SRG evolution of transition operators and currents (and connections to factorization)

Sushant N. More

National Superconducting Cyclotron Laboratory Michigan State University

INT, June 2017

Collaborators: Dick Furnstahl, Scott Bogner, Sebastian König, Kai Hebeler

Outline

- 2 Test Case: Deuteron electrodisintegration
 - Scale dependence and kinematics
 - Final state evolution
 - Operator evolution
 - D-state scale dependence
- Summary and Takeaways

Nuclear structure vs. reaction

- Traditionally, nuclear structure treated separately from nuclear reactions.
 Assumes unique factorization of structure and reaction components.
- Extract nuclear properties from experiments and predict them with theory.

•
$$\frac{d\sigma}{d\Omega} \propto \left| \langle \psi_{\text{final}} | \hat{O}(q) | \psi_{\text{initial}} \rangle \right|^2$$

• $\langle \psi_{\text{final}} | \overbrace{\hat{O}(q)}^{\text{reaction}} | \psi_{\text{initial}} \rangle$
structure

Nucleon knockout reaction

Nuclear structure vs. reaction

- Traditionally, nuclear structure treated separately from nuclear reactions.
 Assumes unique factorization of structure and reaction components.
- Extract nuclear properties from experiments and predict them with theory.

•
$$\frac{d\sigma}{d\Omega} \propto \left| \langle \psi_{\text{final}} | \hat{O}(q) | \psi_{\text{initial}} \rangle \right|^2$$

• $\langle \psi_{\text{final}} | \overbrace{\hat{O}(q)}^{\text{reaction}} | \psi_{\text{initial}} \rangle$
structure

• Use factorization to isolate individual components and extract process-independent nuclear properties.

Nucleon knockout reaction

Factorization: Examples

- Separation between long- and short-distance physics is not unique, but defined by the scale μ_f
- Form factor F₂ is independent of μ_f, but pieces are not
- $f_a(x, \mu_f = Q^2)$ runs with Q^2 , but is process independent

Low-E Nuclear

Factorization: Examples

- Separation between long- and short-distance physics is not unique, but defined by the scale μ_f
- Form factor F₂ is independent of μ_f, but pieces are not
- $f_a(x, \mu_f = Q^2)$ runs with Q^2 , but is process independent

Low-E Nuclear

Open questions

- When does factorization hold?
- Which process-independent nuclear properties can we extract?
- What is the scale/scheme dependence of the extracted properties?

Factorization d(e, e'p)n Summary $0\nu\beta\beta$

Scale-scheme dependence: QCD vs. low-E nuclear

- $xq(x, Q^2)$: share of momentum carried by quarks in particular *x*-interval
- The quark distribution $q(x, Q^2)$ is scale and scheme dependent
- $q(x, Q^2)$ and $q(x, Q_0^2)$ are related by RG evolution equations

Factorization d(e, e'p)n Summary $0\nu\beta\beta$

Scale-scheme dependence: QCD vs. low-E nuclear

- $x q(x, Q^2)$: share of momentum carried by quarks in particular *x*-interval
- The quark distribution $q(x, Q^2)$ is scale and scheme dependent
- $q(x, Q^2)$ and $q(x, Q_0^2)$ are related by RG evolution equations

- AV18 potential evolved from $\lambda = \infty$ to $\lambda = 1.5 \text{ fm}^{-1}$
- Deuteron momentum distribution is scale and scheme dependent
- High momentum tail shrinks as λ decreased (lower resolution)

Scale and scheme choice

• Scheme in low-E nuclear physics: choice of potential, regulators, RG evolution ...

How do we choose a scale/ scheme?

- Make calculations easier/ more convergent
- Does simple structure always imply a complicated reaction calculation?
- Clean extraction from experiments; increased validity of impulse approximation
- Correctly use the structure information in other processes
- Better interpretation/ intuition
 - \rightarrow Surrey group: sensitivity to high-*np* momenta and D-state component in (d, p) reactions [e.g., PRL **117** (2016)]
 - → JLab SRC/EMC correlation experiments [e.g., Hen et al., RMP]

Scale and scheme choice

• Scheme in low-E nuclear physics: choice of potential, regulators, RG evolution ...

How do we choose a scale/ scheme?

