Ab initio Calculation of Nuclear Matrix Elements with IMSRG Methods

Heiko Hergert

National Superconducting Cyclotron Laboratory & Department of Physics and Astronomy Michigan State University

Neutrinoless Double Beta Decay

- interactions and transition operators from Chiral EFT, including currents
- tune resolution scale of the Hamiltonian / Hilbert space
- (MR-)IMSRG: calculate ground (and excited) states or derive Shell Model interaction
- evaluate **1B, 2B** (, 3B,...) transition operator

The Similarity Renormalization Group

Review:

S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65 (2010), 94

E. Anderson, S. Bogner, R. Furnstahl, and R. Perry, Phys. Rev. C82 (2011), 054001
E. Jurgenson, P. Navratil, and R. Furnstahl, Phys. Rev. C83 (2011), 034301
R. Roth, S. Reinhardt, and H. H., Phys. Rev. C77 (2008), 064003
H. H. and R. Roth, Phys. Rev. C75 (2007), 051001

Similarity Renormalization Group

Basic Idea

continuous unitary transformation of the Hamiltonian to banddiagonal form w.r.t. a given "uncorrelated" many-body basis

• flow equation for Hamiltonian $H(s) = U(s)HU^{\dagger}(s)$:

$$\frac{d}{ds}H(s) = \left[\eta(s), H(s)\right], \quad \eta(s) = \frac{dU(s)}{ds}U^{\dagger}(s) = -\eta^{\dagger}(s)$$

• choose $\eta(s)$ to achieve desired behavior, e.g.,

$$\eta(\mathbf{s}) = \left[\mathbf{H}_{\mathbf{d}}(\mathbf{s}), \mathbf{H}_{\mathbf{od}}(\mathbf{s}) \right]$$

to suppress (suitably defined) off-diagonal Hamiltonian

• consistent evolution for all observables of interest

SRG in Two-Body Space

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

SRG in Two-Body Space

1

00

q [fm⁻¹]

$$\lambda = 1.8 \text{ fm}^{-1}$$

$$\eta(\lambda) = 2\mu [T_{\text{rel}}, H(\lambda)]$$
$$\lambda = s^{-1/4}$$

deuteron wave function

(Multi-Reference) In-Medium SRG

H. H., Phys. Scripta **92**, 023002 (2017)

H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)

H. H., S. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)

H. H., S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett **110**, 242501 (2013)

Transforming the Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Г = 🖌 +

W

$$f = + + +$$

two-body formalism with in-medium contributions from three-body interactions

Single-Reference Case

- reference state: Slater determinant
- normal-ordered operators depend on occupation numbers (one-body density)

Decoupling in A-Body Space

aim: decouple reference state $|\Phi\rangle$ from excitations

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

FRIB

Flow Equation

Decoupling

Decoupling

absorb correlations into RG-improved Hamiltonian

$$U(s)HU^{\dagger}(s)U(s)\left|\Psi_{n}\right\rangle = E_{n}U(s)\left|\Psi_{n}\right\rangle$$

 reference state is ansatz for transformed, less correlated eigenstate:

$$U(\mathbf{s}) \left| \Psi_n \right\rangle \stackrel{!}{=} \left| \Phi \right\rangle$$

MR-IMSRG References States

available

number-projected Hartree-Fock Bogoliubov vacua:

$$\left|\Phi_{ZN}\right\rangle = \frac{1}{(2\pi)^2} \int d\phi_p \int d\phi_n \, e^{i\phi_p(\hat{Z}-Z)} e^{i\phi_n(\hat{N}-N)} \left|\Phi\right\rangle$$

• small-scale (e.g., $0\hbar\Omega$, $2\hbar\Omega$) **No-Core Shell Model**:

$$\left|\Phi\right\rangle = \sum_{N=0}^{N_{\text{max}}} \sum_{i=1}^{\dim(N)} C_{i}^{(N)} \left|\Phi_{i}^{(N)}\right\rangle$$

Generator Coordinate Method (w/projections):

$$\left|\Phi\right\rangle = \int dq f(q) P_{J=0M=0} P_Z P_N \left|q\right\rangle$$

 clustered states, Density Matrix Representations build static etc.

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

reference state

Oxygen Isotopes

HH et al., PRL 110, 242501 (2013), ADC(3): A. Cipollone et al., PRL 111, 242501 (2013)

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

Oxygen Radii

V. Lapoux, V. Somà, C. Barbieri, HH, J. D. Holt, and S. R. Stroberg, PRL 117, 052501 (2016)

Neutrinoless Double Beta Decay: Ground-State to Ground-State Decay

with **J. Yao**, J. Engel

Nuclear Matrix Elements

ЗN

- inputs tailored to specific methods: phenometric initial = EDFs, Shell Model interactions, ...
 comparing apples and oranges
- quenched g_A, "renormalization" of operator,

Many-Body Approaches

MR-IMSRG References States

available

number-projected Hartree-Fock Bogoliubov vacua:

$$\left|\Phi_{ZN}\right\rangle = \frac{1}{(2\pi)^2} \int d\phi_p \int d\phi_n \, e^{i\phi_p(\hat{Z}-Z)} e^{i\phi_n(\hat{N}-N)} \left|\Phi\right\rangle$$

• small-scale (e.g., $0\hbar\Omega$, $2\hbar\Omega$) **No-Core Shell Model**:

$$\left|\Phi\right\rangle = \sum_{N=0}^{N_{\text{max}}} \sum_{i=1}^{\dim(N)} C_{i}^{(N)} \left|\Phi_{i}^{(N)}\right\rangle$$

Generator Coordinate Method (w/projections):

$$\left|\Phi\right\rangle = \int dq f(q) P_{J=0M=0} P_Z P_N \left|q\right\rangle$$

 Density Matrix Renormalization Group, Tensor Network States, ...

