
Canada’s national laboratory 
for particle and nuclear physics 
and accelerator-based science 

INT Program INT-17-2a 
Neutrinoless Double Beta Decay 

June 20, 2017  

Petr Navratil | TRIUMF 

Ab initio β-decay calculations with 
SRG evolved chiral currents 

 

Collaborators: 
Sofia Quaglioni, Kyle Wendt (LLNL)  

Angelo Calci, Peter Gysbers, Jason Holt (TRIUMF) 
Gaute Hagen, Micah Schuster (ORNL) 

Mihai Horoi (CMU), Jon Engel (NCU), Doron Gazit (Hebrew U) 



Outline 

•  New high precision chiral interactions 
•  Chiral currents 

•  SRG evolution of operators 

•  NCSM calculations of 3H, 6He, 14C beta decay 

•  Initial double-beta decay applications 
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From QCD to nuclei 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or	accurate	
meson-exchange	

poten2als	



Chiral Effective Field Theory 

•  Inter-nucleon forces from chiral 
effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD 
(mu≈md≈0), spontaneously broken 
with pion as the Goldstone boson 

•  Degrees of freedom: nucleons + 
pions 

–  Systematic low-momentum 
expansion to a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 

N3LO NN+N2LO 3N  
(NN+3N400, NN+3N500) 

N4LO500 NN 



Currents in chiral EFT 

•  Meson-exchange current 
 

 
 

•  weak axial current 
–  one-body: LO - Gamow-Teller 

–  two-body: MEC 
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Spurred by the recent complete determination of the weak currents in two-nucleon systems up to O(Q3) in
heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S factors for
the solar pp !proton-fusion" and hep processes in an effective field theory !EFT" that combines the merits of
the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is
that one can correlate in a unified formalism the weak-current matrix elements of two-, three-, and four-nucleon
systems. Using the tritium #-decay rate as an input to fix the only unknown parameter in the theory, we can
evaluate the threshold S factors with drastically improved precision; the results are Spp(0)!3.94"(1
#0.004)"10$25 MeV b and Shep(0)!(8.6#1.3)"10$20 keV b. The dependence of the calculated S factors
on the momentum cutoff parameter $ has been examined for a physically reasonable range of $ . This
dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep
process, substantiating the consistency of our calculational scheme.

DOI: 10.1103/PhysRevC.67.055206 PACS number!s": 12.39.Fe, 24.85.%p, 26.20.%f, 26.65.%t

I. INTRODUCTION

The standard approach to nuclear physics %1& anchored on
wave functions obtained from the Schrödinger !or Lippman-
Schwinger" equation with ‘‘realistic’’ phenomenological po-
tentials has scored impressive quantitative successes in de-
scribing systems with two or more nucleons, achieving in
some cases accuracy that defies the existing experimental
precision. We refer to this approach as SNPA !standard
nuclear physics approach". The advent of quantum chromo-
dynamics !QCD" as the theory of strong interactions raises a
logical question: What is the status of SNPA in the context of
the fundamental theory QCD? Put more bluntly, is SNPA
!despite its undeniable success" just a model-dependent ap-
proach unrelated to the fundamental theory? In our view this
is one of the most important issues in nuclear physics today.
In this paper we investigate a possible way to identify SNPA
as a legitimate component in the general edifice of QCD. We
describe an attempt to find a scheme which includes SNPA as
an approximation, and which allows us to control and evalu-
ate correction terms. Such a systematic treatment equipped
with error estimation, which is not feasible with SNPA alone,
can be profitably studied with the effective field theory
!EFT" of QCD. We study here a formalism which exploits
simultaneously the merit of EFT in classifying interaction
vertices unambiguously, and the high accuracy of nuclear
wave functions available in SNPA. We demonstrate that this
formalism enables us to make parameter-free predictions
with accompanying error estimates for electroweak transi-

tions in light nuclei. For a variant approach towards the EFT
description of nuclear matter and heavy nuclei, we refer to
Refs. %2–5&.
To be concrete, we shall consider the following two solar

nuclear fusion processes

pp: p%p→d%e%%'e , !1"

hep: p% 3He→ 4He%e%%'e . !2"