- Make calculations easier/ more convergent
- Does simple structure always imply a complicated reaction calculation?
- Clean extraction from experiments; increased validity of impulse approximation
- Correctly use the structure information in other processes
- Better interpretation/ intuition
 - \rightarrow Surrey group: sensitivity to high-*np* momenta and D-state component in
 - (d,p) reactions [e.g., PRL **117** (2016)]
 - \rightarrow JLab SRC/EMC correlation experiments [e.g., Hen et al., RMP]

Use renormalization group (RG) as a tool to consistently relate scales and quantitatively probe ambiguities

SRG makes scale dependence obvious

• SRG scale λ sets the scale for decoupling high- and low-momentum *and* separating structure and reaction

SRG makes scale dependence obvious

- SRG scale λ sets the scale for decoupling high- and low-momentum *and* separating structure and reaction
- Transformed wave function → no high momentum components (no SRC)
- $\sigma \sim \left| \langle \psi_f | \hat{O}_q | \psi_i \rangle \right|^2 \Rightarrow \hat{O}_q$ must change to keep observables invariant
- UV physics absorbed in operator (cf. Chiral EFTs)

SRG makes scale dependence obvious

- SRG scale λ sets the scale for decoupling high- and low-momentum *and* separating structure and reaction
- Transformed wave function → no high momentum components (no SRC)
- $\sigma \sim \left| \langle \psi_f | \hat{O}_q | \psi_i \rangle \right|^2 \Rightarrow \hat{O}_q$ must change to keep observables invariant
- UV physics absorbed in operator (cf. Chiral EFTs)
- $\langle \psi_f | \hat{O}_q | \psi_i \rangle = \langle \psi_f^\lambda | \hat{O}_q^\lambda | \psi_i^\lambda \rangle$ Naive expectation: RG changes to \hat{O}_q complicates reaction calculations

Nuclear structure vs. reaction

2 Test Case: Deuteron electrodisintegration

- Scale dependence and kinematics
- Final state evolution
- Operator evolution
- D-state scale dependence

3 Summary and Takeaways

Test ground: ${}^{2}H(e, e' p) n$

- Use deuteron disintegration to investigate scale/ scheme dependence of factorization
- ²H (*e*, *e*' p) n: simplest knockout process. Has many of the essential ingredients and no complications
- No induced 3N forces or currents
- Well-studied experimentally

Test ground: ${}^{2}H(e, e' p)n$

- Use deuteron disintegration to investigate scale/ scheme dependence of factorization
- ²H(*e*, *e*' p) n: simplest knockout process. Has many of the essential ingredients and no complications
- No induced 3N forces or currents
- Well-studied experimentally

- $\frac{d\sigma}{d\Omega} \propto (v_L f_L + v_T f_T + v_{TT} f_{TT} \cos 2\phi_p + v_{LT} f_{LT} \cos \phi_p)$
- v_L , v_T , ...- electron kinematic factors. f_L , f_T , ...- deuteron structure functions

Test ground: ${}^{2}H(e, e' p) n$

- Use deuteron disintegration to investigate scale/ scheme dependence of factorization
- ²H(*e*, *e*' p) n: simplest knockout process. Has many of the essential ingredients and no complications
- No induced 3N forces or currents
- Well-studied experimentally

• v_L , v_T , ...- electron kinematic factors. f_L , f_T , ...- deuteron structure functions

Deuteron disintegration calculations

following Yang, Phillips (2013)

[H. Ibrahim]

•
$$|\psi_f\rangle = \underbrace{|\phi\rangle}_{IA} + \underbrace{G_0 t |\phi\rangle}_{FSI}$$

 $G_0 : \text{Green's function. } t : t \text{-matrix}$

Final State Interactions (FSI)

Deuteron disintegration calculations

following Yang, Phillips (2013)

[H. Ibrahim]

Final State Interactions (FSI)

•
$$f_L^{\lambda} \sim \left| \langle \underbrace{\psi_f | U_{\lambda}^{\dagger}}_{\psi_f^{\lambda}} \underbrace{U_{\lambda} J_0 U_{\lambda}^{\dagger}}_{J_0^{\lambda}} \underbrace{U_{\lambda} | \psi_i \rangle}_{\psi_i^{\lambda}} \right|^2; \quad U_{\lambda}^{\dagger} U_{\lambda} = I; \quad f_L^{\lambda} = f_L$$

• Components depend on the scale λ . Cross section does not!

