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0νββ decay NMEs in large shell model 
space with the generator-coordinate 
method



Generator Coordinate Method (GCM) 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

Generator Coordinate Method:  an approach that treats 
large-amplitude fluctuations, which is essential for nuclei 
that cannot be approximated by a single mean field. 
How it works:

Construct a set of mean-field states by constraining 
coordinates, e.g., quadrupole moment. Then diagonalize  
Hamiltonian in space of symmetry-restored nonorthogonal 
vacua with different amounts of quadrupole deformation. 

GCM based on EDF has been applied to double-beta 
decay, however…  



Comparison between GCM and SM 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

Our long-term goal is to combine the virtues of both frameworks 
through an EDF-based or ab-initio GCM that includes all the important 
shell model correlations and a large single-particle space.

Current results with EDF-based GCM 

The discrepancy may be 
because:
• The GCM omits correlations. 
• The shell model omits many 

single-particle levels

Both the shell model and the EDF-
based GCM could be missing 
important physics. 
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To get closer to the ultimate goal: 
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

We can use SM Hamiltonian in the GCM

Our short-term goal is more modest: a shell-model 
Hamiltonian-based GCM in one and two (and possibly 
more) shells.



Our Current Procedure
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary

① Using a shell-model Hamiltonian
② HFB states             with multipole constraints q.  
      We are trying to include all possible collective correlations. 
③ Angular momentum and particle number projection

④ Configuration mixing within GCM:  

1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary
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Level 1 GCM: Axial shape and pn pairing fluctuation
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary
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The wave functions are pushed into 
a region with large isoscalar pairing 
amplitude.  
                 reduce  the 0νββ NMEs. 
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FIG. 2. (Color online) Dependence of the GCM (solid) and
QRPA (dashed) 0νββ matrix elements on the strength gT =0 of the
isoscalar pairing interaction. The red (upper) and blue (lower) lines
of each type correspond to the interaction parameters extracted from
SkO′ and SkM*. The divergence in the QRPA near gT =0/ḡT =1 = 1.5
is discussed in the text.

To clarify this last statement, we show the GCM and QRPA
matrix elements as functions of gT =0/ḡT =1 in Fig. 2. The
QRPA curves lie slightly above their GCM counterparts until
gT =0/ḡT =1 reaches a critical value slightly larger than 1.5;
at that point a mean-field phase transition from an isovector
pair condensate to an isoscalar condensate causes the famous
QRPA “collapse.” The collapse is spurious, as the GCM results
show. Its presence in mean-field theory makes the QRPA
unreliable near the critical point. It is actually a bit of a
coincidence that the QRPA matrix elements in the table are
as close as they are to those of the GCM; a small change in
gT =0 would alter them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather than
1.0 does not have a huge effect on the 0νββ matrix element).
The GCM result is not only better behaved near the critical
point but also, we believe, quite accurate. In the SO(8) model
used to test many-body methods in ββ decay many times,
the GCM result is nearly exact for all gT =0. That is not the
case for extensions of the QRPA that attempt to ameliorate
its shortcomings [32,33], though some of those work better
around the phase transition than others.

To show why the GCM behaves well, we dis-
play in the bottom right part of Fig. 3 the quantity
NφI

NφF
⟨φF |PF M̂0νPI |φI ⟩, where |φI ⟩ is a quasiparticle vac-

uum in 76Ge constrained to have isoscalar pairing amplitude
φI , φF is an analogous state in 76Se, PI , PF project onto states
with angular momentum zero and the appropriate values of
Z and N , and NφI

,NφF
normalize the projected states. This

quantity is the contribution to the 0νββ matrix element from
states with particular values of the initial and final isoscalar
pairing amplitudes. The contribution is positive around zero
condensation in the two nuclei and negative when the final
pairing amplitude is large. Thus the GCM states must contain
components with significant pn pairing when gT =0 is near its
fit value. The appearance of this plot is different from those
in which the matrix element is plotted versus initial and final
deformation [6–8]. Here the matrix element is small or negative
even if the initial and final pairing amplitudes have the same
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FIG. 3. (Color online) Bottom right: NφI
NφF

⟨φF |PF M̂0ν

PI |φI ⟩ for projected quasiparticle vacua with different values of the
initial and final isoscalar pairing amplitudes φI and φF , from the
SkO′-based interaction (see text). Top and bottom left: Square of
collective wave functions in 76Ge and 76Se.

value, as long as that value is large. The behavior reflects the
qualitatively different effects of isovector and isoscalar pairs
on the matrix element [3], effects that have no analog in the
realm of deformation.

