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Neutrinoless double beta decay and TeV* scale physics

Motivation

Neutrinos have mass and search is on to discover the nature of their mass.
 
Ongoing or future experiments may detect a “neutrinoless double beta 
decay” signal. 

Such a signal arises when neutrino masses violate lepton number (i.e., 
Majorana) 

Question: is that the correct interpretation of such a signal? 

Are there other (new physics scenario) interpretations?  

2



New physics scenarios for neutrinoless double beta decay

•  If hierarchy is “normal’’, then planned 0nubb have no chance of detecting Standard Model 
Majorana neutrinos (outside of the quasi-degenerate region) 
 
• In such a circumstance, only hope is for exotic scenarios  

Comparison SuperNEMO sensitivity to various admixtures of WR contribution (0%, 30%, 
100%). Figure from Arnold et. al. (SuperNEMO, 2010)

 Should a ΔL=2 signal be detected, such exotic possibilities should be excluded before concluding that 
effect is due to Majorana neutrino exchange

Resolving competing explanations may need a next-generation detector reconstructing both electron 
kinematics (e.g. NEXT, SuperNEMO)
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Fig. 11: Constraints at one standard deviation on the model parameters mν and λ for 82Se from: (1) an observation
of 0νββ decay half-life at T1/2 = 1025 y (outer blue elliptical contour) and 1026 y (inner blue elliptical contour); (2)
reconstruction of the angular (outer, lighter green) and energy difference (inner, darker green) distribution shape; (3)
combined analysis of (1) and (2) using decay rate and energy distribution shape reconstruction (red contours). The
admixture of the MM and RHCλ contributions is assumed to be: (a) pure MM contribution; (b) 30% RHCλ admixture;
and (c) pure RHCλ contribution. NME uncertainties are assumed to be 30% and experimental statistical uncertainties
are determined from the simulation.
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Fig. 12: As Fig. 11 but for the isotope 150Nd with a decay half-life of T1/2 = 1025 y.

5.3 Rate Comparison of 150Nd and 82Se

While reconstruction of the decay distribution can be an
ideal way to distinguish between different mechanisms, it
might be of little help if 0νββ decay is observed close to
the exclusion limit of SuperNEMO, or not at all. This is
demonstrated in Fig. 11 where, for a half-life of T1/2 =
1026 y, the reconstruction of the energy difference distri-
bution will be problematic due to the low number of events
(compare Fig. 9). As an alternative, it is possible to com-
pare the 0νββ rate in different isotopes. This method,
which could provide crucial information close to the ex-
clusion limit, is especially relevant for SuperNEMO which
could potentially measure 0νββ decay in two (or more)

isotopes. Such a comparative analysis was used in [21]
to distinguish between several new physics mechanisms.
A combined analysis of several isotopes, potentially mea-
sured in other experiments, will improve the statistical
significance [22].

The possibility of sharing the two isotopes equally in
SuperNEMO, each with a total exposure of 250 kg y, is
now considered. In the cases where the MM or the RHCλ

contributions dominate, the following half-life ratios can
be found:

MM :
T

82Se
1/2

T
150Nd
1/2

=
C

150Nd
mm

(2.7)2 · C82Se
mm

= 2.45, (27)
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BSM contributions to neutrinoless beta decay 
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BSM contributions to neutrinoless beta decay: 

Left-Right symmetric model  

• new electroweak gauge bosons couple to right-handed   
  currents 

• new right-handed or “sterile” neutrinos, electroweak 
   partners of Standard Model right-handed electron

• possibility for type-II see-saw at TeV scale 
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Fig. 2. Combined bounds on mheaviest
N /m� from LFV. The dots show

the (most probable) upper bounds resulting for di�erent mixing an-
gles and phases (varied respectively in the intervals {⇥12, ⇥23, ⇥13} =
{31�-39�, 37�-53�, 0-13�} and [0, 2⌅]). The dark line is the absolute
upper bound. The plot scales as MWR/3.5TeV.

rare ⇤ decays such as ⇤ ⇥ 3µ, etc. [18]). An immediate
rough consequence seems to follow: mheaviest

N /m� < 0.1
in most of the parameter space. However, the strong de-
pendence on angles and phases allows this mass ratio up
to about one in the case of hierarchical neutrino spectra,
thus allowing both N and ⇥L,R to be light. This serves
as an additional test at colliders of type II seesaw used
here. For degenerate neutrinos, unfortunately, no strict
contraint arises: see again Fig. 2.

Neutrinoless double beta decay. We neglect the
small neutrino Dirac Yukawa couplings, the tiny WL-
WR mixing of O(MW /MWR)

2 � 10�3 and contributions
coming from the bidoublet through the charged Higgs,
because of its heavy mass of at least 10TeV [14]. We are
left with an e⇤ective Hamiltonian with two extra contri-
butions (the one from the left-handed triplet being com-
pletely negligible)

HNP = G2
FV

2
Rej

⌅
1

mNj

+
2 mNj

m2
�++

R

⇧
M4

W

M4
WR

JRµJ
µ
R eRe

c
R , (10)

where JRµ is the right-handed hadronic current. Making
use of the LFV constraint mN/m� � 1 one can neglect
the ⇥++

R contribution and write the total decay rate as

�0⇤��

ln 2
= G ·

����
M⇤

me

����
2
⇥
|mee

⇤ |2 +

�����p
2 M4

W

M4
WR

V 2
Rej

mNj

�����

2⇤
, (11)

where G is a phase space factor, M⇤ is the nuclear matrix
element relevant for the light neutrino exchange, while p
measures the neutrino virtuality and accounts also for the
ratio of matrix elements of heavy and light neutrinos.
These quantities have been calculated and [19, 20] are
reported in Table I for some interesting nuclei.

To illustrate the impact of the Dirac and Majorana
phases on the total decay rate, we plot in the left frame
of Fig. 1 the well known absolute value of mee

⇤ , while the
corresponding e⇤ective right-handed counterpart for the
type II seesaw used here,

Mee
N = p2

M4
W

M4
WR

V 2
Lej

mNj

, (12)

ref. nucleus 76Ge 82Se 100Mo 130Te 136Xe 150Nd

[19]
G|M⌫ |2⇥1013 yr 1.1 4.3 2.0 5.3 1.2 75.6

p /MeV 190 186 189 180 280 210

[20]
G|M⌫ |2⇥1013 yr 2.7 � 15.2 12.2 � �

p /MeV 184 � 193 198 � �

Table I. Nuclear factors relevant for 0⇤2�.
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Fig. 3. E�ective 0⇤2� mass parameter |mee
�+N |, a measure of the total

0⇤2� rate including contributions from both left and right currents.

is shown in the right frame. The plot was made using
Eqs. (4), (6), with p = 190MeV and taking the entire
range of VL to be allowed by LFV, see Fig. 2.
The total 0⇥2� rate is governed by the e⇤ective mass

parameter
|mee

⇤+N | = (|mee
⇤ |2 + |Mee

N |2)1/2 (13)

that supersedes the standard matrix element mee
⇤ in the

parameter space accessible to LHC. In Fig. 3, we show
|mee

⇤+N | as a function of the lightest neutrino mass. We
have already stressed in the introduction the reversed role
of the neutrino mass hierarchies. In the case of the right-
handed contribution, the normal hierarchy prevails over
the inverted in wide regions of the parameter space; for
both hierarchies, new physics can win over the neutrino
mass as the source of 0⇥2�. Moreover, Fig. 3 shows that
there is no more room for a vanishing transition rate, as
in Fig. 1. On the upper horizontal axis of Fig. 3 we also
display the lightest of the heavy neutrinos. As one can
see, the range of mlightest

N is easily below 100GeV which
would lead to interesting displaced vertices at LHC [14].
In short, 0⇥2� may be naturally governed by new

physics and thus be disjoint from light neutrino masses.
This is only in apparent contradiction with the often
stated result [21], according to which a non vanishing
0⇥2� implies a nonvanishing neutrino Majorana mass.
Although true as a generic statement, on a quantitative
level it has no practical purpose, as the case exposed here
demonstrates explicitly. Another example was provided
by the minimal supersymmetric standard model [22].