- ²H (e, e' p) n calculations done using AV18 potential with $\lambda = \infty$ and $\lambda = 1.5$ fm⁻¹
- $f_L \sim \sum_{m_s, m_J} \left| \langle \psi_f | J_0 | \psi_i \rangle \right|^2$
- Effects due to evolution of one or more components of ⟨ψ_f|J₀|ψ_i⟩ as a function of kinematics → scale dependence of factorization
- Proof of principle calculations using simplified *J*₀. Comparison to experiment not warranted

- ²H (e, e' p) n calculations done using AV18 potential with $\lambda = \infty$ and $\lambda = 1.5$ fm⁻¹
- $f_L \sim \sum_{m_s, m_J} \left| \langle \psi_f | J_0 | \psi_i \rangle \right|^2$
- Effects due to evolution of one or more components of ⟨ψ_f|J₀|ψ_i⟩ as a function of kinematics → scale dependence of factorization
- Proof of principle calculations using simplified *J*₀. Comparison to experiment not warranted
- Quasi-free ridge (QFR): $\omega_{\text{photon}} = 0$

- ²H (e, e' p) n calculations done using AV18 potential with $\lambda = \infty$ and $\lambda = 1.5$ fm⁻¹
- $f_L \sim \sum_{m_s, m_J} \left| \langle \psi_f | J_0 | \psi_i \rangle \right|^2$
- Effects due to evolution of one or more components of $\langle \psi_f | J_0 | \psi_i \rangle$ as a function of kinematics \rightarrow scale dependence of factorization
- Proof of principle calculations using simplified *J*₀. Comparison to experiment not warranted
- Quasi-free ridge (QFR): $\omega_{\text{photon}} = 0$
- Weak scale dependence at QFR which gets progressively stronger away from it

SNM et al., PRC 92, 064002 (2015)

- Can get away with inconsistent calculations at the quasi-free ridge (QFR)
- Long-range part of the wave function/ on-shell t-matrix probed at QFR → invariant under SRG evolution
- Scale dependence qualitatively different above and below the QFR
- Can be explained by looking at the effect of evolution on the overlap matrix elements [SNM et al., PRC **92**, 064002 (2015)]

Evolution effects on individual components

•
$$f_L \propto \sum_{m_s,m_J} \langle \psi_f | J_0 | \psi_i \rangle = \sum_{m_s,m_J} \langle \psi_f^\lambda | J_0^\lambda | \psi_i^\lambda \rangle$$

- Looked at effects of evolution on the observable f_L
- Look at changes due to evolution for individual components and their implications
- Evolution of ψ_{deut} : suppression of high-momentum components \rightarrow accelerated convergence of nuclear structure calculations

Evolving the final state

- High-*k* tail suppressed with evolution
- For $p' \gtrsim \lambda$, $\psi_f^{\lambda}(p';k)$ localized around the outgoing momentum p'

r-space ψ_f at different λ

- Small r wound evolved away as λ reduced
- Beyond range of the potential, $\psi(r)$ and $\phi(r)$ differ by phase that is same for all λ

Scale-dependent FSI contribution

• "FSI contribution depends on kinematics"

•
$$\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle = \langle \phi | J_0^{\lambda} | \psi_i^{\lambda} \rangle + \langle \Delta \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle$$

• Local decoupling of $\psi_f^{\lambda}(k)$ and form of J_0^{λ} make $\langle \Delta \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle$ small

Scale-dependent FSI contribution

• "FSI contribution depends on kinematics"

•
$$\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle = \langle \phi | J_0^{\lambda} | \psi_i^{\lambda} \rangle + \langle \Delta \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle$$

• Local decoupling of $\psi_f^{\lambda}(k)$ and form of J_0^{λ} make $\langle \Delta \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle$ small

•
$$f_L(\langle \psi_f | J_0 | \psi_i \rangle) \approx f_L(\langle \phi | J_0^\lambda | \psi_i^\lambda \rangle)$$

Current evolution story

•
$$\langle \mathbf{k}_1 T_1 | J_0(\mathbf{q}) | \mathbf{k}_2 T = 0 \rangle = \frac{1}{2} \left(G_E^p + (-1)_1^T G_E^n \right) \delta(\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{q}/2) + \frac{1}{2} \left((-1)_1^T G_E^p + G_E^n \right) \delta(\mathbf{k}_1 - \mathbf{k}_2 + \mathbf{q}/2)$$

