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Factorization d(e, e′p)n Summary 0νββ

Nuclear structure vs. reaction

Traditionally, nuclear structure treated
separately from nuclear reactions.
Assumes unique factorization of structure
and reaction components.

Extract nuclear properties from experiments
and predict them with theory.
dσ
dΩ
∝
∣∣∣〈ψfinal | Ô(q) |ψinitial〉

∣∣∣2
〈 ψfinal︸︷︷︸

structure

|
reaction︷︸︸︷
Ô(q) |ψinitial︸ ︷︷ ︸

structure

〉

Use factorization to isolate individual
components and extract
process-independent nuclear properties.

Nucleon knockout reaction

hard scale

factorization
structure reaction
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Factorization d(e, e′p)n Summary 0νββ

Factorization: Examples

High-E QCD

hard scale

factorization

long-distance
parton density

short-distance
Wilson coefficient

Separation between long- and
short-distance physics is not unique,
but defined by the scale µf

Form factor F2 is independent of µf ,
but pieces are not
fa(x, µf = Q2) runs with Q2, but is
process independent

Low-E Nuclear
Observable:
cross section

Structure model:
spectroscopic factor

Reaction model:
 single-particle
 cross section

Open questions

When does factorization hold?
Which process-independent nuclear
properties can we extract?
What is the scale/scheme dependence
of the extracted properties?
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Factorization d(e, e′p)n Summary 0νββ

Scale-scheme dependence: QCD vs. low-E nuclear

x q(x, Q2): share of momentum
carried by quarks in particular
x-interval
The quark distribution q(x, Q2) is
scale and scheme dependent
q(x, Q2) and q(x, Q2

0) are related by
RG evolution equations

AV18 potential evolved from λ =∞
to λ = 1.5 fm−1

Deuteron momentum distribution is
scale and scheme dependent
High momentum tail shrinks as λ
decreased (lower resolution)
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Factorization d(e, e′p)n Summary 0νββ

Scale and scheme choice

Scheme in low-E nuclear physics: choice of potential, regulators, RG evolution . . .

How do we choose a scale/ scheme?

Make calculations easier/ more convergent

Does simple structure always imply a complicated reaction calculation?

Clean extraction from experiments; increased validity of impulse approximation

Correctly use the structure information in other processes

Better interpretation/ intuition
→ Surrey group: sensitivity to high-np momenta and D-state component in
(d, p) reactions [e.g., PRL 117 (2016)]
→ JLab SRC/EMC correlation experiments [e.g., Hen et al., RMP]

Use renormalization group (RG) as a tool to consistently relate scales and
quantitatively probe ambiguities
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Factorization d(e, e′p)n Summary 0νββ

SRG makes scale dependence obvious

SRG scale λ sets the scale for decoupling
high- and low-momentum and separating
structure and reaction

Transformed wave function→
no high momentum components (no SRC)

σ ∼
∣∣〈ψf |Ôq|ψi〉

∣∣2 ⇒ Ôq must change to
keep observables invariant

UV physics absorbed in operator
(cf. Chiral EFTs)

〈ψf |Ôq|ψi〉 = 〈ψλf |Ôλq |ψλi 〉
Naive expectation: RG changes to Ôq

complicates reaction calculations

p < λ p > λ

0 1 2 3 4 5

k [fm
−1

]

0.0

0.1

0.2

0.3

ψ
d
(k

) 
[f

m
3

/2
]

λ = ∞

λ = 2.0 fm
−1

λ = 1.5 fm
−1

AV18

L = 2
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

1 Nuclear structure vs. reaction

2 Test Case: Deuteron electrodisintegration
Scale dependence and kinematics
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3 Summary and Takeaways
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

Test ground: 2H (e, e′ p) n

Use deuteron disintegration to
investigate scale/ scheme dependence
of factorization
2H (e, e′ p) n: simplest knockout
process. Has many of the essential
ingredients and no complications
No induced 3N forces or currents
Well-studied experimentally

dσ
dΩ
∝ (vL fL + vT fT + vTT fTT cos 2φp + vLT fLT cosφp)

vL, vT , . . .- electron kinematic factors. fL, fT , . . .- deuteron structure
functions
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

