

Nuclear matrix elements and the BSM energy scales in the EFT description of 0νββ decay

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grant PHY-1404442, DOE grants DE-SC0008529, and DE-SC0015376 is acknowledged

INT TC & 17-2a, June 21, 2017

Classical Double Beta Decay Problem

INT TC & 17-2a, June 21, 2017

CENTRAL WARKEN
$$|\nu_{\alpha}\rangle = \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle$$

 $|\nu_{\alpha}\rangle = \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle$
 $PMNS - matrix
$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} & s_{22}c_{13} \\ -s_{12}c_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{22}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc$$

$$r Tritium decay:$$

$$^{3}H \rightarrow ^{3}He + e^{-} + \overline{v}_{e}$$

$$m_{v_{e}} = \sqrt{\sum_{i} |U_{ei}|^{2}m_{i}^{2}} < 2.2eV (Mainz exp.)$$

$$KATRIN (to take data): goal m_{v_{e}} < 0.3eV$$

$$- Cosmology: CMB power
spectrum, BAO, etc,$$

$$\sum_{i=1}^{3} m_{i} < 0.23eV$$

$$Goal: 0.01eV (5 - 10 y)$$

$$NT TC & the second seco$$$

Northwestern

Fork on the Road: Are Neutrinos Majorana or Dirac Fermions?

Best (Only?) Bet: Neutrinoless Double-Beta Decay.

$$m_M = m_D m_N^{-1} m_D \quad (m_D \sim Y < \phi >)$$

INT TC & 17-2a, June 21, 2017

M. Horoi CMU

Dirac mass from the Yukawa interaction with Higgs: $\overline{\psi}_i \Upsilon_{ij} \psi_j < \phi >$

Shell Model Nuclear Matrix Elements

$$M_{S}^{0v} = \sum_{\substack{\mathfrak{I}, p < p' \\ n < n'}} \left(\Gamma \right) \left\langle \mathbf{0}_{f}^{+} \left\| \left[\left(a_{p}^{+} a_{p'}^{+} \right)^{\mathfrak{I}} \left(\tilde{a}_{n}, \tilde{a}_{n} \right)^{\mathfrak{I}} \right]^{0} \left| \mathbf{0}_{i}^{+} \right\rangle \right\rangle \left\langle p p'; \mathfrak{I} \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; \mathfrak{I} \right\rangle_{as} - closure$$
Short range correlations (SRC):
$$f_{SRC} = 1 - c e^{ar^{2}} \left(1 - b r^{2} \right)$$

$$M^{0\nu} = M_{GT}^{0\nu} - (g_V / g_A)^2 M_F^{0\nu} + M_T^{0\nu}$$
$$\hat{S} = \begin{cases} \sigma_1 \tau_1 \sigma_2 \tau_2 & Gamow - Teller \ (GT) \\ \tau_1 \tau_2 & Fermi \ (F) \\ \left[3(\vec{\sigma}_1 \cdot \hat{n})(\vec{\sigma}_2 \cdot \hat{n}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \right] \tau_1 \tau_2 \ Tensor \ (T) \end{cases}$$

TABLE II. Parameters for the short-range correlation (SRC) parametrization of Eq. (11).

	SRC	а	b	С
MS SRC	Miller-Spencer	1.10	0.68	1.00
CDB SRC	CD-Bonn	1.52	1.88	0.46
AV18 SRC	AV18	1.59	1.45	0.92

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA **847** 207–232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139-151 (2009).

SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC

91, 024309 (2015), PRL **110**, 222502 (2013), PRL **113**, 262501(2014).