We stress that in our EFT approach these processes in-
volving different numbers of nucleons can be treated on the
same footing. A concise account of the present study was
previously given in Ref. %6& for the pp process and in Ref.
%7& for the hep process.
The reactions !1" and !2" figure importantly in astrophys-

ics and particle physics; they have much bearing upon issues
of great current interest such as, for example, the solar neu-
trino problem and nonstandard physics in the neutrino sector.
Since the thermal energy of the interior of the Sun is of the
order of keV, and since no experimental data is available for
such low-energy regimes, one must rely on theory for deter-
mining the astrophysical S factors of the solar nuclear pro-
cesses. Here we concentrate on the threshold S factor S(0)
for the reactions !1" and !2". The necessity of a very accurate
estimate of the threshold S factor for the pp process Spp(0)
comes from the fact that pp fusion essentially governs the
solar burning rate and the vast majority of the solar neutrinos
come from this reaction. Meanwhile, the hep process is im-
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!!3. Two-body tree currents with " i! i!1, which corre-
spond to the hard-pion current, considered in CRSW91 #16$
and SWPC92 #17$. These are leading corrections to the
GT and V0 operators carrying an even orbital angular
momentum.

!!4. All the components of the electroweak current re-
ceive contributions of this order. They consist of two-body
one-loop corrections as well as leading-order %tree& three-
body corrections. Among the three-body currents, however,
there are no six-fermion contact terms proportional to
(N̄N)3, because there is no derivative at the vertex and
hence no external field.
It is noteworthy that the counting rule for V is the same as

for A0, and the counting rules for V0 and A are the same.
The behavior of V and A0 summarized in Table I represents
the chiral filter mechanism #12$, and V and A0 are referred to
as chiral-filter-protected currents. By contrast, V0 and A be-
long to chiral-filter-unprotected currents.
We now discuss the explicit expressions for the relevant

currents. For the 1B currents, for both the vector and axial
cases, one can simply carry over the expressions obtained in
MSVKRB. Up to N3LO, the 1B currents in coordinate rep-
resentation are given as
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where (V%4.70 is the isovector anomalous magnetic mo-
ment of the nucleon and pl!"i)l and p̄l!"(i/2)()! l")" l)
act on the wave functions. Equation %17& gives the isospin-
lowering currents
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We next discuss the 2B currents. The expressions for the

V2B and A2B
0 operators can be found in Refs. #20,36$. The

V2B
0 operator does not appear up to the order under consid-
eration. The derivation of the 2B axial current A2B in HB+PT
is described in Appendix A. In momentum space, A2B reads
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#4 ĉ3kk•%'1
"!1#'2

"!2&## ĉ4# 1
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a *('1$'2)x"i('1$'2)y, and
similarly for -$ ; ĉ’s and d̂’s are the LECs explained in
PKMR98. The values of ĉ’s in Eq. %19& have been deter-
mined from ,-N data #37$: ĉ3!"3.66&0.08 and ĉ4!2.11
&0.08. The two constants d̂1 and d̂2 remain to be fixed but
it turns out %see Appendix C 2& that, thanks to Fermi-Dirac
statistics, only one combination of them
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is relevant in the present context #38$.
It should be noted that the two-body currents given in Eq.

%19& are valid only up to a certain cutoff . . This implies that,
when we go to coordinate space, the currents must be regu-
lated. This is a key point in our approach. Specifically, in
performing Fourier transformation to derive the r-space rep-
resentation of a transition operator, we use the Gaussian
regularization %see Appendix C&. This is, to good accuracy,
equivalent to replacing the delta and Yukawa functions with
the corresponding regulated functions
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where the cutoff function S.(k2) is defined as

