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êr v±1 ⌘ ⌥
r

1

2

⇣
✓̇ ± i�̇ sin ✓

⌘
(4)

v±1 ! e±i�̃v±1 (5)

C0 =
3

⇠
(6)

Q̂NLO = qêr · E� qd1
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Relevant	energy	scales	in	even-even	nuclei
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Effective	field	theory	for	collective	nuclei

Bertsch,	Dean,	Nazarewicz,	SciDAC	Rev.	6,	42	(2007)
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Chiral	EFT
• Nucleon	and	pion	fields

Pionless EFT
• Nucleon	fields

BREAKDOWN	SCALE

Collective	EFT
• Phonons
• Few	fermions
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The	states	are	constructed	as	phonon	
excitations	of	the	reference	state	

Boson	quadrupole	operators

Degrees	of	freedom:	quadrupole-boson	
creation	and	annihilation	operators

,

Rank-two	tensors

and

Most	simple	rotational-invariant	Hamiltonian
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that govern the collective vibrations of an even-
even nucleus. This EFT is based on the usual
linear Wigner-Weyl representation of rotational
symmetry and can be contrasted to an EFT
for deformed nuclei, which is based on the non-
linear Nambu-Goldstone realization of the rota-
tional symmetry [31]. Based on a power count-
ing we systematically construct the Hamilto-
nian and electromagnetic operators. Another
interesting aspect of this EFT approach is the
simultaneous description of the even-even and
neighboring odd-mass nuclei; consequently, ob-
servables in the even-even nucleus are related
to observables in the odd-mass system. These
relations can be confronted with experimental
data. In this work, we will compute electric
quadrupole (E2) and magnetic dipole (M1) ob-
servables for odd-mass isotopes of rhodium and
silver. This is also interesting with view on re-
cent g factor measurements in this region of
the nuclear chart [48, 49]. The paper is or-
ganized as follows. In Section II, we present
the EFT framework within which the even-
even/odd-mass nuclei will be described, estab-
lish a power counting and describe energy spec-
tra at next-to-next-to-leading order (NNLO).
Sections III and IV are dedicated to the study
of moments and transitions of the E2 and M1
operators, respectively. In Section V we discuss
the possible extension of the EFT to the more
complicated case posed by cadmium isotopes.
Finally, in Section VI we present our summary.

II. ODD-MASS VIBRATIONAL NUCLEI

Certain even-even nuclei (such as isotopes of
Cd, Ru, and Te) exhibit low-energy states that
resemble those of a five-dimensional quadrupole
oscillator. In these nuclei, the vibrational fre-
quency ! ⇡ 0.6 MeV is the energy scale of in-
terest, and the picture of a quadrupole vibrator
breaks down at an energy ⇤ ⇡ 2-3 MeV, i.e.
around the three-phonon level. The breakdown
scale ⇤ is associated with neglected microscopic
(fermionic) degrees of freedom and is of similar
size as the pairing gap. Thus, ! ⌧ ⇤ holds,
and this separation of scale has been exploited

in Ref. [36] to construct an EFT for nuclear vi-
brations.

The spectra of certain odd-mass neighbors
of vibrational nuclei are relatively simple and
suggest that these result from coupling a j⇡ =
1/2� fermion to the even-even nucleus. Exam-
ples we consider in this paper are 99,101,103Rh
(Z = 45) and 105,107,109,111Ag (Z = 47) as
a proton coupled to 98,100,102Ru (Z = 44)
and 104,106,108,110Pd (Z = 46), respectively, or
107,109,111Ag as a proton-hole in 108,110,112Cd
(Z = 48). These cases are particularly simple
because one deals with a j⇡ = 1/2� degree of
freedom. We note here that the odd-mass nuclei
considered in this work also exhibit very low-
lying (100 keV or less) states with positive par-
ity. As a single fermion cannot undergo parity-
changing transitions, the positive-parity states
can be neglected in the description of low-lying
negative-parity states in the odd-mass nuclei.

Could one also attempt to describe, for in-
stance, 108,110,112Cd in terms of two protons
added to 106,108,110Pd, respectively? In such
an EFT approach, the low-lying positive-parity
states of 107,109,111Ag would also need to enter
the description. The calculation would be non-
perturbative (because of the near degeneracy of
states with positive and negative parities in the
odd-mass nucleus), and a significant number of
fermionic two-body-matrix elements would en-
ter as low energy constants (LECs). It is thus
unclear whether such an EFT approach would
be profitable.

A. Hamiltonian

Before we turn to the odd-mass nuclei, we
briefly review some aspects of the EFT for nu-
clear vibrations in even-even nuclei [36]. The
relevant degrees of freedom are quadrupole op-
erators d†µ and dµ with µ = �2,�1, ..., 2 that
create and annihilate a phonon, respectively.
They fulfill the usual boson commutation rela-
tions
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two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
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and

HNNLO ⌘ gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (20)

While the term �Sn̂ in Eq. (17) sets the overall
binding with respect to the ground-state of the
vibrating core, it does not contain any spectro-
scopic information. We will therefore neglect
this term in what follows. The LO Hamilto-
nian (18) is that of a harmonic quadrupole vi-
brator, and energies are of the order !. Higher-
order contributions to the Hamiltonian are most
interesting. The NLO Hamiltonian (19) ac-
counts for e↵ects introduced by the phonon-
fermion couplings. We note that the size of
the boson-fermion interaction cannot be deter-
mined on theoretical grounds but must rather
be based on data. The empirical inspection of
spectra suggests that these phonon-fermion cou-
plings are a fraction of the scale !. We approxi-
mate this scale as order !2/⇤ and thereby avoid
the introduction of a new small parameter. Be-
cause of this perturbative coupling we can as-
sociate low-lying states in certain odd-mass nu-
clei with the spectra in the neighboring even-
even nuclei. The NNLO Hamiltonian (20) in-
volves phonon-phonon interactions that account
for anharmonicities in the even-even nucleus.
We remind the reader that these terms are of
order !3/⇤2 and have been discussed in detail
in Ref. [36].