Discussion and outlook. In this Letter we have shown
how the minimal LR symmetric theory o⇤ers a deep con-
nection between high energy collider physics and low en-
ergy processes such as neutrinoless double beta decay and
lepton flavor violation. The crucial point is lepton num-
ber violation which at LHC would reveal itself through
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The Model. The minimal LR symmetric theory is based
on the gauge group GLR = SU(2)L⇥SU(2)R⇥U(1)B�L

and a symmetry between the left and right sectors [8],
which can be taken to be charge conjugation C (for the
advantages of this choice, see [14]). Fermions are LR
symmetric, qL,R = (u, d)L,R and ⌅L,R = (⇤, e)L,R, with
fL ⌥ (fR)c under C, and the gauge couplings are gL =
gR ⇤ g.

The Higgs sector consists [9] of the SU(2)L,R triplets1

�L,R =
�
�++,�+,�0

⇥
L,R

, �L ⌦ (3, 1, 2) and �R ⌦
(1, 3, 2), which under C transform as �L ⌥ �⇥

R. The
group GLR is broken down to the Standard Model (SM)
gauge group by ↵�R� ⇧MW and after the SM symmetry
breaking, the left-handed triplet develops a tiny ↵�L� ⌅
MW . ↵�R� gives masses not only to the WR and ZR

gauge bosons but also to the right-handed neutrinos.
The symmetric Yukawa couplings of the triplets rele-

vant for our discussion are

LY =
1

2
⌅L

M�L

↵�L�
�L⌅L +

1

2
⌅R

M�R

↵�R�
�R⌅R + h.c. , (3)

where M�L and M�R are Majorana mass matrices of
light and heavy neutrinos. In principle, there are also
Dirac Yukawa couplings connecting the two. When these
tiny couplings play a negligible role, the resulting see-
saw is called type II [15]. Purely for reasons of illus-
tration, the rest of this Letter will be devoted to this
appealing case. Due to C, its main characteristic is
the connection between the two neutrino mass matrices
M�R/↵�R� = M⇥

�L
/↵�L�⇥. An immediate consequence is

the proportionality of the two mass spectra

mN  m� , (4)

where mN stands for the masses of the three heavy right-
handed neutrinos Ni and m� for those of the three light
left-handed neutrinos ⇤i.

In this theory, there are both left and right-handed
charged gauge bosons with their corresponding leptonic
interactions in the mass eigenstate basis:

LW =
g�
2

⌅
⇤̄LV

†
L
/WLeL + N̄RV

†
R
/WReR
⇧
+ h.c. . (5)

Since the charged fermion mass matrices are symmetric
(due to the symmetry under C), one readily obtains a
connection (up to complex phases, irrelevant to our dis-
cussion) between the right-handed and the left-handed
(PMNS) leptonic mixings matrices

VR = V ⇥
L . (6)

LHC signatures or How to check type II. LHC
o⇥ers an exciting possibility of seeing directly both LR
symmetry restoration and lepton number violation. The
point is that once produced, WR can decay into a charged

1 There is also a bidoublet, which takes the usual role of the SM
Higgs doublet, and we do not discuss it here. For a recent detailed
analysis of its phenomenology and limits on its spectrum, see [14].

lepton and a right-handed neutrino which in turn de-
cays into a second charged lepton and two jets. Being
Majorana particles, they decay into both leptons and
anti-leptons, hence one obtains same sign lepton pairs,
signaling the violation of lepton number [11]. It turns
out that in this way, LHC running at 14 TeV can reach
MWR . 2.1(4)TeV with a luminosity of 0.1(30) fb�1 [13].
Since in the minimal model there is a rough bound of
about MWR & 2.5TeV [14], in order to be conserva-
tive in our analysis we choose a representative point
MWR = 3.5TeV together with mheaviest

N = 0.5TeV.
The flavor dependence of VR can be determined pre-

cisely through these same sign lepton pair channels; thus,
Eq. (6) may be falsified in the near future. Furthermore,
if LHC will measure the heavy right-handed masses in
the same process, one could perform crucial consistency
checks of type II seesaw, such as

m2
N2
�m2

N1

m2
N3
�m2

N1

=
m2

�2
�m2

�1

m2
�3
�m2

�1

� ±0.03 . (7)

Here, the right-hand side is determined by oscillation
data and the ± signs corresponds to normal/inverted hi-
erarchy case. Another eloquent relation among the mass
scales probed in cosmology, atmospheric neutrino oscil-
lations and LHC is:

mcosm=
 

i

m�i � 50meV⇥
�

i mNi⌦
|m2

N3
�m2

N2
|
. (8)

The bottom line is that the LHC can determine the
right-handed neutrino masses and mixings and allow one
to make predictions studied below. The type II seesaw
chosen here is only a transparent illustration of how these
connections take place.

Lepton Flavor Violation. Lepton flavor violation in
LR symmetric theories has been studied in the past [16].
What is new in our analysis is the connection with LHC
and especially the quantitative implications for 0⇤2�.
There are various LFV processes providing constraints

on the masses of right-handed neutrinos and doubly
charged scalars illustrated in Fig. 2. It turns out that
µ⌃ 3e, induced by the doubly charged bosons �++

L and
�++

R , provides the most relevant constraint and so we
give the corresponding branching ratio

BRµ⇤3e =
1

2

⌃
MW

MWR

⌥4 ⇤⇤⇤⇤VL
mN

m�
V T
L

⇤⇤⇤⇤
2

eµ

⇤⇤⇤⇤VL
mN

m�
V T
L

⇤⇤⇤⇤
2

ee

, (9)

where 1/m2
� ⇤ 1/m2

�L
+ 1/m2

�R
. The current experi-

mental limit is BR(µ⌃ 3e) < 1.0⇥ 10�12 [17].
The LFV transition rates become negligible when the

masses MWR and m� become larger than about 100TeV.
We are interested in LHC accessible energies, in which
case the smallness of the LFV is governed by the ratio
mN/m�, in addition to mixing angles and phases. In
Fig. 2, we plot the upper bound on this quantity vary-
ing the mixing angles and phases (LFV plots also take
into account µ⌃ e conversion in Au nuclei, µ⌃ e⇥ and
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• Assuming a type-II see-saw, C invariance leads 
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Majorana particles, they decay into both leptons and
anti-leptons, hence one obtains same sign lepton pairs,
signaling the violation of lepton number [11]. It turns
out that in this way, LHC running at 14 TeV can reach
MWR . 2.1(4)TeV with a luminosity of 0.1(30) fb�1 [13].
Since in the minimal model there is a rough bound of
about MWR & 2.5TeV [14], in order to be conserva-
tive in our analysis we choose a representative point
MWR = 3.5TeV together with mheaviest