S.%k2&!exp# "
k2

2.2$ . %22&

The resulting r-space expressions of the currents in the
center-of-mass %c.m.& frame that are of N3LO are
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From QCD to nuclei 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or	accurate	
meson-exchange	

poten2als	

Many-Body methods H Ψ = E Ψ
NCSM,	NCSM/RGM,		
NCSMC,	CCM,	SCGF,	
GFMC,	HH,	Nuclear	

La?ce	EFT…	



No-Core Shell Model 

•  Ab initio no-core shell model 
–  Short- and medium range correlations 
–  Bound-states, narrow resonances 
–  Equivalent description in relative-

coordinate and Slater determinant basis 

1max += NN

NCSM 

Harmonic oscillator basis 

ΨA = cNiΦNi
HO ( !η 1,

!
η 2 ,...,

!
η A−1)

i
∑

N=0

Nmax

∑
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–  Equivalent description in relative-

coordinate and Slater determinant basis 
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Harmonic oscillator basis 

ΨSD
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!r 2 , ... ,
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j
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RCM )

ΨA = cNiΦNi
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Axial vector currents & 3N forces in chiral EFT 

•  Nuclear currents are 
obtained consistently 

–  LO: standard single-
nucleon terms 

–  N2LO: first appearance of 
two-body currents 

–  Two-body axial vector 
currents predicted by NN 
and 3N couplings 

•  3H binding energy and           
β-decay half-life uncorrelated 
–  Used to fully constrain N2LO 

3N force (cE, cD) in A=3  

Park et al., Gardestig & Phillips, ... 

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory

Doron Gazit
Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Quaglioni and Petr Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

(Received 23 December 2008; published 1 September 2009)

The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.

DOI: 10.1103/PhysRevLett.103.102502 PACS numbers: 21.30."x, 21.45.Ff, 23.40."s, 27.10.+h

The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.

PRL 103, 102502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

0031-9007=09=103(10)=102502(4) 102502-1 ! 2009 The American Physical Society
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or	accurate	
meson-exchange	

poten2als	

Unitary/similarity 
transformations 

Iden2ty	or	SRG	
or	OLS	or	UCOM	…	

SoGens	NN,	induces	3N	

Many-Body methods H Ψ = E Ψ
NCSM,	NCSM/RGM,		

CCM,	SCGF,	GFMC,	HH,	
Nuclear	La?ce	EFT…	



•  Continuous transformation driving Hamiltonian to band-diagonal form 
with respect to a chosen basis 

•  Unitary transformation 

•  Setting                      with Hermitian 

•  Customary choice in nuclear physics            …kinetic energy operator 
–  band-diagonal in momentum space plane-wave basis 

•  Initial condition                               

Similarity Renormalization Group (SRG) evolution 

11 
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SRG evolution of general operators 
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SRG evolution of Operators in the NCSM
Peter Gysbers (McMaster), Angelo Calci (TRIUMF), Petr Navrátil (TRIUMF)

Background
Ab initio approaches in nuclear physics predict the observables based on the realistic interactions 
between nucleons. These interactions come from -EFT, here we use the following:χ
“NN+3N500” is commonly used:
• NN @ N3LO: Entem & Machleidt, 500MeV cuto2 [1]
• 3N @ N2LO: Navrátil, local 500MeV cuto2 [2,3]

“N4LO500 NN” is new:
• NN @ N4LO: Machleidt, 500MeV cuto2 [4,5]

The no-core shell model (NCSM) is a powerful method to perform these calculations.

The goal is to solve the eigenvalue problem:

In the NCSM the quantum state of the A-nucleon
Wavefunction is expanded in anti-symmetric product
states of harmonic oscillator one-body states.

In this framework the wavefunctions and energies will converge to the exact value as 
                     but @nite computational resources limit convergence. 

Solution: Similarity Renormalization Group (SRG)

The SRG method uses a continous series of unitary tranformations of the Hamiltonian to 
decouple high-momentum and low-momentum physics, resulting in faster convergence of 
calculations [5]. 

This transformation is found through the evolution equation

                                        where                              and      

Improved convergence has a trade-o2 of inducing many-body terms.