Deuteron disintegration calculations following Yang, Phillips (2013)

Calculate longitudinal structure function
fL ∼

∑
ms ,mJ

∣∣〈ψf |J0|ψi〉
∣∣2

|ψf 〉 = |φ〉︸︷︷︸
IA

+ G0 t |φ〉︸ ︷︷ ︸
FSI

G0 : Green’s function. t : t-matrix

[H. Ibrahim]

Impulse Approximation (IA)

Final State Interactions (FSI)

f λL ∼
∣∣〈ψf |U†λ︸ ︷︷ ︸

ψλ
f

Uλ J0 U†λ︸ ︷︷ ︸
Jλ0

Uλ |ψi︸ ︷︷ ︸
ψλ

i

〉
∣∣2; U†λUλ = I; f λL = fL

Components depend on the scale λ. Cross section does not!
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

Evolutionary effects

2H (e, e′ p) n calculations done using
AV18 potential with λ =∞ and
λ = 1.5 fm−1

fL ∼
∑

ms ,mJ

∣∣〈ψf |J0|ψi〉
∣∣2

Effects due to evolution of one or more
components of 〈ψf |J0|ψi〉 as a function
of kinematics→ scale dependence of
factorization

Proof of principle calculations using
simplified J0. Comparison to
experiment not warranted

Quasi-free ridge (QFR): ωphoton = 0

Weak scale dependence at QFR which
gets progressively stronger away from it

✪

✪

✪

✪

✪

SNM et al., PRC 92, 064002 (2015)
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

Evolutionary effects

Can get away with inconsistent calculations at
the quasi-free ridge (QFR)
Long-range part of the wave function/ on-shell
t-matrix probed at QFR
→ invariant under SRG evolution
Scale dependence qualitatively different above
and below the QFR
Can be explained by looking at the effect of
evolution on the overlap matrix elements
[SNM et al., PRC 92, 064002 (2015)]

✪

✪

✪

✪

✪
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Factorization d(e, e′p)n Summary 0νββ Kinematics dep. ψf evol. operator evol. D-state

Evolution effects on individual components

fL ∝
∑

ms,mJ

〈ψf |J0|ψi〉 =
∑

ms,mJ

〈ψλf |Jλ0 |ψλi 〉

Looked at effects of evolution on the observable fL

Look at changes due to evolution for individual components and
their implications

Evolution of ψdeut: suppression of high-momentum components
→ accelerated convergence of nuclear structure calculations
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Evolving the final state

0 1 2 3 4 5 6

k [fm−1]

10−5

10−4

10−3

10−2

10−1

100

|∆
ψ

(k
)|

3S1

p′ = 0.85 fm−1

E ′ ≈ 30 MeV

λ =∞
λ = 1.5 fm−1

0 1 2 3 4 5 6

k [fm−1]

10−5

10−4

10−3

10−2

10−1

100

|∆
ψ

(k
)|

3S1

p′ = 1.7 fm−1

E ′ ≈ 120 MeV

λ =∞
λ = 1.5 fm−1

ψλf (p′; k) = φp′︸︷︷︸
IA

+ ∆ψλ(p′; k)︸ ︷︷ ︸
FSI

High-k tail suppressed with evolution

For p′ & λ, ψλf (p′; k) localized around the outgoing momentum p′
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r-space ψf at different λ

0 2 4 6 8 10 12 14
r [fm]

0.00
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E ′ ≈ 75 MeV

|φ(r)|
ψλ=∞(r)

ψλ=4(r)

ψλ=3(r)

ψλ=2(r)

Small r wound evolved away as λ reduced
Beyond range of the potential, ψ(r) and φ(r) differ by phase that is
same for all λ
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Scale-dependent FSI contribution

“FSI contribution depends on kinematics”
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θ [deg]