N = 0.5TeV.
The flavor dependence of VR can be determined pre-

cisely through these same sign lepton pair channels; thus,
Eq. (6) may be falsified in the near future. Furthermore,
if LHC will measure the heavy right-handed masses in
the same process, one could perform crucial consistency
checks of type II seesaw, such as

m2
N2
�m2

N1

m2
N3
�m2

N1

=
m2

�2
�m2

�1

m2
�3
�m2

�1

� ±0.03 . (7)

Here, the right-hand side is determined by oscillation
data and the ± signs corresponds to normal/inverted hi-
erarchy case. Another eloquent relation among the mass
scales probed in cosmology, atmospheric neutrino oscil-
lations and LHC is:

mcosm=
 

i

m�i � 50meV⇥
�

i mNi⌦
|m2

N3
�m2

N2
|
. (8)

The bottom line is that the LHC can determine the
right-handed neutrino masses and mixings and allow one
to make predictions studied below. The type II seesaw
chosen here is only a transparent illustration of how these
connections take place.

Lepton Flavor Violation. Lepton flavor violation in
LR symmetric theories has been studied in the past [16].
What is new in our analysis is the connection with LHC
and especially the quantitative implications for 0⇤2�.
There are various LFV processes providing constraints

on the masses of right-handed neutrinos and doubly
charged scalars illustrated in Fig. 2. It turns out that
µ⌃ 3e, induced by the doubly charged bosons �++

L and
�++

R , provides the most relevant constraint and so we
give the corresponding branching ratio

BRµ⇤3e =
1

2

⌃
MW

MWR

⌥4 ⇤⇤⇤⇤VL
mN

m�
V T
L

⇤⇤⇤⇤
2

eµ

⇤⇤⇤⇤VL
mN

m�
V T
L

⇤⇤⇤⇤
2

ee

, (9)

where 1/m2
� ⇤ 1/m2

�L
+ 1/m2

�R
. The current experi-

mental limit is BR(µ⌃ 3e) < 1.0⇥ 10�12 [17].
The LFV transition rates become negligible when the

masses MWR and m� become larger than about 100TeV.
We are interested in LHC accessible energies, in which
case the smallness of the LFV is governed by the ratio
mN/m�, in addition to mixing angles and phases. In
Fig. 2, we plot the upper bound on this quantity vary-
ing the mixing angles and phases (LFV plots also take
into account µ⌃ e conversion in Au nuclei, µ⌃ e⇥ and

or
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BSM contributions to neutrinoless beta decay: 

R-parity violation inspired   

• new charged scalar leptons (“sleptons”)

• new electroweak partners of the electron  

• generate different contact operator at low energies

see e.g. M. Ramsey-Musolf,  T. Peng and P. Winslow, 2015 
for thorough LHC collider phenomenology analysis 
(and see M. Ramsey Musolf ’s talk) 

• R-M P W include leading 2 pion interactions and RGE 
analysis, backgrounds, detector sim.
• and determine signal acceptances - very model-
dependent (see e.g., A. Friedland, MG, I. Shoemaker, L. 
Vecchi, 2012, in context of non-Standard Neutrino 
Interactions at the LHC)

X
e�

e�

d u

u

d

ẽ

ẽ

F

F

2

�(fb) Signal Backgrounds

Sp
S+B

(
p
fb)

Diboson Charge Flip Jet Fake

W�W�+2j W�Z+2j ZZ+2j Z/�⇤+2j tt tt t+3j W�+3j 4j

Before Cuts 0.142 0.541 6.682 0.628 903.16 68.2 6.7 0.45 15.09 362.352 0.0038

Signal Selection 0.091 0.358 4.66 0.435 721.7 28.9 2.37 0.22 11.73 72.03 0.0031

HT (jets) > 650 GeV 0.054 0.04 0.187 0.015 5.6 0.266 0.025 0.0003 0.102 0.027 0.0213

m`1`2 > 130 GeV 0.039 0.029 0.105 0.008 0.163 0.127 0.024 3x10�4 0.101 0.027 0.0493

E/T < 40 GeV 0.036 0.005 0.036 0.007 0.126 0.014 0.005 3x10�5 0.03 0.017 0.0684

(⌘j1,2 � ⌘`1,2)max < 2.2 0.033 0.003 0.022 0.005 0.093 0.009 0.004 2x10�5 0.019 0.011 0.0738

TABLE I: Cut-flow designed for optimizing signal relative to background. Note: kinematic cuts are not commutative.

searches less compelling than presently considered.
In what follows, we revisit the analysis of Refs. [29, 30]

and find that their conclusions regarding the LHC reach
may be overly optimistic. We consider three aspects
of the LHC and 0⌫��-decay physics not included in
Refs. [29, 30]: (a) the impact of SM and detector back-
grounds on the significance of an LHC LNV signal; (b)
running of the corresponding LNV e↵ective operators
from the TeV scale to the low-energy scale relevant to
0⌫��-decay; and (c) long-distance contributions to the
0⌫��-decay nuclear matrix element (NME). The impacts
of these considerations are, respectively, to (a) degrade
the significance of the LHC LNV signal for a given choice
of LNV model parameters; (b) reduce the strength of the
0⌫��-decay amplitude relative to the inferred value of
parameters at the high scale; and (c) enhance the NME.
We then find that for a limited range of heavy parti-
cle masses, existing 0⌫��-decay searches and Run II of
the LHC may have comparable sensitivities to TeV scale
LNV, depending on the values of the 0⌫��-decay nuclear
and hadronic matrix elements. Accumulation of addi-
tional data with the high-luminosity phase of the LHC
would be necessary to achieve a reach comparable to the
tonne-scale 0⌫��-decay searches.

To be concrete, we focus on one of the simplified
models yielding the greatest LHC reach according to
Refs. [29, 30]. The model includes a scalar doublet S
transforming as (1, 2, 1) under SU(3)C⇥SU(2)L⇥U(1)Y
and a Majorana fermion F that transforms as a SM gauge
singlet. The interaction Lagrangian is

LLNV = g1Q̄
↵
i d

↵
i S + g2✏

ijL̄iFS⇤
j + h.c. , (1)

where L and Q are first generation left-handed lepton
and quark doublets, respectively; d is the right-handed
down quark; and Roman and Greek indices correspond
to SU(2)L and SU(3)C components, respectively. In high
energy proton-proton collisions, the interaction (1) will
generate a final state with a same sign (SS) di-electron
pair along with two high-pT jets. When either the S or
F appears as an s-channel resonance, the corresponding
cross section will be enhanced. For the low-energy 0⌫��-
decay process, one may integrate out the heavy degrees

of freedom, yielding the dimension-nine LNV interaction:

Le↵
LNV =

C1

⇤5
O1+h.c. , O1 = Q̄⌧+dQ̄⌧+dL̄LC , (2)

where LC is the lepton doublet charge conjugate field,
C1 = g21g

2
2 and ⇤5 = M4

SMF .
We have implemented the model (1) in Madgraph

and generated events with Madevent [31] for pp colli-
sions at 14 TeV, carrying out showering, jet matching,
and hadronization with Pythia [32] and detector simu-
lation with PGS. The dominant backgrounds involve (a)
“charge flip”, wherein one lepton from a SM opposite sign
(OS) di-electron pair transfers most of its pT to an elec-
tron of the opposite sign through conversion and (b) a
high-pT jet is registered as an electron in the electromag-
netic calorimeter (“jet fake”). The largest contributors
to the charge flip background are SM production of a Z
and virtual � plus jets, followed by tt̄ production wherein
the b-quarks from the top decays are not tagged. For the
jet fake background, SM multi-jet production is by far
the leading contributor. Subdominant backgrounds in-
clude diboson (WW, WZ, ZZ) plus jets. The charge flip
background from the various aforementioned sources was
derived by binning events in pseudo-rapidity (⌘) and ap-
plying the ⌘-dependent charge-flip probabilities as mea-
sured by ATLAS [33]. For the jet-fake background, we
applied a medium jet-fake probability of 2⇥10�4 [33, 34]
times a combinatoric factor associated with the number
of jet-fakes in an event with N jets.
After imposing a set of basic selection cuts (pTj,b,`±

>

20 GeV, |⌘j | < 2.8, |⌘`± | < 2.5) we find that addi-
tional cuts on HT (jets), the scalar sum of all jet pT ,
the dilepton invariant mass, and missing energy E/T are
highly e↵ective in reducing the background while main-
taining the signal. A set of cuts that optimizes the signif-
icance S/

p
S +B is given in Table I. The signal indicated

is generated for MS = MF = 1 TeV and g1 = g2 = 0.176,
corresponding to a 0⌫��-decay rate consistent with the
present GERDA upper bound (see below).
In order to translate the sensitivity to the parameters

that enter the high energy process to the 0⌫��-decay
rate, we evolve the operator O1 to the GeV scale using

Figure 7: Production and decay of a single selectron in R–parity violating models (left,

from [56]) . Region in the mSUGRA parameter space (vertical axis: M1/2 in GeV, horizontal

axis: M0 in GeV) in which single slepton production may be observed at the LHC for

tan β = 10, A0 = 0 and 10fb−1 of integrated luminosity. In the top left-hand black triangle,

the stau is the LSP, a case not discussed in [56]. The black region at the bottom is ruled out

by direct search constraints. The labeled contours are taken from Ref. [59], and indicate

the search reach given by the corresponding value of λ′
111. The white, dark-shaded and

light-shaded regions demonstrate that observation of single slepton production at the 5σ

level would imply T 0νββ
1/2 < 1.9 ·1025yrs, 100 > T 0νββ

1/2 /1025yrs > 1.9 and T 0νββ
1/2 > 1×1027yrs,

respectively (right, from [56]).

4.3 Leptoquarks

Leptoquarks (LQs) are hypothetical scalar or vector particles coupling to both leptons

and quarks. They appear most prominently in grand unified theories, but also in extended

Technicolor or Compositeness models. LQs which conserve baryon number can be relatively

light [60], possibly within reach of accelerator experiments. Also low-energy precision

measurements can give limits on LQ properties, for a detailed list on constraints from non-

accelerator searches see, for example [61] and [62]. The mixing of different LQ multiplets by

a possible leptoquark–Higgs coupling [11] can lead to a contribution to 0νββ decay, if these

couplings violate lepton number [12]. Diagrams involving LQs and standard model weak

current interactions can be generated, see Fig. 8. These diagrams are of the long range

type and due to the chirality violating LQ interaction gain a p/ -enhancement in the double

19

• see also e.g. Deppisch, 
   Hirsch, Pas, 2012

6



Effective field theory analysis of BSM contributions to neutrinoless 
double beta decay

• new particles generating ΔL=2 processes have masses in multi-TeV scale. 

• 0nubb process generated at very short distances.

• Leading effects of such TeV scale physics can be described by series of ΔL=2 violating 
   operators involving only quarks and leptons  

Leff = LSM + L⌫,M +
X

i,d>4

cdi
⇤d�4

O(d)
i

dd ! uue�e�e.g.,
(collider signal: 
Keung, Senjanovic, PRL, 1983)
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• leading ΔL=2 operator with two charged leptons has a minimum of 4 quarks, in other words, dimension 9

• For ΔL=2 phenomenology (e.g., 0nubb decay rates) need to know a minimal basis of operators, the set of 
relevant operators that cannot be reduced by Fierz operators 

• Electromagnetic invariance: 24 (compared to 14 in prior literature): 8 scalar and 8 vector 4-quark operators

• Electroweak invariance: If scale Λ of ΔL=2 violating physics is much larger than the electroweak scale, effect of 
ΔL=2 physics appears as a series of higher dimension operators invariant under the full Standard Model gauge 
symmetry  

• If color + electroweak invariance is imposed, then 11 operators at LO in v/Λ:  7 scalar and 4 vector 

•  At hadron colliders, if E << Λ, then collider only probing (color + electroweak invariant) ΔL=2 contact 
operators. In this “contact limit” can classify their experimental signatures. 

At “low energy” - ie QCD scale - there are a number of “short distance” operators that contribute 
to neutrinoless double beta decay (Prezeau, Ramsey-Musolf and Vogel (PRD, 68, 2003))

L
e↵

=
1

⇤5

LNV

"
X

i=scalar

�
ci,S ēec + c0i,S ē�

5

ec
�
Oi + ē�µ�5e

c
X

i=vector

ci,V Oµ
i

#

What is a minimal basis (MG, arXiv:1606.04549) ?
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operator content
hadron collider signatures

Low Energy �PT (⇡⇡)
same-sign

dilepton

e+MET dijet+ MET

dimension 9

LM1 i�(2)
ab

(Q
a

�µQ
c

)(u
R

�
µ

d
R

)(`
b

`C
c

)
p p p O1LR ⌦ (LL) LO

LM2 i�(2)
ab

(Q
a

�µ�AQ
c

)(u
R

�
µ

�Ad
R

)(`
b

`C
c

)
p p p O�

1LR ⌦ (LL) LO

LM3 (u
R

Q
a

)(u
R

Q
b

)(`
a

`C
b

)
p p p O2RL

⌦ (LL) LO

LM4 (u
R

�AQ
a

)(u
R

�AQ
b

)(`
a

`C
b

)
p p p O�

2RL

⌦ (LL) LO

LM5 i�(2)
ab

i�(2)
cd

(Q
a

d
R

)(Q
c

d
R

)(`
b

`C
d

)
p p p O2LR ⌦ (LL) LO

LM6 i�(2)
ab

i�(2)
cd

(Q
a

�Ad
R

)(Q
c

�Ad
R

)(`
b

`C
d

)
p p p O�

2LR ⌦ (LL) LO

LM7 (u
R

�µd
R

)(u
R

�
µ

d
R

)(e
R

eC
R

)
p

_̈ _̈ O3R ⌦ (RR) NNLO
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R

�µd
R

)i�(2)
ab

(Q
a

d
R

)(`
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�
µ

eC
R

)
p p

_̈ Oµ

RRLR

⌦ (LR) -

LM9 (u
R

�µ�Ad
R

)i�(2)
ab

(Q
a

�Ad
R

)(`
b

�
µ

eC
R

)
p p

_̈ O�µ

RRLR

⌦ (LR) -

LM10 (u
R

�µd
R

)(u
R

Q
a

)(`
a

�
µ

eC
R

)
p p

_̈ Oµ

RRRL

⌦ (LR) -

LM11 (u
R

�µ�Ad
R

)(u
R

�AQ
a

)(`
a

�
µ

eC
R

)
p p

_̈ O�µ

RRRL

⌦ (LR) -

Table 1. Table of dimension-9 electroweak invariant operators contributing to 0⌫�� decay and
hadron collider processes. A ‘