- Varying λ shuffles the physics between short- and long-distance parts
- λ decreases → blob size increases.
 One-body current operator develops two and higher body components

• Naive expectation: RG changes to $J_0(q)$ complicates reaction calculations

- $\langle \psi_f | J_0(q) | \psi_i \rangle = \langle \psi_f^\lambda | J_0^\lambda(q) | \psi_i^\lambda \rangle$
- Low-momentum component of $J_0^{\lambda}(q)$ most relevant

- $\langle \psi_f | J_0(q) | \psi_i \rangle = \langle \psi_f^\lambda | J_0^\lambda(q) | \psi_i^\lambda \rangle$
- Low-momentum component of $J_0^{\lambda}(q)$ most relevant

- $\langle \psi_f | J_0(q) | \psi_i \rangle = \langle \psi_f^\lambda | J_0^\lambda(q) | \psi_i^\lambda \rangle$
- Low-momentum component of $J_0^{\lambda}(q)$ most relevant

- $\langle \psi_f | J_0(q) | \psi_i \rangle = \langle \psi_f^\lambda | J_0^\lambda(q) | \psi_i^\lambda \rangle$
- Low-momentum component of $J_0^{\lambda}(q)$ most relevant

- $\langle \psi_f | J_0(q) | \psi_i \rangle = \langle \psi_f^\lambda | J_0^\lambda(q) | \psi_i^\lambda \rangle$
- Low-momentum component of $J_0^{\lambda}(q)$ most relevant
- $\langle {}^{3}S_{1}; k_{1} | J_{0}^{\lambda}(q) | {}^{3}S_{1}; k_{2} \rangle$ = $g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + \cdots$

INT, June 2017 18 / 26

- $\langle {}^{3}P_{1}; k_{1} | J_{0}^{\lambda}(q) | {}^{3}S_{1}; k_{2} \rangle = g_{1}^{q} k_{1} + \cdots$
- $\langle {}^{3}D_{2}; k_{1}|J_{0}^{\lambda}(q)|{}^{3}S_{1}; k_{2}\rangle = g_{2,D}^{q} k_{1}^{2} + \cdots$
- $\langle \psi_f^{\lambda} | J_0^{\lambda}(q) | \psi_i^{\lambda} \rangle \approx \langle \psi_f^{\lambda} | J_0^{\lambda}(q) | \psi_i^{\lambda}{}_{{}^3S_1} \rangle$

•
$$\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} J_{S_1} \rangle = \langle \psi_f^{\lambda} | ^3 S_1 \rangle \underbrace{\langle ^3 S_1 | J_0^{\lambda} | ^3 S_1 \rangle}_{\text{use EFT exp.}} \langle ^3 S_1 | \psi_i^{\lambda} J_{S_1} \rangle + \langle \psi_f^{\lambda} | ^3 P_1 \rangle \underbrace{\langle ^3 P_1 | J_0^{\lambda} | ^3 S_1 \rangle}_{\text{use EFT exp.}} \langle ^3 S_1 | \psi_i^{\lambda} J_{S_1} \rangle + \cdots$$

Results from low-momentum potential

 $\bullet \ \langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_{i^3 S_1}^{\lambda} \rangle = \langle \psi_f^{\lambda} |^3 S_1 \rangle \langle {}^3 S_1 | J_0^{\lambda} |^3 S_1 \rangle \langle {}^3 S_1 | \psi_{i^3 S_1}^{\lambda} \rangle$

Results from low-momentum potential

•
$$\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_{i^3 S_1}^{\lambda} \rangle = \langle \psi_f^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | J_0^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | \psi_{i^3 S_1}^{\lambda} \rangle$$

 $+ \sum_{J=0,1,2} \langle \psi_f^{\lambda} | {}^3P_J \rangle \langle {}^3P_J | J_0^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | \psi_{i^3 S_1}^{\lambda} \rangle$