Example: ²⁰Ne

- reference: particlenumber & angularmomentum projected HFB
- range of deformed reference states flow to the ²⁰Ne ground state
- deviation from Shell model result:
 correlations beyond MR-IMSRG(2)

Approximate MR-IMSRG(3)

- approximate MR-IMSRG(3): induced 3B terms recover bulk of missing correlation energy
- expected to be **reference-state dependent**

direct MR-IMSRG (Magnus) calculation of initial and final states:

$$\left|\Psi_{I,F}\right\rangle = e^{\overline{\Omega}_{I,F}} \left|\Phi_{I,F}\right\rangle$$

 evaluate NME for transition operator in closure approximation:

$$M_{0\nu\beta\beta} = \left\langle \left. \Phi_{F} \right| e^{-\Omega_{F}} O_{0\nu\beta\beta} e^{\Omega_{I}} \left| \Phi_{I} \right. \right\rangle$$

• explore possible expansions and check consistency, e.g.,

$$\mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-(\overline{\Omega}_{\mathsf{I}} + \delta\overline{\Omega})} = \mathbf{e}^{-\delta\overline{\Omega}}\mathbf{e}^{-\overline{\Omega}_{\mathsf{I}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}$$

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

in progress

Isospin Multiplets

• use isospin symmetry:

 $\left\langle TT_{z}-2\right| [\overline{O}_{0
u\beta\beta}]^{2-2} \left|TT_{z}\right\rangle \quad \longleftrightarrow \quad \left\langle TT_{z}\right| [\overline{O}_{0
u\beta\beta}]^{20} \left|TT_{z}\right\rangle$

Isospin Multiplets

• use isospin symmetry:

 $\left\langle TT_{z}-2\right| [\overline{O}_{0
u\beta\beta}]^{2-2} \left|TT_{z}\right\rangle \quad \longleftrightarrow \quad \left\langle TT_{z}\right| [\overline{O}_{0
u\beta\beta}]^{20} \left|TT_{z}\right\rangle$

Neutrinoless Double Beta Decay: Explicit Treatment of Excited States

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, H. H., S. K. Bogner, arXiv: 1705.05511

S. R. Stroberg, A. Calci, H. H., J. D. Holt, S. K. Bogner, R. Roth, A. Schwenk, PRL **118**, 032502 (2017)

S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. Schwenk, PRC93, 051301(R) (2016)

S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)

Valence Space Decoupling

Valence Space Decoupling

Ground-State Energies

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

Ground-State Energies

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

- (initial) normal ordering and IMSRG decoupling in the target nucleus
- consistent with (MR-)IMSRG ground state energies (and CC, SCGF, ...) for the same Hamiltonian

S. K. Bogner et al., PRL113, 142501 (2014)

S. R. Stroberg et al., PRC 93, 051301(R) (2016)

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, H. H., S. K. Bogner, arXiv: 1705.05511 EOM-IMSRG: N. M. Parzuchowski et al., PRC95, 044304

H. Hergert - INT Program on Neutrinoless Dous

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, H. H., S. K. Bogner, arXiv: 1705.05511

- non-zero B(E2) from Shell model: VS-IMSRG induces effective neutron charge
- **B(E2) much too small:** effect of intermediate 3p3h, ... states that are truncated in IMSRG evolution?

M1 Transitions

 M1 transitions consistent between methods, but generally too large - need to include currents

Improving the Interactions

J. Simonis, S. R. Stroberg et al., arXiv:1704.02915; also used in G. Hagen et al., PRL117, 172501 (2016)

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

H. Hergert - INT Program on Neutrinoless Double Beta Decay, INT, Seattle, Jun 14, 2017

Improving the Interactions

J. Simonis et al., arXiv:1704.02915; also used in G. Hagen et al., PRL117, 172501 (2016)

"hybrid" chiral NN+3N interaction Hebeler et al., PRC83, 031301

Epilogue

Progress in Ab Initio Calculations

Progress in Ab Initio Calculations

- towards *ab initio* NMEs: interaction, operators, many-body method with systematic uncertainties & convergence to exact result
- rapidly growing capabilities: g.s. energies, spectra, radii, transitions, ...

ingredients for NME calculation, plus validation through other observables

- uncertainty presently dominated by
 - **deficiencies** in current chiral Hamiltonians
 - **missing collectivity** in description of (certain) transitions

Acknowledgments

ERSC

ICER

S. K. Bogner, K. Fossez, M. Hjorth-Jensen, S. More, F. Yuan Thanks Michigan State University R. J. Furnstahl, N. M. Parzuchowski The Ohio State University

 T. Duguet, V. Somà
 R. E. Gabrerufzel, K. Hebeler, S. König, A. Gunther, S. Reinhardt, R. Roth, A. Schwenk, J. Simonis,
 S. Binder A. Cishei, J. Langhammer, C. Barbieri U. Surrey, UK
 Institut für Kernphysik, TU Darmstadt A. Calci, J. D. Holt, P. Navrátil, S. R.
 S. Broberg
 S. Binder A. Carolina - Chapel Hill

Deutsche

ir ergy Initiative

NSCL, Michigan State University T. D. Morris

UT Knoxville & Oak Ridge National Laboratory

Nuclear Computation

Ohio Supercomputer Center