Let us discuss the Hilbert space. The states
of the odd nucleus are products of the boson
quadrupole states and fermion states of the j =
1/2 orbital. As usual, the vacuum |0i fulfills

dµ|0i = 0 = a⌫ |0i. (21)

The boson states of the quadrupole vibrator
are created from the vacuum by the succes-
sive application of quadrupole creation opera-
tors. These states are denoted as

|N↵vJµi. (22)

Here N is the number of phonons, v is the se-
niority, J and µ are the angular momentum and
its projection onto the z-axis, respectively, while
↵ represents an additional quantum number.
This quantum number is only needed above the

two-phonon level and therefore not needed for
the low-energy physics we are interested in. We
will omit it in what follows. For details on the
construction of these states we refer the reader
to Ref. [9]. The single-fermion states are

| 12⌫i ⌘ a†⌫ |0i. (23)

Normalized states of the odd-mass nucleus with
total spin I and projection M are

|IM ;N↵vJ ; 1
2 i ⌘

�|N↵vJi ⌦ | 12 i
�(I)
M

=
X

µ⌫

CIM
Jµ 1

2

⌫ |N↵vJµi| 12⌫i. (24)

The Hamiltonian (17) is diagonal in the basis
states (24) with eigenvalues

E = ELO + ENLO + ENNLO, (25)

with

ELO = !1N, (26)

ENLO = !2Nn+
gJj
2


I(I + 1)� J(J + 1)� 3

4

�

(27)
and

ENNLO = gNN2+gvv(v+3)+gJJ(J+1). (28)

We remind the reader that we neglected the sep-
aration energy S, i.e., the ground-state ener-
gies of the even-even nucleus and of the odd-
mass nucleus are set to zero. Figure 1 shows a
schematic plot of the NLO energy spectrum (25)
up to the two-phonon level. States are labeled
by their spin and parity. Even-even states,
shown as long red lines, have integer spins
and positive parity. Odd-mass states, shown
as short blue lines, have half-integer spins and
the parity of the fermion’s orbital. (Odd-mass
states considered in what follows all have neg-
ative parities.) Energies are chosen in units of
!1, and the LECs !2 and gJj are small frac-
tions of this LEC. We see how the term propor-
tional to !2 shifts the energies while the term
proportional to gJj splits even-even states with
finite spins into doublets in the odd-mass neigh-
bor. The centroids from the shift are shown as
crosses in Fig. 1.
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We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector
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3

d†µ dµ µ = 0,±1,±2
⇥
dµ, d

†
⌫

⇤
= �µ⌫ (18)
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�ĤNLO

"2!
k

(24)

c X% (25)
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ĤLO = !N̂ + !0N̂ n̂+ gNN̂
2 + gv⇤̂

2 + gJ Ĵ
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two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)
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We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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FIG. 1. (Color online) NLO spectrum for the
fermion in a j = 1/2 orbital coupled to a quadrupole
vibrator up to the two-phonon level in arbitrary
units. The states labeled as I⇡ are displayed as long
red and short blue lines for even-even and odd-mass
nuclei, respectively. The centroids of the I = J ± j
odd-mass states are shown as blue crosses.

B. Uncertainty quantification

EFTs provide us with the opportunity to
quantify theoretical uncertainties. While the
power counting allows one to estimate uncer-
tainties in EFTs, quantified uncertainties re-
sult from (testable) assumptions one makes
about the distribution of the LECs [40] in
form of priors. Employing Bayesian statistics
(and marginalizing) over unknown parameters
included in these priors yields degree-of-belief
(DOB) intervals with a statistical meaning. In
this section, we closely follow Ref. [36] and
chose log-normal priors for the LECs’ distribu-
tion functions.

The energies of the states below the break-
down scale can be written as an expansion of
the form

E(I⇡) = !1

1X

i

ci(I
⇡)"i (29)

with

" ⌘ N
!1

⇤
. (30)

In our case

!1

⇤
⇡ 1

3
. (31)

If the expansion is truncated at order O("2), a
comparison with the NNLO spectrum (25) al-
lows us to identify

c0(I
⇡) ⌘ ELO(I⇡)

!1
, (32)

c1(I
⇡) ⌘ ENLO(I⇡)

"!1
(33)

and

c2(I
⇡) ⌘ ENNLO(I⇡)

"2!1
(34)

From the power counting one expects these co-
e�cients to be of order O(1).

Figure 2 shows the cumulative distributions
of the c1 and c2 coe�cients for the energies of
states below the breakdown scale in an ensemble
containing the data of all studied Pd and Ag
nuclei. These distributions, with means µ1 and
µ2, respectively, can be approximated by the
Gaussian prior

pr(G)(c̃i|c) = 1p
2⇡sc

e�
c̃2i

2s2c2 with s =
2

3
(35)

for the expansion coe�cient ci = c̃i + µi. Here,
µi ⌘ ci is the mean value of the ci. The param-
eter c, associated with the width of the distribu-
tion, is not taken from Fig. 2. Instead, we make
the assumption that c is log-normal distributed
according to

pr(c) =
1p
2⇡�c

e�
log

2 c

2�2 . (36)

The log normal distribution is consistent with
the EFT expectation that LECs are of natu-
ral size, i.e. that the coe�cient c is of order
one [37]. Given the priors (35) and (36), one
calculates the probability distribution function
(PDF) for ci by marginalizing over the param-
eter c and finds

p(ci � µ) =

1Z

0

dcpr(G)(ci � µi|c)pr(c). (37)

*Cacciari,	Houdeau;	Nucl.	J.	High	Energy	Phys.	09 (2011)	039
*Furnstahl,	et	al.;	J.	Phys.	G	42,	034028	(2015)
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FIG. 1. (Color online) NLO spectrum for the
fermion in a j = 1/2 orbital coupled to a quadrupole
vibrator up to the two-phonon level in arbitrary
units. The states labeled as I⇡ are displayed as long
red and short blue lines for even-even and odd-mass
nuclei, respectively. The centroids of the I = J ± j
odd-mass states are shown as blue crosses.

B. Uncertainty quantification

EFTs provide us with the opportunity to
quantify theoretical uncertainties. While the
power counting allows one to estimate uncer-
tainties in EFTs, quantified uncertainties re-
sult from (testable) assumptions one makes
about the distribution of the LECs [40] in
form of priors. Employing Bayesian statistics
(and marginalizing) over unknown parameters
included in these priors yields degree-of-belief
(DOB) intervals with a statistical meaning. In
this section, we closely follow Ref. [36] and
chose log-normal priors for the LECs’ distribu-
tion functions.

The energies of the states below the break-
down scale can be written as an expansion of
the form

E(I⇡) = !1

1X

i
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with
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In our case
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If the expansion is truncated at order O("2), a
comparison with the NNLO spectrum (25) al-
lows us to identify
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and

c2(I
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From the power counting one expects these co-
e�cients to be of order O(1).