Results from low-momentum potential

- $\langle \psi_f^{\lambda} | J_0^{\lambda}(q) | \psi_{\text{deut}}^{\lambda} \rangle$ = $g_0^q \psi_f^{\lambda^*}(r) \psi_{\text{deut}}^{\lambda}(r) \Big|_{r=0} + \cdots$
- $f_L^{\text{from EFT}} \approx f_L^{\text{exact}}$
- Agreement made better by going to higher order terms in EFT expansion

$$\begin{aligned} \bullet \quad \langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_{i^3 S_1}^{\lambda} \rangle &= \langle \psi_f^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | J_0^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | \psi_{i^3 S_1}^{\lambda} \rangle \\ &+ \sum_{J=0,1,2} \langle \psi_f^{\lambda} | {}^3P_J \rangle \langle {}^3P_J | J_0^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | \psi_{i^3 S_1}^{\lambda} \rangle + \sum_{J=1,2,3} \langle \psi_f^{\lambda} | {}^3D_J \rangle \langle {}^3D_J | J_0^{\lambda} | {}^3S_1 \rangle \langle {}^3S_1 | \psi_{i^3 S_1}^{\lambda} \rangle \end{aligned}$$

• $\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle_{l_{\text{max}}=0} \equiv \langle \psi_f^{\lambda}; {}^3S_1 | J_0^{\lambda} | \psi_i^{\lambda}; {}^3S_1 \rangle$

- $\langle {}^{3}S_{1};k_{1}|J_{0}^{\lambda}_{\mathrm{EFT}}(q)|{}^{3}S_{1};k_{2}\rangle = g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}$
- Large LO to NLO correction \Rightarrow inefficient power counting

• $\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle_{l_{\text{max}}=0} \equiv \langle \psi_f^{\lambda}; {}^3S_1 | J_0^{\lambda} | \psi_i^{\lambda}; {}^3S_1 \rangle$

- $\langle {}^{3}S_{1};k_{1}|J_{0}^{\lambda}_{\mathrm{EFT}}(q)|{}^{3}S_{1};k_{2}\rangle = g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}$
- Large LO to NLO correction \Rightarrow inefficient power counting

• $\langle \psi_f^{\lambda} | J_0^{\lambda} | \psi_i^{\lambda} \rangle_{l_{\text{max}}=0} \equiv \langle \psi_f^{\lambda}; {}^3S_1 | J_0^{\lambda} |_{\text{exact}} | \psi_i^{\lambda}; {}^3S_1 \rangle$

- $\langle {}^{3}S_{1};k_{1}|J_{0}^{\lambda}_{\mathrm{EFT}}(q)|{}^{3}S_{1};k_{2}\rangle = g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}$
- Large LO to NLO correction \Rightarrow inefficient power counting

•
$$\langle {}^{3}S_{1}; k_{1}|J_{0 \text{ EFT}}^{\lambda}(q)|{}^{3}S_{1}; k_{2} \rangle = g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}$$

$E' = 20 \text{ MeV } \mathbf{q}^2 = 36 \text{ fm}^{-2} \langle \phi; {}^3S_1 J_0^{\lambda=1.5} \psi_i^{\lambda}; {}^3S_1 \rangle = -0.005029$			
	LO	NLO	N ² LO
$\langle \phi; {}^{3}S_{1} J_{0 \text{ EFT}}^{\lambda} \psi_{i}^{\lambda}; {}^{3}S_{1} angle$	-0.006479	-0.004826	-0.005004

•
$$\langle {}^{3}S_{1}; k_{1}|J_{0 \text{ EFT}}^{\lambda}(q)|{}^{3}S_{1}; k_{2} \rangle =$$

 $\left(g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}\right) e^{-ak^{2}/\lambda^{2}}$

$E' = 20 \text{ MeV } \mathbf{q}^2 = 36 \text{ fm}^{-2} \langle \phi; {}^3S_1 J_0^{\lambda=1.5} \psi_i^{\lambda}; {}^3S_1 \rangle = -0.005029$			
	LO	NLO	N ² LO
$\langle \phi; {}^3S_1 J_{0 \text{ EFT}}^{\lambda} \psi_i^{\lambda}; {}^3S_1 angle$	-0.006479	-0.004826	-0.005004
$\langle \phi; {}^3S_1 J^{\lambda}_{0 \text{ SVD}} \psi^{\lambda}_i; {}^3S_1 \rangle$			

•
$$J_q^{\lambda}(k',k) \xrightarrow{\text{SVD}} \sum_i c_i^q j^i(k') j^i(k)$$

•
$$\langle {}^{3}S_{1}; k_{1}|J_{0 \text{ EFT}}^{\lambda}(q)|{}^{3}S_{1}; k_{2} \rangle =$$

 $\left(g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}\right) e^{-ak^{2}/\lambda^{2}}$