The weight function f in the GCM ansatz multiplies
nonorthogonal states and so is not really a “collective ground-
state wave function.” The object that does play that role is a
member of an orthogonalized set defined, e.g., in Refs. [4]
and [7]. The top and left parts of Fig. 3 show the square of
this collective wave function for 76Ge and 76Se, with gT =0

set both to zero and the fit value. It is clear in both nuclei,
but particularly in 76Se, that the isoscalar pairing interaction
pushes the wave function into regions of large φ, where
the matrix element in the bottom right panel is significantly
reduced. It is also clear that for gT =0 ̸= 0 the collective wave
functions are far from the Gaussians that one would obtain in
the harmonic (QRPA) approximation. Isoscalar pairing really
is, and must be treated as, a large-amplitude mode.

We turn finally to the more realistic calculation that includes
both deformation and the pn pairing amplitude as generator
coordinates. We fit the couplings in H just as described earlier;
the strength of the quadrupole interaction no longer vanishes
and some of the other parameters change slightly: gT =1

0 = 0.90
for the interaction based on SkO′ and 0.79 for that based on
SkM*, and gT =0 = 1.75 for SkO′ and 1.51 for SkM*, in units
of ḡT =1. The calculated B(GT+) in both cases is larger than the
experimental data with or without quenching, which therefore
does not affect the value of gT =0.

First we analyze the influence of the number and
angular-momentum projection on energy. The bottom part
of Fig. 1 shows the projected potential energy surfaces
⟨β,φ|PHP |β,φ⟩ for two values of φ, along with the
unprojected surface from the top part of the panel. Projecting
at φ = 0 without including pn interactions, the figure shows,

031301-4

P †
0 =

1p
2

X

l

l̂[c†l c
†
l ]
L=0,S=1,T=0
MS=0



1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. Introduction   2. GCM based on shell-model Hamiltonian   3. Calculations and results   4. Summary

Level 1 GCM: Axial shape and pn pairing fluctuation
1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

Black column: we set all the two-
body matrix elements of the 
Hamiltonian with J  = 1 and T  = 0 
to zero, because those are the 
ones which isoscalar pairing acts 
through. 

   MGT is overestimated.
Red column: we use the full 
KB3G Hamiltonian: 

   MGT is suppressed, close to SM. 
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To highlight the effects of isoscalar pairing:

We use the KB3G interaction for 
two GCM calculations:



With GCN2850 or JUN45 interaction, projected potential energy 
surfaces for 76Ge and 76Se give minima with triaxial deformation. 

Level 2 GCM: Triaxial deformation
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triaxial deformation constrained
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Level 2 GCM: triaxial deformation
1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary
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15%~20% reduction 
for both GT and Fermi 
part of NME if triaxial 
shape fluctuation is 
included. 



Benchmarking: 0νββ NMEs given by GCM and SM
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. Introduction   2. GCM based on shell-model Hamiltonian   3. Calculations and results   4. Summary1. GCM  2. Correlations   3. Two-shell GCM for 76Ge  4. GCM with jj55 space  5. Summary

The NMEs given by SM and GCM are in good agreement, indicating 
that the GCM captures most important valence-shell correlations.
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Multi-shell GCM
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In principle, effective pfsdg-shell interaction based on chiral EFT 
can be calculated by many-body perturbation theory (MBPT), 
similarity renormalization group (SRG) or couple cluster (CC).  
We employ an effective pfsdg-shell interaction calculated by  
Extended Kuo-Krenciglowa perturbative method, which are 
provided by J. D. Holt. 
The monopole part of the resulting Hamiltonian is sensitive to the 
three-body part of the initial interaction, which one generally 
reduces to an effective two-body interaction by summing the 
third particle over a set of occupied states.

pfsdg: 3N forces normal ordered with respect to 56Ni 
Not the ideal core, but we work with it nonetheless.



Multi-shell GCM: low-lying spectra
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Low-lying level spectra 
agree well with the 
experimental data: 
give us confidence on two-
shell GCM based on pfsdg 
Hamiltonian.

We optimize the single-
particle energies for pfsdg-
shell interactions by fitting 
the measured occupancies 
of valence neutron and 
proton orbits.
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Multi-shell GCM: collective wave function
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• Larger model space: triaxially deformed as predicted.
• How does triaxial shape influence NMEs?
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Multi-shell GCM: triaxial deformation
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Multi-shell GCM: triaxial deformation
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MGT is reduced 
from 3.25 without  
triaxial deformation 
to 2.01 with triaxial 
deformation.