0.0

0.2

0.4
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0.8
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1.2

1.4

1.6

f L
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0−
4
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]

E′ =100 MeV q2 =36.0 fm−2

IA + FSI

IA
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3.5

f L
[1

0−
5
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]

E′ =120 MeV q2 =49 fm−2

IA + FSI

IA

〈ψλf |Jλ0 |ψλi 〉 = 〈φ|Jλ0 |ψλi 〉+ 〈∆ψλf |Jλ0 |ψλi 〉
Local decoupling of ψλf (k) and form of Jλ0 make 〈∆ψλf |Jλ0 |ψλi 〉 small

fL(〈ψf |J0|ψi〉) ≈ fL(〈φ|Jλ0 |ψλi 〉)
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Current evolution story

〈k1T1|J0(q)|k2T = 0〉 =
1
2
(
Gp

E + (−1)T
1 Gn

E
)
δ(k1 − k2 − q/2) +

1
2
(
(−1)T

1 Gp
E + Gn

E
)
δ(k1 − k2 + q/2)

Varying λ shuffles the physics between
short- and long-distance parts

λ decreases→ blob size increases.
One-body current operator develops two
and higher body components

at high resolution

Naive expectation: RG changes to J0(q) complicates reaction calculations
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EFT for the current

〈ψf |J0(q)|ψi〉 = 〈ψλf |Jλ0 (q)|ψλi 〉
Low-momentum component of Jλ0 (q)
most relevant

〈3S1; k1|Jλ0 (q)|3S1; k2〉
= gq

0 + gq
2(k2

1 + k2
2) + · · ·
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EFT for the current

〈3P1; k1|Jλ0 (q)|3S1; k2〉 = gq
1 k1 + · · ·

〈3D2; k1|Jλ0 (q)|3S1; k2〉 = gq
2,D k2

1 + · · ·

〈ψλf |Jλ0 (q)|ψλi 〉 ≈ 〈ψλf |Jλ0 (q)|ψλi 3S1
〉
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〈ψλf |Jλ0 |ψλi 3S1
〉 =

〈ψλf |3S1〉 〈3S1|Jλ0 |3S1〉︸ ︷︷ ︸
use EFT exp.

〈3S1|ψλi 3S1
〉+ 〈ψλf |3P1〉 〈3P1|Jλ0 |3S1〉︸ ︷︷ ︸

use EFT exp.

〈3S1|ψλi 3S1
〉+ · · ·
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Results from low-momentum potential

〈ψλf |Jλ0 (q)|ψλdeut〉
= gq

0 ψ
λ
f
∗
(r)ψλdeut(r)

∣∣∣
r=0

+ · · ·

f from EFT
L ≈ f exact

L

Agreement made better by going to
higher order terms in EFT expansion
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EFT: S (up to k4)

〈ψλf |J
λ
0 |ψ

λ
i 3S1
〉 = 〈ψλf |

3S1〉〈3S1|Jλ0 |
3S1〉〈3S1|ψλi 3S1

〉

+
∑

J=0,1,2

〈ψλf |
3PJ〉〈3PJ |Jλ0 |

3S1〉〈3S1|ψλi 3S1
〉+

∑
J=1,2,3

〈ψλf |
3DJ〉〈3DJ |Jλ0 |

3S1〉〈3S1|ψλi 3S1
〉
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Comparing power counting
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EFT: S (LO contact)

〈ψλf |Jλ0 |ψλi 〉lmax=0 ≡ 〈ψλf ; 3S1|Jλ0 exact|ψλi ; 3S1〉

〈3S1; k1|Jλ0 EFT(q)|3S1; k2〉 = gq
0 + gq

2

(
k2

1 + k2
2
)

+ gq
4

(
k4

1 + k4
2
)

+ g′ q4 k2
1 k2

2

Large LO to NLO correction⇒ inefficient power counting
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Comparing power counting