INT TC & 17-2a, June 21, 2017

Other models: Left-Right symmetric model and SUSY R-parity violation

(e)

INT TC & 17-2a, June 21, 2017

M. Horoi, A. Neacsu, PRD 93, 113014 (2016) M. Horoi CMU

DBD signals from different mechanisms CENTRAL MICHIGAN UNIVERSITY

R. Arnold et al.: Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

arXiv:1005.1241

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = \left| M_{GT}^{(0\nu)} \right|^2 \left\{ C_{\nu^2} + C_{\nu\lambda} \cos\phi_1 + C_{\nu\eta} \cos\phi_2 + C_{\lambda^2} + C_{\eta^2} + C_{\lambda\eta} \cos(\phi_1 - \phi_2) \right\},$$

$$\frac{\mathrm{d}^2 W_{0^+ \to 0^+}^{0\nu}}{\mathrm{d}\epsilon_1 \mathrm{d}\cos\theta_{12}} = \frac{a_{0\nu\omega_{0\nu}(\epsilon_1)}}{2\left(m_e R\right)^2} \left[A(\epsilon_1) + B(\epsilon_1)\cos\theta_{12}\right] \qquad \qquad \frac{2\mathrm{d}W_{0^+ \to 0^+}^{0\nu}}{\mathrm{d}(\Delta t)} = \frac{2a_{0\nu}}{\left(m_e R\right)^2} \frac{\omega_{0\nu}(\Delta t)}{m_e c^2} A(\Delta t)$$

$$t = \varepsilon_{e1} - \varepsilon_{e2}$$

INT TC & 17-2a, June 21, 2017

閫

$<\lambda>$ dominates

 $< \eta >$ dominates

$$r(\nu/N) = T_{1/2}^{\nu/N}(1)/T_{1/2}^{\nu/N}(2) = \frac{G_{01}^{0\nu}(2) \left| M^{0\nu/N}(2) \right|^2}{G_{01}^{0\nu}(1) \left| M^{0\nu/N}(1) \right|^2}$$

	Ge/Se		Ge/Te		Ge/Xe		Se/Te		Se/Xe		Te/Xe	
	Ge	Se	Ge	Те	Ge	Xe	Se	Те	Se	Xe	Те	Xe
$\overline{G_{01}^{0\nu} \times 10^{14}}$	0.237	1.018	0.237	1.425	0.237	1.462	1.018	1.425	1.018	1.462	1.425	1.462
$M^{0\nu}(1/2)$	3.57	3.39	3.57	1.93	3.57	1.76	3.39	1.93	3.39	1.76	1.93	1.76
$M^{0N}(1/2)$	202	187	202	136	202	143	187	136	187	143	136	143
$T_{1/2}^{\nu}(1)/T_{1/2}^{\nu}(2)$	3.87		1.76		1.50		0.45		0.39		0.85	
$T_{1/2}^N(1)/T_{1/2}^N(2)$	3.68		2.73		3.09		0.74		0.84		1.13	
$R(N/\nu)$ present	0.95		1.55		2.06		1.63		$\left(\begin{array}{c}2.17\end{array}\right)$		1.33	
$R(N/\nu)$ [45]	(N/ν) [45] 1.02		1.39		1.42		1.36		1.39		1.03	

R(N/v) = r(N)/r(v)

INT TC & 17-2a, June 21, 2017

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C **87**, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.

QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015), ISM-StMa J. Menendez, private communication.

ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

INT TC & 17-2a, June 21, 2017

Towards an effective 0vDBD operator

Similarity Renormalization Group (SRG) evolution

$$H_{\lambda} = U_{\lambda}H_{\lambda=\infty}U_{\lambda}^{\dagger}$$

$$rac{dH_\lambda}{d\lambda} = -rac{4}{\lambda^5}[[G,H_\lambda],H_\lambda]$$

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

N3LO 500

arXiv:1302.5473

INT TC & 17-2a, June 21, 2017

CENTRAL MICHIGAN Towards an effective 0vDBD operator: heavy neutrino-exchange NME

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

INT TC & 17-2a, June 21, 2017

M. Horoi CMU

 76 Ge

儲 CENTRAL MICHIGAN Towards an effective 0vDBD operator: heavy neutrino-exchange NME

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

INT TC & 17-2a, June 21, 2017

CENTRAL MICHIGAN Towards an effective 0vDBD operator: light neutrino-exchange NME

SeiDAC

INT TC & 17-2a, June 21, 2017

Other models: Left-Right symmetric model and SUSY R-parity violation

(e)