Figure 2 shows the cumulative distributions
of the c1 and c2 coe�cients for the energies of
states below the breakdown scale in an ensemble
containing the data of all studied Pd and Ag
nuclei. These distributions, with means µ1 and
µ2, respectively, can be approximated by the
Gaussian prior

pr(G)(c̃i|c) = 1p
2⇡sc

e�
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2s2c2 with s =
2

3
(35)

for the expansion coe�cient ci = c̃i + µi. Here,
µi ⌘ ci is the mean value of the ci. The param-
eter c, associated with the width of the distribu-
tion, is not taken from Fig. 2. Instead, we make
the assumption that c is log-normal distributed
according to

pr(c) =
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log
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The log normal distribution is consistent with
the EFT expectation that LECs are of natu-
ral size, i.e. that the coe�cient c is of order
one [37]. Given the priors (35) and (36), one
calculates the probability distribution function
(PDF) for ci by marginalizing over the param-
eter c and finds

p(ci � µ) =

1Z

0

dcpr(G)(ci � µi|c)pr(c). (37)
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State µ EFT
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1

0.79 (2) 0.79 (24)
2+
2
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4+
1

1.8 (4) 1.93 (49)
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⌘
+Q1
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2 =) Q1 ⇠

r
!
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B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i

(28)

µ̂LO = µ0Î µ(I⇡) = µ0

r
4⇡

3
CII

II10

p
I(I + 1)

µ(4+) = 2µ(2+)
p
16⇡ 2

p
16⇡

(29)

↵LO ↵NLO (30)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(31)
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B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i
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↵LO ↵NLO (30)
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µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(31)

 0 !  0  ±2 ! e±i2�̃ ±2 (32)
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where the symbol
⇤⇠ value must be read as “expected to scale as value at the scale ⇤”. Here ! is the energy of the

vibrational mode. For details we refer the reader to Ref [1].
For the di↵erent terms of the operator (3) we have

C�hd0i
⇤⇠ C�`hd1i ) C�`

⇤⇠ C�

r

!

⇤
or

C�`

C�

EFT⇠ 0.58(+42

�25

) (11)

and

C�hd0i
⇤⇠ C�L`hd2i ) C�L`

⇤⇠ C�
!

⇤
or

C�L`

C�

EFT⇠ 0.33(+25

�14

), (12)

where the symbol
EFT⇠ value must be read as “expected to scale as value within the EFT”. The uncertainties for these

ratios have been naively estimated based on the expectation for the LECs to be of natural size. Through this work
the later statement will be understood as

B ⇠ A ) B 2
"

A

r

!

⇤
, A

r

⇤

!

#

. (13)

We emphasize that these are naive estimates and must be tested. Thus, the observed successive hindering of � decays
from 1+, 2+ and 3+ odd-odd ground states to the 0+

1

, 2+
1

an 2+
2

even-even states reported in Ref. [? ] arises naturally
within the EFT.

C. Sum rules

The total transition strengths are defined by

S± =
X

n=1

|h1+n ||Ô�± ||0+I i|
2, (14)

where the + or � subscripts are employed to reference electron capture or �� processes, respectively. Within the
EFT, the odd-mass excited 1+ states can be either multiphonon or single-particle excitations. In the former case,
and based on the power counting (10), the energies of these excitations and the matrix elements of the operator (3)
between them and the even-even 0+ state of interest scale as

E(1+n+1

)
EFT⇠ E(1+

1

) + n! (15)

and

h1+n+1

||Ô� ||0+i i
EFT⇠ h1+

1

||Ô� ||0+i i
⇣!

⇤

⌘n/2
, (16)

respectively. If a similar scaling is assumed for the single-particle excitations, then the total transition strengths may
be estimated as

S±
EFT⇠ 3C2

�±

X

n=0

⇣!

⇤

⌘n
or

S±
C2

�±

EFT⇠ 4.5(+33

�19

). (17)

Thus,

S� � S
+

EFT⇠ 4.5
⇣

C2

�� � C2

�+

⌘

. (18)

D. C� within the pairing plus quadrupole model

As mentioned in the previous section, the LECs of the operator (3) cannot be calculated within the EFT, and
must be fitted to experimental data. Is it possible to map the reduced matrix elements of interest to those calculated
within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the
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Static	E2	moments
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Î2êr · E+ êr · EÎ2
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Power	counting	for	the	fermion	operators

Degrees	of	freedom:	fermion	creation	and	
annihilation	operators	for	a	fermion	in	a

orbital

PROPOSAL:	The	matrix	element	of	an	
operator	with	an	n-fermion	factor	scales	as

NLO	Hamiltonian

with

and

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between

16

IV. M1 OBSERVABLES

The magnetic dipole (M1) operator is a
spherical tensor of rank one. In our EFT, the
simplest rank-one operator is

µ̂µ =µdĴµ + µaĵµ

+
⇣⇣

d† + d̃
⌘
⌦

⇣
µd1Ĵ+ µa1ĵ

⌘⌘(1)

µ
.
(52)

The first and second terms on the right-hand
side of Eq. (52) preserve the phonon number,
and enter in the LO calculation of static M1
moments and phonon-conserving M1 transition
strengths. The last two terms enter in the LO
calculation of phonon-changing M1 transition
strengths.

Experimental data show that the typical size
for the static M1 moment of the even-even 2+1
state is about one nuclear magneton µN . This
observation and the fact that in even-even nuclei

hI||Ĵ||Ii =
p

I(I + 1)(2I + 1), (53)

allow us to estimate the scale for the LEC µd as

µd ⇠ 1

5
µN . (54)

The Schmidt value for the magnetic moment
of a proton in a j⇡ = 1/2� orbital is µp ⇡
�0.26µN . In contrast to E2 phenomena, mag-
netic properties in vibrational nuclei are not col-
lective, and the contributions of the odd fermion
cannot be neglected. As will be shown in what
follows, the static M1 moment of the I = 1/2
ground state of the odd-mass nuclei calculated
from the operator (52) is µ(1/2) =

p
⇡/3µa.

Thus, we naively estimate the value of µa as

µa ⇠ µp. (55)

Static M1 moments for the ground state in
103Rh, 107Ag and 109Ag are consistent with this
estimate. It is important to realize that the
LEC µa is neither equal nor simply related to
the Schmidt value. In the EFT considered in
this work, we couple a fermion with j⇡ = 1/2�

(and not a free proton in a p wave) to a col-
lective state. We have no information about

any radial wave function of the coupled fermion,
and we have no operators to act on its spin and
its orbital angular momentum separately. The
coupling between the fermion and the core is
strong (as the separation energy S considerably
exceeds the energy scale ! of core excitations).
The result of the coupling is again a collec-
tive state, and renormalizations replace “bare”
quantities such as the proton’s magnetic mo-
ment by e↵ective couplings. It is useful to con-
trast the EFT for vibrations in odd-mass nuclei
with halo EFT [28–30, 68] for odd-mass nuclei.
In halo EFT, a nucleon is very weakly bound
to a core, and S ⌧ ! holds. The nucleon’s
Schmidt value is the leading contribution to the
total magnetic moment, and subleading correc-
tions are of size S/! ⌧ 1 [69, 70].

Let us now turn to the phonon-changing
terms in Eq. (52) and discuss the size of the
LECs µd1 and µa1. Due to the absence of
strong collective e↵ects in M1 observables, the
naive expectation is that transition matrix ele-
ments again are of single-particle size, i.e. sim-
ilar to µN or µp. Higher-order corrections
to the leading phonon-changing and phonon-
preserving terms of the M1 operator (52) en-
ter with increasing powers of boson or fermion
creation and annihilation operators. We expect
them to scale as " and neglect them in what
follows.