〈3S1; k1|Jλ0 EFT(q)|3S1; k2〉 =
gq

0 + gq
2

(
k2

1 + k2
2

)
+ gq

4

(
k4

1 + k4
2

)
+ g′ q4 k2

1 k2
2

E′ = 20 MeV q2 = 36 fm−2 〈φ;3S1|Jλ=1.5
0 exact|ψλi ;3S1〉 = −0.005029

LO NLO N2LO
〈φ;3S1|Jλ0 EFT|ψλi ;3S1〉 −0.006479 −0.004826 −0.005004

〈φ;3S1|Jλ0 SVD|ψλi ;3S1〉 −0.005022 −0.005055 −0.005028

Expansion in regulated contact terms obtained through singular value
decomposition

Jλq (k′, k)
SVD−−→∑

i cq
i ji(k′)ji(k)
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Comparing power counting
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q-factorization of fL

fL ≡ fL(p′, θ; q)
p′ and θ: outgoing nucleon
q: momentum transfer

For p′ � q, fL scales with q
fL(p′, θ; q)→ g(p′, θ)B(q)

Note that fL is a strong function of q

Follows from the LO term in SVD
expansion:
〈ψλf |Jλ0 (q)|ψλdeut〉 ≈
cq

0 ψ
λ
f
∗
(p′; r)ψλdeut(r)
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E = 0
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q-factorization of fL

fL ≡ fL(p′, θ; q)
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Scale dependent D-state contribution

Sensitivity of observables to the deuteron D-state probability
Surrey group: sensitivity to high-np momenta and D-state component in (d, p)
reactions [e.g., PRL 117 (2016)]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

k [fm−1]

10−5

10−4

10−3

10−2

10−1

100

101

ψ
(k

)
[f

m
3/

2
]

ψλ=∞
3S1

ψλ=2
3S1

ψλ=∞
3D1

ψλ=2
3D1

1.0 2.0 4.0 8.0

λ [fm−1]

0.0

0.5

1.0

1.5

2.0

2.5

f L
[1

0−
5

fm
]

E ′ = 20 MeV q2 = 36 fm−2 θ′ = 0o

〈ψf |J0|ψi〉
〈ψλf |Jλ0 |ψλi 3S1

〉
〈ψλf |Jλ0 |ψλi 3D1

〉

Unevolved contribution to fL mostly D-state but all S-state for evolved
λ evolution shows switch from D-channel to S-channel
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Scale dependent D-state contribution

Sensitivity of observables to the deuteron D-state probability
Surrey group: sensitivity to high-np momenta and D-state component in (d, p)
reactions [e.g., PRL 117 (2016)]
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Factorization d(e, e′p)n Summary 0νββ

Summary
Case study shows:

Scale dependence abounds... in a systematic way which can be accounted for

Underlying physics is scale dependent not just kinematics dependent

Sensitivity to specific component of nuclear wave function can be highly
scale dependent
Local decoupling + form of evolved current→ reduced FSI at low
resolutions

Conventional wisdom: low-resolution potentials ill-suited for (high-q)

reactions calculations 7
→ RG changes to Ôq tractable

Explanation of factorization straightforward in low-momentum picture

To do:

Make the EFT picture for Jλ0 more quantitative, explore SVD

Include initial two-body currents, extend to A > 2, connect to other nuclear
processes

Basis for consistent construction of operators
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Factorization d(e, e′p)n Summary 0νββ

Relevance to 0νββ

Evolution of leading 0νββ operator
→ Extract EFTish picture

Factorization arguments
→ understand the SRC factor
→ correlation among various observables

Scale dependence of gA
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Back up

Sushant More Evolution of operators INT, June 2017 27 / 26



Factorization d(e, e′p)n Summary 0νββ

Cartoon picture

kinematics before after

quasielastic
kp	

kn	

q	

kp	kn	

high q2, low
E′ at λ =∞

q	

kn	

kp	
kp	kn	

high q2, low
E′ at small λ

q	 kp	

kn	
two-
body	 kp	kn	
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EMC Phenomenology

Notron, Rep. Prog. Phys. (2003) (data from SLAC)