p
’ indicates the operator contributes to the hadron collider process,

whereas a ‘_̈’ indicates that it does not. In the “Low Energy” column the notation LL, LR, and
RR refer to whether the two leptons in the operator are eLeCL , eL�

µeCR, or eRe
C
R, respectively. For a

given operator , the last column indicates at what chiral order the two-pion interactions first appear,
using the results summarized in Tables 2 and 3. A ‘-’ indicates the operator does not contribute to
NNLO order.

at LO in v/⇤. To LO the only operator that does not appear is O3L. The results of this

Section are summarized in Table 1.

4 Mapping onto chiral perturbation theory

The next step is to obtain the e↵ective Hamiltonian of these interactions inside a nucleus,

using chiral perturbation theory (�PT) to match the e↵ective theory at the GeV scale onto

the e↵ective theory involving pions and nucleons defined below that scale. The application

of �PT to neutrinoless double � was pioneered and developed in Ref. [10]. The processes

relevant to neutrinoless double � decay are shown in Figure 1. The strength of the contact

interaction involving two electrons to pions and nucleons can only be determined accurately

using lattice QCD. As noted in the Introduction, preliminary lattice results for the ⇡⇡

matrix elements now exist [12]. Approximate chiral SU(3) symmetry can also be used to

– 10 –

Table from MG, 
arXiv:1606.04549

Electroweak invariant dimension 9 operators: 
                       collider signatures

• Set up systematic formalism for χPT operators in low-energy effective field theory
• Applied general formalism to identify which operators contribute at LO to eeππ interactions 
(i.e., which ops. in χPT dominate ΔL=2 amplitude over effects of eeπNN and eeNNNN interactions)

vector 4-quark 
operators (4)

scalar 4-quark 
operators (7)

LR symmetric theory

RPV-inspired theory
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e

e

e

(b) (c)(a)

n p

pp

e

nnn

n

Effective field theory analysis of BSM contributions to neutrinoless 
double beta decay: Weinberg power counting 

• Quarks couple to everything, so expect 4 quark operator to generate many multi-hadron interactions

• Two pion interaction important (Faessler, S. Kovalenko, F. Simkovic, and J. Schwieger, 1996; Prezeau, Ramsey-Musolf and Vogel 

(PRD, 68, 2003)) but not consistently implemented in other literature 

• A number of analyses comparing LHC projections and 0nubb limits only include 4-nucleon 
interactions, “conservatively” suppressing limits from 0nubb experiments (unfairly promotes the 
competitiveness of the LHC)

• Here power counting is for free field theory only - need to insert inside a nucleus and test power-
  counting (see S. Pastore’s talk)

O(q�1+�O(⇡NN))O(q�2+�O(⇡⇡)) O(q0+�O(NNNN))
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Effective field theory analysis of BSM contributions to neutrinoless 
double beta decay: Estimate of long-distance pion exchange 

O(q�2+�O(⇡⇡))

chiral PT estimate: MhOii ⇠ 10�2 (O2,3,4,5, O
0
2,3)

A⇡⇡ ' 1

⇤5
LNV

Mh⇡+|Oi|⇡�i

f2
⇡q

2
⇠ 102

1

⇤5
LNV

MhOii

10�2

(100 MeV)4

f2
⇡q

2

ASM ' G2
F

m��

q2
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Effective field theory analysis of BSM contributions to neutrinoless 
double beta decay (MG, arXiv:1606.04549)

O = T ab
cd (q

c�qa)(q
d�0qb), T ab

cd = (⌧+) a
c (⌧+) b

d

qL ! Lq, qR ! RqR,

T ! T ⌦X1 ⌦X2 ⌦X3 ⌦X4, Xi 2 {L,R,L†, R†}

T ab
cd Õcd

ab(⇡, N)

General  ΔL=2  4-quark scalar operator (following Savage 1999) 

Transform T such that O is formally chirally invariant 

Construct pion and nucleon operators in chiral theory 
such that they are formally chirally invariant 
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Effective field theory analysis of BSM contributions to neutrinoless 
double beta decay: Weinberg power counting 

With ⇠ = Exp[⇡ · ⌧/2F⇡], ⇠ ! L⇠U†
= U⇠R†, N ! UN

Construct “proto-O” out of products of        such that ⇠’s

(proto� Õ) ! (proto� Õ)⌦ Y1 ⌦ Y2 ⌦ Y3 ⌦ Y4, Yi 2 {U,U†}

To construct invariants 
• only pions: takes all possible traces 
• pions and two nucleons: multiply by two N fields in all possible 
  ways, take all possible traces 
• Four nucleons: multiply in by 4 nucleon fields in all possible 
   ways  
• can also generate new operators involving higher chiral order 
  using chiral transformation properties of quark mass and 
  covariant derivative  
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Example: Operators from WR exchange (Left-right-symmetric model) 

O3R ⌘ (qR�
µ⌧+qR)(qR�µ⌧

+qR)

T ab
cd ! T↵�

⇢� R⇢
cR

�
dR

†a
↵ R†b

�

proto� Õ3R = T

ab
cd ⇠

†i
a ⇠

†j
b ⇠

c
k⇠

d
l

To construct invariants 
• only pions: takes all possible traces -> all vanish (in this example) 
• Four nucleons: multiply in by 4 nucleon fields in all possible 
   ways -> non-vanishing operator involving 4 nucleons  
• can also generate new operators involving higher chiral order 
  using chiral transformation properties of quark mass and 
  covariant derivative -> Find a number of single and double trace operators, 
e.g. tr(Dµ⇠⌧+Dµ⇠

†⇠⌧+⇠†)

For this operator, expect first non-vanishing two-pion matrix element at NLO 
-- which we confirmed using chiral SU(3) -- and first non-vanishing 4 nucleon 
matrix element at LO
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operator content
hadron collider signatures

Low Energy �PT (⇡⇡)
same-sign

dilepton

e+MET dijet+ MET

dimension 9
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Table 1. Table of dimension-9 electroweak invariant operators contributing to 0⌫�� decay and
hadron collider processes. A ‘

p
’ indicates the operator contributes to the hadron collider process,

whereas a ‘_̈’ indicates that it does not. In the “Low Energy” column the notation LL, LR, and
RR refer to whether the two leptons in the operator are eLeCL , eL�

µeCR, or eRe
C
R, respectively. For a

given operator , the last column indicates at what chiral order the two-pion interactions first appear,
using the results summarized in Tables 2 and 3. A ‘-’ indicates the operator does not contribute to
NNLO order.

at LO in v/⇤. To LO the only operator that does not appear is O3L. The results of this

Section are summarized in Table 1.