The M1 reduced transition probabilities and
static M1 moments are given by [9]

B(M1; i ! f) =
|hf ||µ̂||ii|2
2Ii + 1

(56)

and

µ(I) =

r
4⇡

3

CII
II10p
2I + 1

hI||µ̂||Ii, (57)

respectively.

A. Static moments and phonon-conserving
transition strengths

The LO static M1 moments of even-even and
odd-mass nuclei can be calculated from the re-

4

two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)
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We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10
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d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ
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Here,
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and
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are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between

4

two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)

Coello	Pérez,	Papenbrock;	Phys.	Rev.	C	94,	054316	(2016)
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Order-by-order	improvement

LO:
•One	LEC
•Harmonic	behavior



LO:
•One	LEC
•Harmonic	behavior

NLO:
•Two	additional	LECs
•Particle-core	interactions

Order-by-order	improvement



LO:
•One	LEC
•Harmonic	behavior

NLO:
•Two	additional	LECs
•Particle-core	interactions

NNLO:
•Three	additional	LECs
•Anharmonic	corrections

Accuracy	and	precision	show	an	
order-by-order	increase	of	
precision	at	the	expense	of	
reduced	predictive	power

Order-by-order	improvement



E2	matrix	elements

Data:	Nuclear	Data	Sheets

9

TABLE IV. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
106Pd/107Ag system in Weisskopf units. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

106Pd 2+
1

! 0+
1

44.3(15) 35(12)
0+
2

! 2+
1

35(8) 69(23)
2+
2

! 2+
1

44(4) 69(23)
4+
1

! 2+
1

76(11) 69(23)
107Ag 3

2

�
1

! 1

2

�
1

42(4) 34(11)
5

2

�
1

! 1

2

�
1

43(3) 34(11)
1

2

�
2

! 3

2

�
1

27(23)
1

2

�
2

! 5

2

�
1

41(23)
3

2

�
2

! 3

2

�
1

48(23)
3

2

�
2

! 5

2

�
1

20(23)
5

2

�
2

! 3

2

�
1

14(23)
5

2

�
2

! 5

2

�
1

55(23)
7

2

�
1

! 3

2

�
1

62(23)
7

2

�
1

! 5

2

�
1

7(23)
9

2

�
1

! 5

2

�
1

68(23)

quadrupole moments of the 2+2 , 4
+
1 , 3/2

⇡ and
5/2⇡1 states are shown as red, blue, green and
purple lines, respectively, with unhatched, ver-
tical, horizontal and diagonal hatched bands,
respectively. These bands represent the theo-
retical uncertainty quantified using uncertainty
estimates of size " and 68% DOB intervals.
In the bottom of the figure, the E2 transition
strengths for the 4+1 ! 2+2 and 5/2⇡1 ! 3/2⇡1
transitions are shown as red and green lines, re-
spectively, with unhatched and hatched bands,
respectively. Experimental data for the sys-
tems 102Ru/103Rh, 106Pd/107Ag, 108Pd/109Ag
and the even-even 114Cd nucleus are shown in
the figure as colored diamonds, triangles, circles
and square, respectively. These data points are
weighted averages of the data from Refs. [? ?
? ]. Within the EFT, the static quadrupole
moments of some excited states in the systems
102Ru/103Rh, 106Pd/107Ag, 108Pd/109Ag and
110Cd/109Ag were employed to calculate the
value of Q1. The ratios Q1/Q0 in the mentioned
systems are Q1/Q0 = 0.32, Q1/Q0 = 0.45,
Q1/Q0 = 0.39 and Q1/Q0 = 0.47, respectively,
all consistent with the value expected from the

TABLE V. E2 matrix elements for phonon-
annihilation transitions in 108Pd and 109Ag in eb.

Nucleus I⇡i ! I⇡f M(E2)
exp

M(E2)
EFT

108Pd 2+
1

! 0+
gs

0.398(5) 0.341(114)
0+
2

! 2+
1

0.183(9) 0.216(72)
2+
2

! 2+
1

0.477(17) 0.482(161)
4+
1

! 2+
1

0.649(36) 0.647(216)
109Ag 3

2

�
1

! 1

2

�
gs

0.322(161) 0.305(102)
5

2

�
1

! 1

2

�
1

0.397(8) 0.373(124)
1

2

�
2

! 3

2

�
1

0.193(64)
1

2

�
2

! 5

2

�
1

0.236(79)
3

2

�
2

! 3

2

�
1

0.356(87) 0.361(120)
3

2

�
2

! 5

2

�
1

0.236(79)
5

2

�
2

! 3

2

�
1

0.176(44) 0.236(79)
5

2

�
2

! 5

2

�
1

0.197(69) 0.472(157)
7

2

�
1

! 3

2

�
1

0.579(193)
7

2

�
1

! 5

2

�
1

0.193(64)
9

2

�
1

! 5

2

�
1

0.664(54) 0.682(227)

power counting Q1/Q0 = 0.58. Notice that
in the case of 114Cd the static quadrupole mo-
ment for the 2+2 state is large when compared
to the EFT prediction, however, the E2 transi-
tion strength for the 4+1 ! 2+2 transition is in
agreement with the EFT prediction.

IV. M1 OPERATOR

The magnetic dipole (M1) operator results
from the coupling of the DOF to a magnetic
field B, and is a spherical tensor of rank 1. We
propose an M1 operator of the form

µ̂µ =µd

⇣
d† ⌦ d̃

⌘(1)

µ
+ µa

�
a† ⌦ ã

�(1)
µ

+ µ1

⇣⇣
d† + d̃

⌘
⌦ �

a† ⌦ ã
�(1)⌘(1)

µ

(44)

The first and second terms of these operator
couple states with the same number of phonons,
allowing for the calculation of static dipole mo-
ments and phonon-conserving M1 transition
strengths. The last term allows for the cal-
culation of phonon-annihilating M1 transition
strengths.

8

TABLE II. Reduced matrix elements relevant for
phonon-annihilating transitions in units of Q

0

.

System Ii ! If hf ||Q̂||ii
even-even 2

1

! 0
1

p
5

0
2

! 2
1

p
2

2
2

! 2
1

p
10

4
1

! 2
1

p
18

odd-A 3

2

1

! 1

2

1

2
5

2

1

! 1

2

1

p
6

1

2

2

! 3

2

1

�
q

8

5

1

2

2

! 5

2

1

q
12

5

3

2

2

! 3

2

1

q
28

5

3

2

2

! 5

2

1

q
12

5

5

2

2

! 3

2

1

�
q

12

5

5

2

2

! 5

2

1

q
48

5

7

2

1

! 3

2

1

q
72

5

7

2

1

! 5

2

1

q
8

5

9

2

1

! 5

2

1

p
20

102Ru/103Rh, 108Pd/109Ag, 108Pd/109Ag and
110Cd/109Ag are Q0 = 0.28 eb, Q0 = 0.32 eb,
Q0 = 0.32 eb and Q0 = 0.27, respectively.
The transition strengths in 109Ag have been
described employing both 108Pd and 110Cd as
cores. Both descriptions are consistent with
each other within theoretical uncertainty.