$E' = 20 \text{ MeV } \mathbf{q}^2 = 36 \text{ fm}^{-2} \langle \phi; {}^3S_1 J_0^{\lambda=1.5} \psi_i^{\lambda}; {}^3S_1 \rangle = -0.005029$			
	LO	NLO	N ² LO
$\langle \phi; {}^3S_1 J_{0 \text{ EFT}}^{\lambda} \psi_i^{\lambda}; {}^3S_1 angle$	-0.006479	-0.004826	-0.005004
$\langle \phi; {}^{3}S_{1} J^{\lambda}_{0 \text{ SVD}} \psi^{\lambda}_{i}; {}^{3}S_{1} \rangle$	-0.005022		

•
$$J_q^{\lambda}(k',k) \xrightarrow{\text{SVD}} \sum_i c_i^q j^i(k') j^i(k)$$

•
$$\langle {}^{3}S_{1}; k_{1}|J_{0 \text{ EFT}}^{\lambda}(q)|{}^{3}S_{1}; k_{2} \rangle =$$

 $\left(g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}\right) e^{-ak^{2}/\lambda^{2}}$

$E' = 20 \text{ MeV } \mathbf{q}^2 = 36 \text{ fm}^{-2} \langle \phi; {}^3S_1 J_0^{\lambda=1.5} \psi_i^{\lambda}; {}^3S_1 \rangle = -0.005029$			
	LO	NLO	N ² LO
$\langle \phi; {}^3S_1 J_{0 \text{ EFT}}^{\lambda} \psi_i^{\lambda}; {}^3S_1 angle$	-0.006479	-0.004826	-0.005004
$\langle \phi; {}^{3}S_{1} J^{\lambda}_{0 \text{ SVD}} \psi^{\lambda}_{i}; {}^{3}S_{1} \rangle$	-0.005022	-0.005055	

•
$$J_q^{\lambda}(k',k) \xrightarrow{\text{SVD}} \sum_i c_i^q j^i(k') j^i(k)$$

•
$$\langle {}^{3}S_{1}; k_{1}|J_{0 \text{ EFT}}^{\lambda}(q)|{}^{3}S_{1}; k_{2} \rangle =$$

 $\left(g_{0}^{q} + g_{2}^{q}(k_{1}^{2} + k_{2}^{2}) + g_{4}^{q}(k_{1}^{4} + k_{2}^{4}) + g_{4}^{\prime q}k_{1}^{2}k_{2}^{2}\right) e^{-ak^{2}/\lambda^{2}}$

$E' = 20 \text{ MeV } \mathbf{q}^2 = 36 \text{ fm}^{-2} \langle \phi; {}^3S_1 J_0^{\lambda=1.5} \psi_i^{\lambda}; {}^3S_1 \rangle = -0.005029$			
	LO	NLO	N ² LO
$\langle \phi; {}^3S_1 J_{0 \mathrm{EFT}}^{\lambda} \psi_i^{\lambda}; {}^3S_1 angle$	-0.006479	-0.004826	-0.005004
$\langle \phi; {}^{3}S_{1} J_{0 \text{ SVD}}^{\lambda} \psi_{i}^{\lambda}; {}^{3}S_{1} \rangle$	-0.005022	-0.005055	-0.005028

•
$$J_q^{\lambda}(k',k) \xrightarrow{\text{SVD}} \sum_i c_i^q j^i(k') j^i(k)$$

q-factorization of f_L

- $f_L \equiv f_L(p', \theta; q)$ p' and θ : outgoing nucleon q: momentum transfer
- For $p' \ll q$, f_L scales with q $f_L(p', \theta; q) \rightarrow g(p', \theta)B(q)$
- Note that f_L is a strong function of q

q-factorization of f_L

- $f_L \equiv f_L(p', \theta; q)$ p' and θ : outgoing nucleon q: momentum transfer
- For $p' \ll q$, f_L scales with q $f_L(p', \theta; q) \rightarrow g(p', \theta)B(q)$
- Note that f_L is a strong function of q
- Follows from the LO term in SVD expansion: $\langle \psi_f^{\lambda} | J_0^{\lambda}(q) | \psi_{deut}^{\lambda} \rangle \approx c_0^q \psi_f^{\lambda^*}(p';r) \psi_{deut}^{\lambda}(r) \Big|_{r=0}$