Results: β-decay 

Summary and Outlook
● SRG evolution greatly improves the convergence of nuclear calculations. Operators must also be evolved to 
ensure convergence to the correct value. 

● This was used in the calculation of the β-decay stengths: 3HD3He and 6HeD6Li. The induced 3-body terms do 
not e2ect the Gamow-Teller and meson exchange current signi@cantly.

● Additionally 3HD3He was used to determine the low-energy constant cD in chiral MEC that will applied in the 
chiral 3N term added to the new N4LO500 NN interaction.

● This method can be used for many operators and so will result in the improvement of calculations for many 
observables including double-beta-decay, matter and charge radii, electric and magnetic multipole transitions.

    

The SRG transformation maintains the same eigenvalues for the Hamiltonian

But to extract additional observables from the wavefunction while taking advantage of the SRG 
tranformation, the corresponding operators must be transformed [6].

                                                             where
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Chiral EFT interactions up to N4LO 

•  Systematic from LO to N4LO 
•  High precision – χ2/datum = 1.15  

–  D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. 
C 91, 014002 (2015). 

–  D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454. 
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Results: �-decay 3H!3He
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Results: �-decay 3H!3He
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Results: �-decay 3H!3He
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Precision measurement of the 6He half-life and the weak axial current in nuclei
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Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations
and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy
between previous measurements of the 6He half-life.
Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing
a reliable f t value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations.
Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors
operating in coincidence.
Results: The measured 6He half-life is 806.89 ± 0.11stat

+0.23
−0.19syst ms corresponding to a relative precision of

3 × 10−4. Calculating the statistical rate function we determined the f t value to be 803.04+0.26
−0.23 s.

Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful
analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons
with ab initio calculations.

DOI: 10.1103/PhysRevC.86.035506 PACS number(s): 23.40.−s, 27.20.+n

I. INTRODUCTION

Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also
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†Present address: Department of Physics, Old Dominion University,

Norfolk, VA 23529, USA.
‡Present address: Department of Physics and Astronomy and

National Superconducting Cyclotron Laboratory, Michigan State
University, East Lansing, MI 48824, USA.

pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in
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of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
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pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
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effective-field-theory calculations [1].
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branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
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Precision measurement of the 6He half-life and the weak axial current in nuclei
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Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations
and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy
between previous measurements of the 6He half-life.
Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing
a reliable f t value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations.
Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors
operating in coincidence.
Results: The measured 6He half-life is 806.89 ± 0.11stat

+0.23
−0.19syst ms corresponding to a relative precision of

3 × 10−4. Calculating the statistical rate function we determined the f t value to be 803.04+0.26
−0.23 s.

Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful
analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons
with ab initio calculations.

DOI: 10.1103/PhysRevC.86.035506 PACS number(s): 23.40.−s, 27.20.+n

I. INTRODUCTION

Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also

*knechta@uw.edu
†Present address: Department of Physics, Old Dominion University,

Norfolk, VA 23529, USA.
‡Present address: Department of Physics and Astronomy and

National Superconducting Cyclotron Laboratory, Michigan State
University, East Lansing, MI 48824, USA.

pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in
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SRG 2-body evolution of the 0νββ operator 
In collaboration with Quaglioni, Schuster, Horoi, Engel, Holt 

3P0 

Heavy-Neutrino	0νββ

1S0 

Light-Neutrino	0νββ



•  Matrix elements for light-neutrino exchange mechanism 

 

Application to 76Ge 0νββ matrix elements 
In collaboration with Quaglioni, Schuster, Horoi, Engel, Holt 
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•  Matrix elements for heavy-neutrino exchange mechanism 
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Conclusions and Outlook 

•  Implemented on two-body level 

•  Generalization to three-body terms straightforward  
–  although technically challenging 

–  Codes: NCSMV2b -> MANYEFF 
•  Beware of the transformation from relative to single-particle basis 

 

•  SRG evolution important for β decay operators 
–  both GT and MEC 

–  as well as neutrinoless double-beta decay (especially with heavy neutrino) 