B. Static quadrupole moments and
phonon-conserving E2 transitions

The NLO contribution to the E2 opera-
tor (36) couples states with the same number of
phonons. It allows for the calculation of static
quadrupole moments and transition strengths
for decays between states with the same number
of phonons through the LEC Q1. The reduced
matrix elements required to calculate these ob-
servables in the even-even system are given in
Ref. [? ]. The matrix elements relevant for their

TABLE III. E2 matrix elements for phonon-
annihilation transitions in 102Ru and 103Rh in eb.

Nucleus I⇡i ! I⇡f M(E2)
exp

M(E2)
EFT

102Ru 2+
1

! 0+
1

0.370(2) 0.306(102)
0+
2

! 2+
1

0.146(12) 0.194(65)
2+
2

! 2+
1

0.311(24) 0.433(144)
4+
1

! 2+
1

0.600(50) 0.581(194)
103Rh 3

2

�
1

! 1

2

�
1

0.297(16) 0.274(91)
5

2

�
1

! 1

2

�
1

0.402(14) 0.336(112)
1

2

�
2

! 3

2

�
1

0.173(58)
1

2

�
2

! 5

2

�
1

0.244(23) 0.212(71)
3

2

�
2

! 3

2

�
1

0.324(108)
3

2

�
2

! 5

2

�
1

0.212(71)
5

2

�
2

! 3

2

�
1

0.100(7) 212(71)
5

2

�
2

! 5

2

�
1

0.121(9) 0.424(141)
7

2

�
1

! 3

2

�
1

0.408(66) 0.520(173)
7

2

�
1

! 5

2

�
1

0.173(58)
9

2

�
1

! 5

2

�
1

0.531(40) 0.613(204)

calculation in odd-A nuclei are

hIf 1
2 ; 1↵

02; 12 |Q̂|Ii 12 ; 1↵2; 1
2 i

= 2Q1

X

µ⌫

C
Ii 1

2

2µ 1

2

⌫
C

If
1

2

2µ 1

2

⌫
C2µ

2µ20
(42)

and

hIf 1
2 ; 2↵

0Jf ;
1
2 |Q̂|Ii 12 ; 2↵Ji; 1

2 i
= 4Q1

X

µ⌫
mn

C
Ii 1

2

Jiµ 1

2

⌫
C

If
1

2

Jfµ
1

2

⌫
CJiµ

2m2nC
Jfµ
2m2nC

2m
2m20

(43)

The static quadrupole moments of the even-
even and odd-A nuclei are listed in Table VII,
while the reduced matrix elements for phonon-
conserving transitions are listed in Table VIII.
In both cases, the matrix elements are given in
terms of Q1.

The results presented in Tables VII and VIII
allow us to establish relations between the dif-
ferent E2 observables. As an example, some
static quadrupole moments and E2 transition
strengths are plotted as a function of Q(2+1 ) in
the top and bottom parts of Figure ??, respec-
tively. In the top part of this figure, the static

4

State µ EFT
2+
1

0.79 (2) 0.79 (24)
2+
2

0.71 (10) 0.79 (49)
4+
1

1.8 (4) 1.93 (49)

Q̂ = Q0

⇣
d† + d̃

⌘
+Q1

⇣
d† ⌦ d̃

⌘(2)

�N = ±1 �N = 0,±2 Q0d ⇠ Q1d
2 =) Q1 ⇠

r
!

⇤
Q0

Q1

Q0
⇠ 0.58

Q1

Q0
⇡ 0.47

Q1

Q0
⇡ 0.41

Q1

Q0
⇡ 0.33

Q1

Q0
⇡ 0.42

(27)

B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i

(28)

µ̂LO = µ0Î µ(I⇡) = µ0

r
4⇡

3
CII

II10

p
I(I + 1)

µ(4+) = 2µ(2+)
p
16⇡ 2

p
16⇡

(29)

↵LO ↵NLO (30)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(31)

 0 !  0  ±2 ! e±i2�̃ ±2 (32)



M1	operator

Most	general	operator	of	rank	one

LO	term:
• Two	LECs
• Phonon-conserving	transition
• Static	M1	moments

NLO	term:
• Two	LECs
• Phonon-annihilating	transition

4

Q̂ = Q0

⇣
d† + d̃

⌘
+Q1

⇣
d† ⌦ d̃

⌘(2)

�N = ±1 �N = 0,±2 Q0d ⇠ Q1d
2 =) Q1 ⇠

r
!

⇤
Q0

Q1

Q0
⇠ 0.58

Q1

Q0
⇡ 0.47

Q1

Q0
⇡ 0.41

Q1

Q0
⇡ 0.33

Q1

Q0
⇡ 0.42

(27)

B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i

(28)

µ̂LO = µ0Î µ(I⇡) = µ0

r
4⇡

3
CII

II10

p
I(I + 1)

µ(4+) = 2µ(2+)
p
16⇡ 2

p
16⇡

(29)

µ̂ =µdĴ+ µaĵ+
h⇣

d† + d̃
⌘
⌦
⇣
µd1Ĵ+ µa1ĵ

⌘i(1)
(30)

↵LO ↵NLO (31)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(32)

 0 !  0  ±2 ! e±i2�̃ ±2 (33)



Static	M1	static	moments	and	M1	transition	matrix	elements

LECs	fitted	to	static	M1	moments

Data:	Nuclear	Data	Sheets
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TABLE IX. Static dipole moments of states up to
the two-phonon level in terms of µd and µa.

System I µ(I)
even-even 2

p
3µd

4
p
18µd

odd-A 1

2

p
3µa

3

2

q
54

24

µd �
q

6

5

µa

5

2

q
84

25

µd +
q

21

5

µa

7

2

q
140

9

µd �
q

28

9

µa

9

2

q
176

9

µd +
q

55

9

µa

M1 operator (44) since their contribution to
the matrix elements relevant for the calculation
of phonon-annihilating M1 transition strengths
are expected to be a factor " smaller than those
of the term taken into account.

A. Static dipole moments and
phonon-conserving M1 transitions

The static dipole moments of even-even and
odd-A nuclei can be easily calculated from the
reduced matrix elements of the first and sec-
ond terms of the M1 operator (44) employing
the commutation relations for the quadrupole
operators (1) and the anticommutation rela-
tions for the fermion operators (2). These
static moments are listed in Table IX in terms
of the LECs µd and µa. In addition to the
static dipole moments, there are some allowed
phonon-conserving M1 transitions in odd-A nu-
clei. The reduced matrix elements relevant for
their calculation also depend on the LECs µd

and µa. These matrix elements are listed in Ta-
ble X.