INT TC & 17-2a, June 21, 2017

M. Horoi, A. Neacsu, PRD 93, 113014 (2016) M. Horoi CMU

INT TC & 17-2a, June 21, 2017

Consequences: - scales for new physics

- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

$$\mathcal{L}_D = \frac{g}{\Lambda_D^{D-4}} \mathcal{O}_D$$

$m_e\bar{\epsilon}_5 = \frac{g^2v^2}{\Lambda_5},$	$\frac{G_F\bar{\epsilon}_7}{\sqrt{2}} = \frac{g^3v}{2\Lambda_7^3},$
$\frac{G_F^2 \bar{\epsilon}_9}{2m_p} = \frac{g^4}{\Lambda_9^5},$	$\frac{G_F^2 \bar{\epsilon}_{11}}{2m_p} = \frac{g^6 v^2}{\Lambda_{11}^7}$

 $g \approx 1$ v = 174 GeV (Higgs expectation value)

$$\begin{array}{c|cccc} \mathcal{O}_D & \bar{\epsilon}_D & \Lambda_D \\ \hline \mathcal{O}_5 & 2.8 \times 10^{-7} & 2.12 \times 10^{14} \\ \mathcal{O}_7 & 2.0 \times 10^{-7} & 3.75 \times 10^4 \\ \mathcal{O}_9 & 1.5 \times 10^{-7} & 2.48 \times 10^3 \\ \mathcal{O}_{11} & 1.5 \times 10^{-7} & 1.16 \times 10^3 \end{array}$$

INT TC & 17-2a, June 21, 2017

Consequences: - scales for new physics

- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

$$\mathcal{L}_D = \frac{g}{\left(\Lambda_D\right)^{D-4}} \mathcal{O}_D$$

$$m_e \bar{\epsilon}_5 = \frac{g^2 (yv)^2}{\Lambda_5}, \qquad \frac{G_F \bar{\epsilon}_7}{\sqrt{2}} = \frac{g^3 (yv)}{2(\Lambda_7)^3}, \\ \frac{G_F^2 \bar{\epsilon}_9}{2m_p} = \frac{g^4}{(\Lambda_9)^5}, \qquad \frac{G_F^2 \bar{\epsilon}_{11}}{2m_p} = \frac{g^6 (yv)^2}{(\Lambda_{11})^7}$$

TABLE VIII. The BSM effective scale (in GeV) for different dimension-D operators at the present ¹³⁶Xe half-life limit (Λ_D^0) and for $T_{1/2} \approx 1.1 \times 10^{28}$ years (Λ_D) .

\mathcal{O}_D	$ar{\epsilon}_D$	$\Lambda_D^0(y=1)$	$\Lambda^0_D(y=y_e)$	$\Lambda_D(y=y_e)$
\mathcal{O}_5	$2.8 \cdot 10^{-7}$	$2.12\cdot 10^{14}$	1904	19044
\mathcal{O}_7	$2.0 \cdot 10^{-7}$	$3.75\cdot 10^4$	541	1165
\mathcal{O}_9	$1.5 \cdot 10^{-7}$	$2.47\cdot 10^3$	2470	3915
\mathcal{O}_{11}	$1.5 \cdot 10^{-7}$	$1.16\cdot 10^3$	31	43
			\mathbf{X}	

$$\eta_N \propto \frac{l}{m_{W_R}^4 m_N}$$

 $g \approx 1$ v = 174 GeV $y_e = 3 \times 10^{-6}$ electron mass Yukawa

Summary

- The physics of the neutrinos is very exciting and offers a lot of research opportunities.
- Double beta decay (DBD), if observed, will represent a big step forward in our understanding of the neutrinos, and of physics beyond the Standard Model. A Nobel prize may be awarded for its discovery.
- The physics learned from DBD is complementary to that learned from Large Hadron Collider (future colliders).
- Better nuclear matrix elements and effective DBD operators are needed, especially for the short range mechanisms. And we are working hard for that!

Collaborators:

- Alex Brown, NSCL@MSU
- Roman Senkov, CUNY/CMU
- Andrei Neacsu, CMU
- Jonathan Engel, UNC
- Jason Holt, TRIUMF
- Petr Navratil, TRIUMF
- Sofia Quaglioni, LLNL
- Micah Schuster, ORNL
- Changfeng Jiao, CMU

MS Theses:

- Fahim Ahmed, CMU
- Shiplu Sarker, CMU/ISU