4 Mapping onto chiral perturbation theory

The next step is to obtain the e↵ective Hamiltonian of these interactions inside a nucleus,

using chiral perturbation theory (�PT) to match the e↵ective theory at the GeV scale onto

the e↵ective theory involving pions and nucleons defined below that scale. The application

of �PT to neutrinoless double � was pioneered and developed in Ref. [10]. The processes

relevant to neutrinoless double � decay are shown in Figure 1. The strength of the contact

interaction involving two electrons to pions and nucleons can only be determined accurately

using lattice QCD. As noted in the Introduction, preliminary lattice results for the ⇡⇡

matrix elements now exist [12]. Approximate chiral SU(3) symmetry can also be used to

– 10 –

Table from MG, 
arXiv:1606.04549

Electroweak invariant dimension 9 operators: 
                       two-pion couplings

• Only one pair of scalar operators suppressed in chiPT counting (O1,O’1)
• Confirm two-pion interactions from vector operators suppressed by electron mass through 

NNLO (Prezeau, Ramsey-Musolf, Vogel)

4 “vector” quark 
operators

7 “scalar” quark 
operators

LR symmetric theory

RPV-inspired theory
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Effective field theory analysis of BSM contributions to 
neutrinoless double beta decay: two pion matrix elements

V. Cirigliano, W. Dekens, MG, E. Mereghetti, 1701.01443, PLB 2017 
Figure 1: Feynman diagrams representing the insertion of dimension-9 operators of Eq. (1) –
denoted by a black square – at the hadronic level. In this paper we study the ⇡� ! ⇡+ee vertex
appearing in the leftmost diagram, which is enhanced in the chiral power counting.

number of dimension-9 operators [16, 17,25]

L
e↵

=
1

⇤5

LNV

"

X

i=scalar

�

c
i,S
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where O
i

and Oµ

j

denote scalar and vector four-quark operators, respectively. In this letter we
focus on the scalar operators and in order to discuss their properties under the chiral SU(3)
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where qT = (u, d, s), q
L,R

= (1/2)(1 ⌥ �
5

)q, ↵, � denote color indices, and ⌧+ = T 1 + iT 2 in
terms of the SU(3) generators T a. Three additional operators O0

1,2,3

are obtained from O
1,2,3

by the interchange L $ R everywhere. Parity invariance of QCD implies h⇡+|O0
1,2,3

|⇡�i =
h⇡+|O

1,2,3

|⇡�i.
The operators O
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belong to irreducible representations of the chiral symmetry group SU(3)
L
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! U
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with U
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transforms as 27
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, O
2,3

transform
as 6

L

⇥ 6̄
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, and finally O
4,5

transform as 8
L
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. The transformation properties of O
1

were
exploited in Ref. [19] to relate the matrix element of h⇡+|O

1

|⇡�i to the �I = 3/2 K+ ! ⇡�⇡0

amplitude. Here we exploit the transformation properties of O
2,3,4,5

to relate their two-pion
matrix elements to the matrix elements of their chiral partrners between a K0 and a K̄0 meson,
which have been computed with lattice QCD by several groups [20–24]. Strictly speaking the
symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
NLO quark-mass corrections by computing the leading chiral loops.

1 This is consistent with the bases used in Refs. [26] and [27] for the �S = 2 e↵ective Hamiltonian beyond the
Standard Model. Compared to the basis presented in Ref. [17], we are able to eliminate the operator involving
tensor densities �µ⌫ ⌦ �µ⌫ .

2

From the minimal basis, 8 scalar quark operators:

+ O0
1,2,3 from L $ R on O1,2,3

For 0nubb phenomenology, need matrix elements

h⇡+|Oi|⇡�i
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Two pion matrix elements

•      ,        two pion matrix element determined by M. Savage (1999) using chiral SU(3) symmetry 
to relate ππ amplitude to ΔI=3/2 K-> ππ decay

• we were able to extend Savage’s analysis to all such operators, by relating two pion matrix 
elements to those involving ΔS=1, 2 matrix elements which are now accurately computed on the 

lattice 

 

O1

• preliminary lattice computations exist for two pion matrix elements 

• (Nicholson et. al., 2015, see A. Nicholson’s talk)

O0
1
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O1 ⇠ 27L ⌦ 1R

O2,3 ⇠ 6L ⌦ 6R

• 4 quark operators belong to irreducible representations of SU(3)L ⇥ SU(3)R

qL,R ⇠ 3L,R

SU(3)L ⇥ SU(3)R

Two pion matrix elements

• + O‘1,2,3 by L <--> R from O1,2,3; by parity same QCD matrix element 

Figure 1: Feynman diagrams representing the insertion of dimension-9 operators of Eq. (1) –
denoted by a black square – at the hadronic level. In this paper we study the ⇡� ! ⇡+ee vertex
appearing in the leftmost diagram, which is enhanced in the chiral power counting.
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symmetry relation is valid only to leading order in the chiral expansion, and is expected to
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Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.

Determination of h⇡+|O2,3,4,5|⇡�i – The argument proceeds as follows. O
2,3 and O

4,5

can be written as linear combinations of operators transforming according to the 6L ⇥ 6̄R and
8L⇥8R representations of the chiral group, respectively. These operators in turn admit a unique
hadronic realization to leading order in the chiral expansion
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where the trace is over flavor and U is the usual matrix of pseudo-Nambu-Goldstone boson fields
transforming as U ! UL U U †

R under SU(3)L ⇥ SU(3)R,
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and F
0

is the pseudoscalar decay constant in the chiral limit (in our normalization F⇡ '
92.4 MeV). The non-perturbative dynamics is encoded in the low-energy constants g

6⇥¯

6

, g
8⇥8

,
and for each representation there are two independent constants, corresponding to di↵erent color
contractions (e.g. O

2

and O
3

).
The operators in Eqs. (2) are obtained by setting T a = T b ! T 1 + iT 2 in Eq. (3). The

same representations, however, contain �S = 2 operators that contribute to K0-K̄0 mixing in
extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
elements have been computed in lattice QCD, thus providing the couplings g

6⇥¯

6

and g
8⇥8

to
leading order in the chiral SU(3) expansion. Note that the g

8⇥8

couplings can be independently
extracted through their contributions to K0 ! (⇡⇡)I=2

amplitudes via the �S = 1 electroweak
penguin operators, that transform as 8L ⇥ 8R.