Our results for the static dipole moments of
some states in the 102Ru/103Rh, 106Pd/107Ag
and 108Pd/109Ag systems, with uncertainty
quantified from an uncertainty estimate of size
" and 68% DOB intervals as µd�, are listed in
Table XI. Most experimental values in the ta-
ble are weighted averages of data from Refs. [?
? ? ]. The static dipole moment of the

TABLE X. Reduced matrix elements relevant for
phonon-conserving M1 transitions in terms of µd

and µa.

System Ii ! If hf ||µ̂||ii
odd-A 5

2

! 3

2

�
q

6

25

µd +
q

24

5

µa

9

2

! 7

2

�
q

4

9

µd +
q

80

9

µa

TABLE XI. Static dipole moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag sys-
tems in units of µN . Values marked with an asterisk
were employed to fit the LECs. The uncertainty was
quantified from 68% DOB intervals.

Nucleus I⇡i µ
exp

µ
EFT

102Ru 2+
1

0.85(3) 1.02(34)
2+
2

1.02(34)
4+
1

2.04(68)
103Rh 1

2

1

�0.09 �0.08(3)
3

2

1

0.77(7) 0.97(32)
5

2

1

1.08(4) 0.93(31)
7

2

1

2.00(60) 2.04(68)
9

2

1

2.80(50) 1.95(65)
106Pd 2+

1

0.79(2) 0.91(30)
2+
2

0.71(10) 0.91(30)
4+
1

1.80(40) 1.81(60)
107Ag 1

2

1

�0.11 �0.11(4)
3

2

1

0.98(9) 0.88(29)
5

2

1

1.02(9) 0.80(27)
7

2

1

1.85(62)
9

2

1

1.71(57)
108Pd 2+

1

0.71(2) 0.93(31)
2+
2

0.93(31)
4+
1

1.86(62)
109Ag 1

2

1

�0.13 �0.13(4)
3

2

1

1.10(10) 0.91(30)
5

2

1

0.85(8) 0.80(26)
7

2

1

1.91(64)
9

2

1

1.72(57)

I⇡ = 1/2� ground state in 103Rh was taken
from Ref. [? ]. Data marked with asterisks
were employed to fit the LECs. The values of
these LECs in the 102Ru/103Rh, 106Pd/107Ag
and 108Pd/109Ag systems are µd = 0.49µN

µa = �0.05µN , µd = 0.46µN µa = �0.06µN

and µd = 0.41µN µa = �0.07µN , respectively.
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TABLE XII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.

Nucleus I⇡i ! I⇡f M(M1)
exp

M(M1)
EFT

103Rh 5

2

�
1

! 3

2

�
1

0.512(171)
5

2

�
2

! 3

2

�
2

0.512(171)
9

2

�
1

! 7

2

�
1

0.697(232)
107Ag 5

2

�
1

! 3

2

�
1

0.595(36) 0.506(169)
5

2

�
2

! 3

2

�
2

0.506(169)
9

2

�
1

! 7

2

�
1

0.689(230)
109Ag 5

2

�
1

! 3

2

�
1

0.680(55) 0.551(184)
5

2

�
2

! 3

2

�
2

0.551(184)
9

2

�
1

! 7

2

�
1

0.750(250)

These values are consistent with the EFT esti-
mates. While EFT results are in good agree-
ment with experimental data, it seems like the
e↵ective magnetic moment of the odd-proton
coupled to the even-even nucleus deviates sig-
nificantly from that of a free proton; in other
words, the coupling between the even-even nu-
cleus and the odd proton is not weak within the
EFT.

In Table XII we list results within the EFT for
phonon-conserving M1 transitions in the stud-
ied odd-A nuclei, with uncertainty quantified
from an uncertainty estimate of " and 68% DOB
intervals as µ2

d�/(2Ii+1). EFT results for these
transitions underpredict the strength of known
phonon-conserving M1 transition strengths by
a factor of two.

B. Phonon-annihilating M1 transitions

The last term of the M1 operator (44) cou-
ples states whose number of phonons di↵er
by one. Its reduced matrix elements allow
us to calculate transition strengths of phonon-
annihilating M1 transitions. At this order,
phonon-annihilating M1 transitions in even-
even nuclei are forbidden. The relevant matrix
elements are listed in Table XIII. In Table XIV
we present EFT results for phonon-annihilating
M1 transition strengths in 103Rh, 107Ag and

TABLE XIII. Reduced matrix elements relevant for
phonon-annihilating M1 transitions in terms of µ

1

.

System Ii ! If hf ||µ̂||ii
odd-A 3

2

1

! 1

2

1

�
p
3µ

1

1

2

2

! 3

2

1

�
q

6

5

µ
1

3

2

2

! 3

2

1

�
q

84

25

µ
1

3

2

2

! 5

2

1

q
21

25

µ
1

5

2

2

! 3

2

1

�
q

21

25

µ
1

5

2

2

! 5

2

1

q
24

25

µ
1

7

2

1

! 5

2

1

q
54

5

µ
1

109Ag with uncertainty quantified from an un-
certainty estimate of size " and 68% DOB inter-
vals as µ2

1�/(2Ii + 1). Experimental data were
taken from Refs. [? ? ]. Data marked with
asterisks were employed to fit the LECs. The
value of this LEC in 103Rh, 107Ag and 109Ag
is µ1 = 0.53µN , consistent with our naive scale
estimate µ1 ⇠ µd in the three study cases. Our
results are in good agreement with the available
experimental data.

V. SUMMARY

We have developed an EFT for the simulta-
neous description of spherical even-even/odd-A
systems in terms of quadrupole bosonic DOF
describing the collective motion of the even-
even core, and fermionic DOF describing an
odd proton or neutron in a j = 1/2 orbital
attached to such core. The low breakdown
scale around the three-phonon level in the even-
even core allow us to systematically describe
the energy spectra and electromagnetic prop-
erties of states upto the two-phonon level. Pre-
dictions for energy spectra and electromagnetic
moments and transitions strengths are consis-
tent with experimental data within the theoret-
ical uncertainty quantified via Bayesian meth-
ods for the studied rhodium and silver isotopes,
which are described as an odd proton or pro-
ton hole in a j⇡ = 1/2� orbital coupled to a

4
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3
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d† + d̃
⌘
⌦
⇣
µd1Ĵ+ µa1ĵ

⌘i(1)
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↵LO ↵NLO (31)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(32)

 0 !  0  ±2 ! e±i2�̃ ±2 (33)



M1	transition	matrix	elements
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These values are consistent with the EFT esti-
mates. While EFT results are in good agree-
ment with experimental data, it seems like the
e↵ective magnetic moment of the odd-proton
coupled to the even-even nucleus deviates sig-
nificantly from that of a free proton; in other
words, the coupling between the even-even nu-
cleus and the odd proton is not weak within the
EFT.