EMC⇒ nuclear modification of nucleonic properties.
The EMC ratio is independent of Q2.
The shape is universal: independent of A. Depletion at small x, greater than 1
for 0.1 < x < 0.3, linear fall for 0.3 < x < 0.7 and steep rise for x > 0.7.
The magnitude of distortion is A dependent. It goes roughly as ρA.
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QCD non-perturbative at low energies

QCD is underlying theory

Nuclear energies: ∼ few MeVs
QCD non-perturbative at low
energies

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)
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Shell model
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Choose appropriate degrees of freedom

R
es

ol
ut

io
n 

scale&
separa)on&

DFT 

collective 
models 

CI 

ab initio 

LQCD 

constituent 
quarks 

"You may use any degrees of freedom you like to describe a physical system, but if you use the

wrong ones, you’ll be sorry!" - Weinberg
Sushant More Evolution of operators INT, June 2017 32 / 26



Factorization d(e, e′p)n Summary 0νββ

Chiral EFT diagrams

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N3LO

(Q/Λχ)4
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SRG back up

SRG flow equation:
dHs

ds
= [[Trel , Hs] , Hs]

s: flow parameter. Trel: relative kinetic energy

En = 〈Ψn|H|Ψn〉 = (〈Ψn|U†s )UsHU†s (Us|Ψn〉) = 〈Ψs
n|Hs|Ψs

n〉
There is no unique potential!

λ2 = 1/
√

s
dVλ
dλ

(k, k′) ∝ −(εk − εk′)
2Vλ(k, k′) +

∑
q

(εk + εk′ − 2εq)Vλ(k, q)Vλ(q, k′)

Os = Us O U†s
d Os

d s
=
[
[Gs , Hs] ,Os

]
d Us

d s
= [Gs , Hs] Us

Us =
∑

i

|ψi(s)〉〈ψi(0)|
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Tjon line
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Numerical implementation

〈φ|t†λ G†0 Jλ0 |ψλi 〉 = 〈φ|t†λ G†0 Ũ J0 Ũ†|ψλi 〉+ · · ·

U = I + Ũ . Smooth Ũ amenable to interpolation.

Insert complete set of partial wave basis of the form

1 =
2
π

∑
L,S

J,mJ

∑
T=0,1

∫
dp p2 |p J mJ L S T〉 〈p J mJ L S T| .

Large number of nested sums and integrals. Caching techniques used to avoid
recalculation of t-matrix.

Parallelization implemented using TBB library. Run on a node with 48 cores.
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Numerical implementation: representative term

〈φ|t†λ G†0 Ũ J0 Ũ†|ψλi 〉 =
8
π2

√
2
π

M
~c

∫
dk2 k2

2

(p′ + k2)(p′ − k2 − iε)

∑
T1=0,1

(
Gp

E+(−1)T1 Gn
E
)

×
Lmax∑
L1=0

(
1 + (−1)T1 (−1)L1

)
× YL1,mJd−msf

(θ′, ϕ′)
L+1∑

J1=|L1−1|
〈L1 mJd −msf S = 1 msf |J1 mJd 〉

×
Lmax∑
L2=0

t∗λ(k2, p′, L2, L1, J1, S = 1, T1)

Lmax∑
L3=0

1∑
m̃s=−1

〈J1 mJd L3 mJd − m̃s|S = 1 m̃s〉

×
Lmax∑
L4=0

〈L4 mJd − m̃s S = 1 m̃s|J = 1 mJd 〉
∫

dk4 k2
4 Ũ(k2, k4, L2, L3, J1, S = 1, T1)

×
∫

dcos θ P
mJd−m̃s
L3

(cos θ)P
mJd−m̃s
L4

(
cosα′(k4, θ)

)
×
∫

dk6 k2
6

∑
Ld=0,2

Ũ
(

k6,

√
k4

2 − k4q cos θ + q2/4, Ld, L4, J = 1, S = 1, T = 0
)
ψλLd

(k6) .
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