- Sensitivity of observables to the deuteron D-state probability
- Surrey group: sensitivity to high-*np* momenta and D-state component in (*d*, *p*) reactions [e.g., PRL **117** (2016)]

- Sensitivity of observables to the deuteron D-state probability
- Surrey group: sensitivity to high-*np* momenta and D-state component in (*d*, *p*) reactions [e.g., PRL **117** (2016)]

- Sensitivity of observables to the deuteron D-state probability
- Surrey group: sensitivity to high-*np* momenta and D-state component in (*d*, *p*) reactions [e.g., PRL **117** (2016)]

• Unevolved contribution to f_L mostly *D*-state but all *S*-state for evolved

- Sensitivity of observables to the deuteron D-state probability
- Surrey group: sensitivity to high-*np* momenta and D-state component in (*d*, *p*) reactions [e.g., PRL **117** (2016)]

- Unevolved contribution to f_L mostly *D*-state but all *S*-state for evolved
- λ evolution shows switch from *D*-channel to *S*-channel

Summary

Case study shows:

- Scale dependence abounds... in a systematic way which can be accounted for
- Underlying physics is scale dependent not just kinematics dependent
 - Sensitivity to specific component of nuclear wave function can be highly scale dependent
 - Local decoupling + form of evolved current \rightarrow reduced FSI at low resolutions

• Conventional wisdom: low-resolution potentials ill-suited for (high-q) reactions calculations \swarrow \rightarrow RG changes to \hat{O}_q tractable

• Explanation of factorization straightforward in low-momentum picture

Summary

Case study shows:

- Scale dependence abounds... in a systematic way which can be accounted for
- Underlying physics is scale dependent not just kinematics dependent
 - Sensitivity to specific component of nuclear wave function can be highly scale dependent
 - Local decoupling + form of evolved current \rightarrow reduced FSI at low resolutions
- Conventional wisdom: low-resolution potentials ill-suited for (high-q) reactions calculations \swarrow \rightarrow RG changes to \hat{O}_q tractable
- Explanation of factorization straightforward in low-momentum picture

To do:

- Make the EFT picture for J_0^{λ} more quantitative, explore SVD
- Include initial two-body currents, extend to *A* > 2, connect to other nuclear processes
- Basis for consistent construction of operators

Relevance to $0\nu\beta\beta$

- Evolution of leading 0νββ operator
 → Extract EFTish picture
- Factorization arguments
 - \rightarrow understand the SRC factor
 - \rightarrow correlation among various observables
- Scale dependence of g_A

Back up

Cartoon picture

EMC Phenomenology

Notron, Rep. Prog. Phys. (2003) (data from SLAC)

- EMC \Rightarrow nuclear modification of nucleonic properties. The EMC ratio is independent of Q^2 .
- The shape is universal: independent of *A*. Depletion at small *x*, greater than 1 for 0.1 < x < 0.3, linear fall for 0.3 < x < 0.7 and steep rise for x > 0.7.
- The magnitude of distortion is A dependent. It goes roughly as ρ_A .

QCD non-perturbative at low energies

• QCD is underlying theory

QCD non-perturbative at low energies

- QCD is underlying theory
- Nuclear energies: ~ few MeVs
- QCD non-perturbative at low energies

Shell model

Factorization d(e, e'p)n Summary $0\nu\beta\beta$

Choose appropriate degrees of freedom

"You may use any degrees of freedom you like to describe a physical system, but if you use the

wrong ones, you'll be sorry!" - Weinberg

```
Sushant More
```

Chiral EFT diagrams

SRG back up

- SRG flow equation: $\frac{dH_s}{ds} = [[T_{rel}, H_s], H_s]$
- s: flow parameter. T_{rel} : relative kinetic energy

•
$$E_n = \langle \Psi_n | H | \Psi_n \rangle = (\langle \Psi_n | U_s^{\dagger}) U_s H U_s^{\dagger} (U_s | \Psi_n \rangle) = \langle \Psi_n^s | H_s | \Psi_n^s \rangle$$

• There is no unique potential!