In Table XII we list results within the EFT for
phonon-conserving M1 transitions in the stud-
ied odd-A nuclei, with uncertainty quantified
from an uncertainty estimate of " and 68% DOB
intervals as µ2

d�/(2Ii+1). EFT results for these
transitions underpredict the strength of known
phonon-conserving M1 transition strengths by
a factor of two.

B. Phonon-annihilating M1 transitions

The last term of the M1 operator (44) cou-
ples states whose number of phonons di↵er
by one. Its reduced matrix elements allow
us to calculate transition strengths of phonon-
annihilating M1 transitions. At this order,
phonon-annihilating M1 transitions in even-
even nuclei are forbidden. The relevant matrix
elements are listed in Table XIII. In Table XIV
we present EFT results for phonon-annihilating
M1 transition strengths in 103Rh, 107Ag and

TABLE XIII. Reduced matrix elements relevant for
phonon-annihilating M1 transitions in terms of µ

1
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System Ii ! If hf ||µ̂||ii
odd-A 3

2

1

! 1

2

1

�
p
3µ

1

1

2

2

! 3

2

1

�
q

6

5

µ
1

3

2

2

! 3

2

1

�
q

84

25

µ
1

3

2

2

! 5

2

1

q
21

25

µ
1

5

2

2

! 3

2

1

�
q

21

25

µ
1

5

2

2

! 5

2

1

q
24

25

µ
1

7

2

1

! 5

2

1

q
54

5

µ
1

TABLE XIV. Reduced transition probabilities for
phonon-annihilatingM1 transitions in 103Rh, 107Ag
and 109Ag in Weisskopf units. Values marked with
an asterisk were employed to fit the LEC. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f M(M1)
exp

M(M1)
EFT

103Rh 3

2

�
1

! 1

2

�
1

0.568(24) 0.566(189)
1

2

�
2

! 3

2

�
1

0.358(119)
3

2

�
2

! 3

2

�
1

0.624(208)
3

2

�
2

! 5

2

�
1

0.291(97)
5

2

�
2

! 3

2

�
1

0.250(18) 0.291(97)
5

2

�
2

! 5

2

�
1

0.299(22) 0.289(96)
7

2

�
1

! 5

2

�
1

1.074(358)
109Ag 3

2

�
1

! 1

2

�
1

0.560(36) 0.612(204)
1

2

�
2

! 3

2

�
1

0.387(129)
3

2

�
2

! 3

2

�
1

0.655(143) 0.506(169)
3

2

�
2

! 5

2

�
1

0.371(124)
5

2

�
2

! 3

2

�
1

0.401(89) 0.371(124)
5

2

�
2

! 5

2

�
1

0.669(134) 0.523(174)
7

2

�
1

! 5

2

�
1

1.162(387)

109Ag with uncertainty quantified from an un-
certainty estimate of size " and 68% DOB inter-
vals as µ2

1�/(2Ii + 1). Experimental data were
taken from Refs. [? ? ]. Data marked with
asterisks were employed to fit the LECs. The
value of this LEC in 103Rh, 107Ag and 109Ag
is µ1 = 0.53µN , consistent with our naive scale
estimate µ1 ⇠ µd in the three study cases. Our
results are in good agreement with the available
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I. INTRODUCTION

II. � DECAY FROM ODD-ODD NUCLEI

In what follows we attempt to describe � decays from odd-odd to even-even nuclei which spectra and electromagnetic
properties behave like those of an spherical vibrator at leading order (LO). The description of the odd-odd nuclei
involved in the � decays we are about to investigate is extremely complicated. In order to calculate the required
matrix elements we will assume the ground state for the later systems can be described at LO as a collective core,
with an even number of neutrons and protons, coupled to an odd neutron and an odd proton. Uncertainties due to
omitted next-to-leading order (NLO) contributions to these ground states, among others, will propagate to the matrix
elements we wish to calculate. The e↵ective field theory (EFT) approach we employ is particularly useful to estimate
these uncertainties, enabling a more meaningful comparison of results and predictions with experimental data.

A. �-decay operator and its matrix elements

The EFT developed in Refs. [1? ] describes spherical odd-mass nuclei at low energies by coupling either an odd
neutron or neutron hole or an odd proton or proton hole to an even-even collective core. The degrees of freedom in
terms of which EFT is written are the boson quadrupole, neutron and proton operators

⇥

dµ, d
†
⌫

⇤

= �⌫µ,
�

nµ, n
†
⌫

 

= �⌫µ and
�

pµ, p
†
⌫

 

= �⌫µ, (1)

where the d operators create and annihilate quadrupole phonons, the n operators create and annihilate a neutron
or neutron hole in a j⇡n

n orbital, and the p operators create and annihilate a proton or proton hole in a j
⇡p
p orbital,

respectively. The spin and parity of the orbital in which the odd fermion lies in a particular odd-mass nucleus are
inferred from the spin and parity of the later’s ground state. While additional orbitals may be accessible to the odd
fermion, it is assumed by the EFT that at LO only the lowest lying orbital enters the description of the low-energy
properties of the odd-mass system.

In order to attempt a description of the parity-conserving allowed � decays from odd-odd nuclei we will extend the
EFT of Refs. [1? ] and write the lowest positive-parity odd-odd states at LO as

|IM ; jp; jni =
X

µ⌫

CIM
jnµjp⌫n

†
µp

†
⌫ |0i, (2)

where I and M are the spin of the state and its projection onto the z-axis and |0i is the LO even-even ground state.
Here the spins and parities of the orbitals in which the odd neutron and proton lie are inferred from the ground states
of the odd-mass nuclei adjacent to both the even-even and odd-odd nuclei involved in the � decay of interest. It is
required for the spins and parities of this orbitals to fulfill the relations |jn � jp|  I  jn + jp and ⇡n⇡p = 1.

The description of the allowed � decays from the odd-odd state (2) to the even-even ground, one- and two-phonon
states requires for us to construct the most general tensor of rank one in the e↵ective degrees of freedom (1) coupling
odd-odd and even-even states. At LO in the number of boson operators, this operator is

Ô� =C� (p̃⌦ ñ)(1)

+
X

`

C�`

h⇣

d† + d̃
⌘

⌦ (p̃⌦ ñ)(`)
i

(1)

+
X

L`

C�L`



⇣

d† ⌦ d† + d̃⌦ d̃
⌘

(L)

⌦ (p̃⌦ ñ)(`)
�

(1)

+ h. c.,

(3)

with

ñµ ⌘ (�1)jn+µn�µ and p̃µ ⌘ (�1)jp+µp�µ. (4)

Here h. c. stands for hermitian conjugate, and the coupling of two tensors is as defined as in Ref [2]. Let us discuss
the operator (3) in more detail. Assume we are to study the �� decay from an odd-odd nucleus with N +1 neutrons
and Z � 1 protons to an even-even nucleus with N neutrons and Z. Within the EFT, the odd-odd nucleus involved
in the decay would be described as the even-even core plus a neutron plus a proton hole. In order to couple these
nuclei, the fermion annihilation operators in the � operator (3) annihilate the odd neutron and proton hole. This
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n orbital, and the p operators create and annihilate a proton or proton hole in a j
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p orbital,

respectively. The spin and parity of the orbital in which the odd fermion lies in a particular odd-mass nucleus are
inferred from the spin and parity of the later’s ground state. While additional orbitals may be accessible to the odd
fermion, it is assumed by the EFT that at LO only the lowest lying orbital enters the description of the low-energy
properties of the odd-mass system.