We first focus on the relation to K0-K̄0 mixing. A straightforward calculation based on the

3

Chiral perturbation theory

U ! LUR†

Tr T aUT bU†Only is formally invariant

First consider O2,3,4,5+ O’2,3,4,5, then return to O1, O1’

O4,5 = qLT
a�µqL qRT

b�µqR

T a ! LT aL†

T b ! RT bR†
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Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.
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same representations, however, contain �S = 2 operators that contribute to K0-K̄0 mixing in
extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
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Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.
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same representations, however, contain �S = 2 operators that contribute to K0-K̄0 mixing in
extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
elements have been computed in lattice QCD, thus providing the couplings g
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to
leading order in the chiral SU(3) expansion. Note that the g
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Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.
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extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
elements have been computed in lattice QCD, thus providing the couplings g
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NLO chiral corrections arising from the one-loop diagrams of Fig. 2 and O(p2) counterterms
could alter the above relation (see for example Refs. [28] and [29] for the analogous discussion
of K0-K̄0 mixing and K± ! ⇡±⇡0 amplitudes in the Standard Model). For the relations of
interest here, we find to NLO at zero momentum transfer (defining L⇡,K,⌘ ⌘ logµ2
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To identify the finite parts of the loops we have followed the modified MS scheme commonly
used chiral perturbation theory [30, 31]. Moreover, �K
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denote linear combinations
of O(p2) counterterms, that reabsorb the µ� dependence of L⇡,K,⌘ and contain additional finite
corrections. Using the NLO e↵ective Lagrangian [32], we find
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with a
8⇥8

and b
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with counterterm contributions analogous to the ones in Eq. (8). The loop corrections to
MK ¯K

8⇥8,6⇥¯

6

have been calculated in Ref. [33] and we agree with them. Eqs. (6)-(10) lead to

the central result of our work, namely a relation between M⇡⇡ and MK ¯K valid to NLO in the
chiral expansion
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4

(LO in chiPT)

O2,3 :

Matching quark operators onto chiral operators 

O4,5 :
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Quark masses (pion masses) break chiral symmetry. So previous relations modified at NLO. We 
did a loop computation to estimate the size of that splitting.

Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.

Determination of h⇡+|O2,3,4,5|⇡�i – The argument proceeds as follows. O
2,3 and O

4,5

can be written as linear combinations of operators transforming according to the 6L ⇥ 6̄R and
8L⇥8R representations of the chiral group, respectively. These operators in turn admit a unique
hadronic realization to leading order in the chiral expansion
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where the trace is over flavor and U is the usual matrix of pseudo-Nambu-Goldstone boson fields
transforming as U ! UL U U †

R under SU(3)L ⇥ SU(3)R,
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and F
0

is the pseudoscalar decay constant in the chiral limit (in our normalization F⇡ '
92.4 MeV). The non-perturbative dynamics is encoded in the low-energy constants g

6⇥¯

6

, g
8⇥8

,
and for each representation there are two independent constants, corresponding to di↵erent color
contractions (e.g. O

2

and O
3

).
The operators in Eqs. (2) are obtained by setting T a = T b ! T 1 + iT 2 in Eq. (3). The

same representations, however, contain �S = 2 operators that contribute to K0-K̄0 mixing in
extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
elements have been computed in lattice QCD, thus providing the couplings g

6⇥¯

6

and g
8⇥8

to
leading order in the chiral SU(3) expansion. Note that the g

8⇥8

couplings can be independently
extracted through their contributions to K0 ! (⇡⇡)I=2

amplitudes via the �S = 1 electroweak
penguin operators, that transform as 8L ⇥ 8R.

We first focus on the relation to K0-K̄0 mixing. A straightforward calculation based on the

3

• Counter-terms from NLO local operators have the form (V. Cirigliano, E. Golowich, 2000)  
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• Low-energy coefficients {a} could be extracted (in principle) from K-Kbar mixing computed 
   using lattice QCD at different values for the quark masses

• We agree with loop corrections to K-Kbar (Becirevic, Villadoro, 2004)  
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Estimating central value and uncertainty

• For central value for Δ’s, set renormalization scale to rho mass and counter-terms =0

• Adopted two prescriptions for estimating the error due to unknown �KK̄
8⇥8 , �

⇡⇡
8⇥8

• Naive-dimensional analysis : |a8⇥8,6⇥6̄| ⇠ O(1)

gives �8⇥8 = 0.02(20), �6⇥6̄ = 0.07(20)

Figure 2: Feynman diagrams contributing to the NLO corrections toM⇡⇡ andMK ¯K . Solid lines
represent ⇡,K, ⌘. The black squares represent an insertion of the lowest-order chiral Lagrangian
(see Eq. (3)), while the open square represents an insertion from the NLO e↵ective Lagrangian.

symmetry relation is valid only to leading order in the chiral expansion, and is expected to
receive O(30%) corrections. To make our analysis more robust, we also estimate the size of
next-to-leading order (NLO) quark-mass corrections by computing the leading chiral loops.

Determination of h⇡+|O2,3,4,5|⇡�i – The argument proceeds as follows. O
2,3 and O

4,5

can be written as linear combinations of operators transforming according to the 6L ⇥ 6̄R and
8L⇥8R representations of the chiral group, respectively. These operators in turn admit a unique
hadronic realization to leading order in the chiral expansion

Oa,b
6⇥¯

6

= q̄RT
aqL q̄RT

bqL

�

�

�

6⇥¯

6

! g
6⇥¯

6

F 4

0

8

h

Tr
⇣

T aUT bU
⌘

+Tr
⇣

T aU
⌘

Tr
⇣

T bU
⌘i

(3a)

Oa,b
8⇥8

= q̄LT
a�µqL q̄RT

b�µqR ! g
8⇥8

F 4

0

4
Tr
⇣

T aUT bU †
⌘

, (3b)

where the trace is over flavor and U is the usual matrix of pseudo-Nambu-Goldstone boson fields
transforming as U ! UL U U †
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is the pseudoscalar decay constant in the chiral limit (in our normalization F⇡ '
92.4 MeV). The non-perturbative dynamics is encoded in the low-energy constants g
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and for each representation there are two independent constants, corresponding to di↵erent color
contractions (e.g. O
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and O
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The operators in Eqs. (2) are obtained by setting T a = T b ! T 1 + iT 2 in Eq. (3). The

same representations, however, contain �S = 2 operators that contribute to K0-K̄0 mixing in
extensions of the Standard Model (T a = T b ! T 6� iT 7 in Eq. (3)). The relevant K0-K̄0 matrix
elements have been computed in lattice QCD, thus providing the couplings g
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and g
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to
leading order in the chiral SU(3) expansion. Note that the g

8⇥8

couplings can be independently
extracted through their contributions to K0 ! (⇡⇡)I=2

amplitudes via the �S = 1 electroweak
penguin operators, that transform as 8L ⇥ 8R.