•
$$\lambda^2 = 1/\sqrt{s}$$

• $\frac{dV_\lambda}{d\lambda}(k,k') \propto -(\epsilon_k - \epsilon_{k'})^2 V_\lambda(k,k') + \sum_q (\epsilon_k + \epsilon_{k'} - 2\epsilon_q) V_\lambda(k,q) V_\lambda(q,k')$

•
$$O_s = U_s O U_s^{\dagger}$$

•
$$\frac{dO_s}{ds} = [[G_s, H_s], O_s]$$

•
$$\frac{d U_s}{d s} = [G_s, H_s] U_s$$

•
$$U_s = \sum_i |\psi_i(s)\rangle \langle \psi_i(0)|$$

Tjon line

Numerical implementation

- $\langle \phi | t_{\lambda}^{\dagger} G_0^{\dagger} J_0^{\lambda} | \psi_i^{\lambda} \rangle = \langle \phi | t_{\lambda}^{\dagger} G_0^{\dagger} \widetilde{U} J_0 \widetilde{U}^{\dagger} | \psi_i^{\lambda} \rangle + \cdots$
- $U = I + \widetilde{U}$. Smooth \widetilde{U} amenable to interpolation.
- Insert complete set of partial wave basis of the form $1 = \frac{2}{\pi} \sum_{\substack{L,S \\ J,m_J}} \sum_{T=0,1} \int dp \, p^2 |p J m_J L S T\rangle \langle p J m_J L S T| .$
- Large number of nested sums and integrals. Caching techniques used to avoid recalculation of *t*-matrix.
- Parallelization implemented using TBB library. Run on a node with 48 cores.

Numerical implementation: representative term

$$\begin{split} \langle \phi | t_{\lambda}^{\dagger} G_{0}^{\dagger} \widetilde{U} J_{0} \widetilde{U}^{\dagger} | \psi_{i}^{\lambda} \rangle &= \frac{8}{\pi^{2}} \sqrt{\frac{2}{\pi}} \frac{M}{\hbar c} \int \frac{dk_{2} k_{2}^{2}}{(p'+k_{2})(p'-k_{2}-i\epsilon)} \sum_{T_{1}=0,1} \left(G_{E}^{p} + (-1)^{T_{1}} G_{E}^{n} \right) \\ &\times \sum_{L_{1}=0}^{L_{\max}} \left(1 + (-1)^{T_{1}} (-1)^{L_{1}} \right) \times Y_{L_{1},m_{J_{d}}-m_{s_{f}}}(\theta',\varphi') \sum_{J_{1}=|L_{1}-1|}^{L+1} \langle L_{1} m_{J_{d}} - m_{s_{f}} S = 1 m_{s_{f}} | J_{1} m_{J_{d}} \rangle \\ &\times \sum_{L_{2}=0}^{L_{\max}} t_{\lambda}^{*}(k_{2},p',L_{2},L_{1},J_{1},S=1,T_{1}) \sum_{L_{3}=0}^{L_{\max}} \sum_{\tilde{m}_{s}=-1}^{1} \langle J_{1} m_{J_{d}} L_{3} m_{J_{d}} - \tilde{m}_{s} | S = 1 \tilde{m}_{s} \rangle \\ &\times \sum_{L_{4}=0}^{L_{\max}} t_{\lambda}^{*}(k_{2},p',L_{2},L_{1},J_{1},S=1,T_{1}) \sum_{L_{3}=0}^{L_{\max}} \sum_{\tilde{m}_{s}=-1}^{1} \langle J_{1} m_{J_{d}} L_{3} m_{J_{d}} - \tilde{m}_{s} | S = 1 \tilde{m}_{s} \rangle \\ &\times \sum_{L_{4}=0}^{L_{\max}} \langle L_{4} m_{J_{d}} - \tilde{m}_{s} S = 1 \tilde{m}_{s} | J = 1 m_{J_{d}} \rangle \int dk_{4} k_{4}^{2} \widetilde{U}(k_{2},k_{4},L_{2},L_{3},J_{1},S=1,T_{1}) \\ &\times \int d\cos \theta P_{L_{3}}^{m_{J_{d}}-\tilde{m}_{s}}(\cos \theta) P_{L_{4}}^{m_{J_{d}}-\tilde{m}_{s}}(\cos \alpha'(k_{4},\theta)) \\ &\times \int dk_{6} k_{6}^{2} \sum_{L_{d}=0,2} \widetilde{U} \left(k_{6}, \sqrt{k_{4}^{2} - k_{4}q \cos \theta + q^{2}/4}, L_{d}, L_{4}, J = 1, S = 1, T = 0 \right) \psi_{L_{d}}^{\lambda}(k_{6}) \,. \end{split}$$