1

I. TABLE

TABLE I: The g.s. energies and NMEs obtained with SVD

interaction by using GCM and SM for

124
Sn,

130
Te, and

136
Xe.

CD-Bonn SRC parametrization was used.

g.s Energy (MeV) NMEs

124
Sn

124
Te M0⌫

GT M0⌫
F M0⌫

T M0⌫

GCM �15.659 �23.056 2.62 �0.58 �0.03 2.96

SM �16.052 �24.446 1.85 �0.47 0.01 2.15

130
Te

130
Xe

GCM �25.646 �32.510 2.57 �0.51 �0.02 2.87

SM �26.039 �33.313 1.66 �0.44 �0.01 1.94

136
Xe

136
Ba

GCM �34.896 �40.282 2.19 �0.32 �0.02 2.37

SM �34.971 �40.745 1.50 �0.40 �0.01 1.76

M0⌫
GT �(

gv
gA

)

2M0⌫
F M0⌫

T M0⌫

pfsdg 2.01 0.35 �0.02 2.34



GCM with jj55 space
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STEP1: We move forwards to 124Sn, 130Te, and 136Xe to check how GCM with 
shell-model Hamiltonian works for them. 

We use the SVD effective Hamiltonian within 0g7/2, 1d5/2, 1d3/2. 2s1/2, 0h11/

2 orbits (called jj55 model space here). Prof. Horoi’s group has done a lot 
of shell-model calculation with this interaction, providing a great testing 
ground.  
Because these nuclei are considered to be nearly spherical or slightly 
deformed, only axial deformation, isoscalar pairing, and isovector pn 
pairing are treated as coordinates (but separately for latter two).   

We want to extend the Hamiltonian-based GCM to larger model space and 
heavier 0νββ-decay candidates (e.g., 150Nd), for which no effective shell-
model interaction exists.
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GCM shows a reasonable agreement with SM in low-lying states, though they 
are more overestimated for spherical nuclei 124Sn and 136Xe.



GCM with jj55 space
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The theoretical neutron shell vacancies and proton shell 
occupancies given by GCM are very close to the exact 
diagonalization from SM.
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GCM with jj55 space
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TABLE I: The g.s. energies and NMEs obtained with SVD
interaction by using GCM and SM for 124Sn, 130Te, and 136Xe.
CD-Bonn SRC parametrization was used.

g.s Energy (MeV) NMEs
124Sn 124Te M0ν

GT M0ν
F M0ν

T M0ν

GCM −15.659 −23.056 2.62 −0.58 −0.03 2.96
SM −16.052 −24.446 1.85 −0.47 0.01 2.15

130Te 130Xe
GCM −25.646 −32.510 2.57 −0.51 −0.02 2.87
SM −26.039 −33.313 1.66 −0.44 −0.01 1.94

136Xe 136Ba
GCM −34.896 −40.282 2.19 −0.32 −0.02 2.37
SM −34.971 −40.745 1.50 −0.40 −0.01 1.76

The NMEs given by our SVD-based GCM are closer to the 
exact result, ~40% larger than SM results, most of them 
come from GT part.  
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The dramatic cancellation between 
I = 0 and I = 2 is well described in 
GCM.  
The largest discrepancy for I=0 and 
I=2 occurs in 130Te. 
GCM results barely have I>3 
contributions.
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more than 50% overestimation 
is from I>3 contributions: 
High-seniority correlations?

Some potential improvement:

treat deformation, isovector 
pairing, isoscalar pairing as 
coordinates at the same time. 
High-seniority correlations 
should be considered. (e.g., 
quasiparticle excitation?) 
Or we should include triaxially 
deformed configurations



Tomás R. RodríguezRelevant degrees of freedom for 0νββ decay nuclear matrix elements with EDFTRIUMF double-beta decay workshop

1. EDF method 2. Multipole deformation 4. Seniority and SU(4)3. Pairing 5. Summary and open questions

NME: triaxial quadrupole deformation
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We are trying to combine the virtues of the shell model and 
EDF calculations by including all collective correlations in the 
GCM. 

Tests against exact solutions in one shell indicate that we 
indeed have captured important valence-space correlations. 

Calculation has been extended to two major shell (e.g., pfsdg 
shell) model space, which is out of scope of the conventional 
SM. Including triaxially deformed configurations significantly 
affect the calculated NMEs. 

Extending to jj55 model space indicates that high-seniority 
correlations may be required. 
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