We first focus on the relation to K0-K̄0 mixing. A straightforward calculation based on the
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• O(1) change in (log) renormalization scale (Manohar ’96):
�

(ct)

n = ±|d�(loops)

n /d(log µ�)|

gives �8⇥8 = 0.02(36), �6⇥6̄ = 0.07(16)

• For final analysis, chose �8⇥8 = 0.02(30) , �6⇥6̄ = 0.07(20)

• This choice gives 
R8⇥8 = 0.72(21) (⇠ 30% uncertainty)

R6⇥6̄ = 0.76(14) (⇠ 20% uncertainty)
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h⇡+|O
1

|⇡�i = (1.0± 0.1± 0.2)⇥ 10�4 GeV4

h⇡+|O
2

|⇡�i = �(2.7± 0.3± 0.5)⇥ 10�2 GeV4

h⇡+|O
3

|⇡�i = (0.9± 0.1± 0.2)⇥ 10�2 GeV4

h⇡+|O
4

|⇡�i = �(2.6± 0.8± 0.8)⇥ 10�2 GeV4

h⇡+|O
5

|⇡�i = �(11± 2± 3)⇥ 10�2 GeV4

Table 1: Pionic matrix elements of the operators in Eqs. (2) in the MS scheme at the scale µ = 3 GeV.
The first uncertainty refers to the lattice QCD input on kaon matrix elements. The second uncertainty
is associated to the size of partially known NLO chiral corrections (only loops are taken into account)
and possible higher order e↵ects. See text for discussion.

uncertainty due to the quark masses is non negligible, but subdominant compared to the e↵ect
of NLO chiral corrections. We summarize our current best estimates for the matrix elements and
their uncertainties in Table 1. The fractional uncertainty is at the 20% level for h⇡+|O

2,3|⇡�i
(dominated by chiral corrections), at the 35% for h⇡+|O

5

|⇡�i (dominated by chiral corrections),
and at the 40% level for h⇡+|O

4

|⇡�i (equally shared by chiral correction and lattice QCD input).
The e↵ective coupling g

8⇥8

can also be extracted from the electroweak penguin matrix ele-
ments h(⇡⇡)I=2

|Q
7,8|K0i [37,38]. This extraction was recently updated in Ref. [39] to LO in the

chiral expansion (in [39] the notation g
(i)
8⇥8

! �AiLR was used). Using the value of g
8⇥8

from
Ref. [39] in Eq. (7) and neglecting chiral corrections leads to h⇡+|O

4

|⇡�i = �1.9 ⇥ 10�2 GeV4

and h⇡+|O
5

|⇡�i = �8.5 ⇥ 10�2 GeV4, in reasonable agreement with the estimate of these ma-
trix elements based on K0-K̄0 mixing given in Eq. (14) and Table 1. NLO chiral e↵ects in
K0 ! (⇡⇡)I=2

change the extracted low-energy constant as follows, g
8⇥8

! g
8⇥8

/(1+�
2

), with
�

2

= �0.30 ± 0.20 [40], where the central value stems from chiral loop and known countert-
erms, while the error encompasses an estimate of the unknown counterterms. Taking this into
account and keeping the chiral logs in Eq. (7) leads to h⇡+|O

4

|⇡�i = �2.7 ⇥ 10�2 GeV4 and
h⇡+|O

5

|⇡�i = �12.7⇥ 10�2 GeV4, in excellent agreement with the results of Table 1.
Determination of h⇡+|O1|⇡�i – For completeness, we also update the analysis of Ref. [19].

First, note that O
1

belongs to the 27L ⇥ 1R representation of SU(3)L ⇥ SU(3)R, along with
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with Lµ
ij = i(U †@µU)ij . The factor of 4 multiplying O

1

in (15) accounts for the di↵erent

3 Explicitly the projection reads Q
(27⇥1)
2 = 2/5 [s̄�µ(1 � �5)u ū�µ(1 � �5)d + s̄�µ(1 � �5)d ū�

µ(1 � �5)u)] �
1/5 [s̄�µ(1� �5)d d̄�

µ(1� �5)d+ s̄�µ(1� �5)d s̄�
µ(1� �5)s].

6

Relate our operators to those defined by FLAG (Aoki et.al, 1607.00299)

average central values for Nf=2+1 and Nf=2+1+1

results for B2, B4 and B5 from SWME [45, 401, 416], obtained using staggered quarks and
employing perturbative matching differ significantly from those quoted by the ETM [42, 46]
and RBC/UKQCD [411] Collaborations, which both determine the matching factors nonper-
turbatively. A recent update of the RBC/UKQCD calculation described in Ref. [418] provides
a hint that the nonperturbative determination of the matching factors depends strongly on
the details in the implementation of the Rome-Southampton method. The use of nonex-
ceptional momentum configurations in the calculation of the vertex functions produces a
significant modification of the renormalization factors, which in turn brings the results from
RBC/UKQCD much closer to the estimates from SWME.

Therefore, insufficient control over the renormalization and matching procedure appears
to be the most likely explanation for the observed deviations. In the absence of further
investigations that corroborate this conjecture, it is difficult to quote global estimates for the
BSM B parameters B2, . . . , B5. However, we observe that for each choice of Nf there is only
one set of results that meets the required quality criteria, i.e. ETM15 [42] for Nf = 2+1+1,
SWME15A [45] for Nf = 2 + 1, and ETM12D [46] for two-flavour QCD.

Figure 16: Lattice results for the BSM B parameters defined in the MS scheme at a reference
scale of 3GeV, see Tab. 27.
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h⇡+|O2|⇡�i = � 5

12
B2 K ⇥R6⇥6̄, K =

2F 2
K m4

K

(md +ms)2

h⇡+|O3|⇡�i =
1

12
B3 K ⇥R6⇥6̄

h⇡+|O4|⇡�i = �1

3
B5 K ⇥R8⇥8

h⇡+|O5|⇡�i = �B4 K ⇥R8⇥8

LQCD input: B2, B3: O(10%) error

 B4, B5: O(20%) error

Fractional error: 

O2, O3:  O(20%) error

O5 :       O(40%) error

O4 :       O(35%) error
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h⇡+|O1|⇡�iUpdating M. Savage’s (1999) determination of 
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o

• for ΔS=1 part, loops are small, and counter terms found to also be small at 
   large Nc because of factorization of Q2 into product of currents 
   (Cirigliano, Ecker, Neufeld, Pich, 2004) 

• lattice QCD computation of K-> pi pi O(10%) error (Blum et. al. 2015)

--> g27 =0.34(3)LQCD(2)chiPT

• with 20% error in           gives our estimate for O1 :�⇡⇡27⇥1

h⇡+|O1|⇡�i = (1.0± 0.1± 0.2)⇥ 10�4 GeV4

• As expected from general considerations, this matrix element is 
  suppressed compared to other ΔL=2 two pion matrix elements

• Chiral loops and counter terms again give:
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Summary

progress on these interactions from 
LQCD and chiral PT 

progress on these interactions from 
LQCD just beginning 
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•	New	sources	of	ΔL=2	LNV	could	dominate	“standard	non-standard”	contribu;on	(i.e.,	long-
distance	Majorana	neutrino	mass	contribu;on)

•	If	neutrino	hierarchy	is	“normal”*,	such	non-conven;onal	sources	for	ΔL=2	LNV	and	0nubb	only	
physics	case	for	discovery

•	Discussed	possibili;es,	from	both	model-dependent	and	effec;ve	field	theory	descrip;ons.	In	
contact	limit	reduced	set	of	electroweak	invariant	operators.

	
•	first	chiral	es;mates	of	all	two	pion	matrix	elements	arising	from	scalar	quark	operators,	

necessary	ingredient	for	leading	0nubb	matrix	elements	arising	from	such	non-conven;onal	
sources

•	expect	error	to	be	improved	only	through	direct	LQCD	computa;ons	

•		big	inverse	problem	if	ΔL=2	LNV	discovered,	but	that	is	a	good	situa;on	to	be	in

Summary

*and outside of the quasi-degenerate region
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