cutoff
- chiral 3N @ N²LO, Navrátil Few-Body Sys. 41 (2007), 500MeV cutoff
- LEC $c_D = -0.2$ determined by Gazit PRL103 (2009)

Hamiltonian: chiral NN+3N with SRG 2- and 3-body induced

Precision measurement of ⁶He beta decay

Precision measurement of ⁶He beta decay

... challenge and test of *ab initio* calculations, nuclear forces and currents

Improvement with the NNN interaction Improvement with MEC & operator renormalization Still to be done:

Precision measurement of ⁶He beta decay

... challenge and test of *ab initio* calculations, nuclear forces and currents

Improvement with the NNN interaction Improvement with MEC & operator renormalization Still to be done: continuum

Carbon dating: Super-allowed transition to the ground state very weak NNN interaction suppresses it MEC appears to enhance it

40

SRG 2-body evolution of the $0\nu\beta\beta$ operator In collaboration with Quaglioni, Schuster, Horoi, Engel, Holt

40

0

-0.5

-1

-1.5

-2

Light-Neutrino $0\nu\beta\beta$ n n n n 10 20 30 10 20 20 30 20 30 40 30 40 10 10 40 ${}^{1}S_{0}$ 10 20 È 30 Bare $\lambda = 2.5 \mathrm{fm}^{-1}$ $\lambda = 2.0 \mathrm{fm}^{-1}$ $\lambda = 1.5 \mathrm{fm}^{-1}$

Application to 76 Ge $0\nu\beta\beta$ matrix elements In collaboration with Quaglioni, Schuster, Horoi, Engel, Holt

• Matrix elements for light-neutrino exchange mechanism

Application to $^{76}Ge~0\nu\beta\beta$ matrix elements In collaboration with Quaglioni, Schuster, Horoi, Engel, Holt

• Matrix elements for light-neutrino exchange mechanism

λ=2.2

• Matrix elements for heavy-neutrino exchange mechanism

• Matrix elements for heavy-neutrino exchange mechanism

- SRG evolution **important** for β decay operators
 - both GT and MEC
 - as well as neutrinoless double-beta decay (especially with heavy neutrino)

- Implemented on two-body level
- Generalization to three-body terms straightforward
 - although technically challenging
 - Codes: NCSMV2b -> MANYEFF
 - Beware of the transformation from relative to single-particle basis