In order to attempt a description of the parity-conserving allowed � decays from odd-odd nuclei we will extend the
EFT of Refs. [1? ] and write the lowest positive-parity odd-odd states at LO as
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where I and M are the spin of the state and its projection onto the z-axis and |0i is the LO even-even ground state.
Here the spins and parities of the orbitals in which the odd neutron and proton lie are inferred from the ground states
of the odd-mass nuclei adjacent to both the even-even and odd-odd nuclei involved in the � decay of interest. It is
required for the spins and parities of this orbitals to fulfill the relations |jn � jp|  I  jn + jp and ⇡n⇡p = 1.

The description of the allowed � decays from the odd-odd state (2) to the even-even ground, one- and two-phonon
states requires for us to construct the most general tensor of rank one in the e↵ective degrees of freedom (1) coupling
odd-odd and even-even states. At LO in the number of boson operators, this operator is
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Here h. c. stands for hermitian conjugate, and the coupling of two tensors is as defined as in Ref [2]. Let us discuss
the operator (3) in more detail. Assume we are to study the �� decay from an odd-odd nucleus with N +1 neutrons
and Z � 1 protons to an even-even nucleus with N neutrons and Z. Within the EFT, the odd-odd nucleus involved
in the decay would be described as the even-even core plus a neutron plus a proton hole. In order to couple these
nuclei, the fermion annihilation operators in the � operator (3) annihilate the odd neutron and proton hole. This



From	the	power	counting

and
Most	general	rank-one	operator	coupling	
odd-odd	and	even-even	states

LO	term:
• Couples	states	with

NLO	term:
• Couples	states	with

NNLO	term:
• Couples	states	with

Effective	Gamow-Teller	operator

4

where the symbol
⇤⇠ value must be read as “expected to scale as value at the scale ⇤”. Here ! is the energy of the

vibrational mode. For details we refer the reader to Ref [1].
For the di↵erent terms of the operator (3) we have

C�hd0i
⇤⇠ C�`hd1i ) C�`

⇤⇠ C�

r

!

⇤
or

C�`

C�

EFT⇠ 0.58(+42

�25

) (11)

and

C�hd0i
⇤⇠ C�L`hd2i ) C�L`

⇤⇠ C�
!

⇤
or

C�L`

C�

EFT⇠ 0.33(+25

�14

), (12)

where the symbol
EFT⇠ value must be read as “expected to scale as value within the EFT”. The uncertainties for these

ratios have been naively estimated based on the expectation for the LECs to be of natural size. Through this work
the later statement will be understood as

B ⇠ A ) B 2
"

A

r

!

⇤
, A

r

⇤

!

#

. (13)

We emphasize that these are naive estimates and must be tested. Thus, the observed successive hindering of � decays
from 1+, 2+ and 3+ odd-odd ground states to the 0+

1

, 2+
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an 2+
2

even-even states reported in Ref. [? ] arises naturally
within the EFT.

C. Sum rules

The total transition strengths are defined by

S± =
X

n=1
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D. C� within the pairing plus quadrupole model
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i

(1)

+
X

L`

C�L`



⇣

d† ⌦ d† + d̃⌦ d̃
⌘

(L)

⌦ (p̃⌦ ñ)(`)
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i(1)
+
X

L`

C�L`

⇣
d† ⌦ d† + d̃⌦ d̃

⌘(L)

⌦ (p̃⌦ ñ)(`)
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within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the
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that can couple the odd-odd and even-even ground states, expected to scale as C�(!/⇤), and omitted NLO corrections
to the odd-odd ground state due to terms in the Hamiltonian mixing state with phonon-number di↵erences of one,
expected to scale as

p

!/⇤|IM ;N = 0; jp; jni. It is naively expected for the contribution to the matrix element (5)
due to both sources of uncertainty to scale as

�h0||Ô� ||I; jp; jni
EFT⇠ h0||Ô� ||I; jp; jni

!

⇤
. (28)

This naive uncertainty estimate is the one we associate to the matrix element (??). Due to the identification in
Eq. (27), this naive uncertainty estimate can also be associated to the PPQ matrix element. Thus, the EFT have
been employed to provide the PPQ model with theoretical uncertainties.

The uncertainty associated to the quantity log(ft)
gs gs

is naively estimated as the NLO order contribution to the

Taylor expansion of the logarithm of Eq. (8) with hf ||Ô� ||ii ⇡ h0||Ô� ||I; jp; jni(1± !/⇤), that is,

� log(ft)if
EFT⇠ 2

ln 10

!

⇤
. (29)

Calculated log(ft)
gs gs

values will be considered to be consistent with experimental data whenever the experimental
and theoretical values with their respective uncertainties overlap.

III. 2⌫�� DECAY BETWEEN EVEN-EVEN NUCLEI

what I need to know about two-neutrino double beta decay

A. Gamow-Teller matrix element for 2⌫�� decay

The dimensionless Gamow-Teller (GT) matrix element related to the half-life of two-neutrino double-� (2⌫��)
decays between even-even 0+ states can be calculated from the matrix elements of the operator (3) for single-� decays
from 1+ odd-odd intermediate states and the before mentioned even-even states. This matrix element takes the form

mec
2h0+F ||Ô2⌫�� ||0+I i =

X

n=1

mec2h0+F ||Ô� ||1+n ih1+n ||Ô� ||0+I i
Dn
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Q��
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+mec

2
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E(0+I )� E(0+F )

2
.

(31)

In the later expressions me is the electron rest mass, |1+n i and E(1+n ) are the 1+ odd-odd states and their energies
relative to the lowest even-even ground state, respectively, and Q�� is the 2⌫�� decay Q-value.

In the single-state dominance (SSD) approximation only the contribution from the 1+
1

odd-odd state is taken into
account. The reduced matrix element (30) takes the approximate form

mec
2h0+F ||Ô2⌫�� ||0+I iSSD ⇡mec2h0+F ||Ô� ||1+

1
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1
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D
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s
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10
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F
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(32)

How good is the SSD approximation? Let us naively estimate the uncertainty associated to the matrix element (32)
due to the SSD truncation. Based on the expected scales for the energies of odd-mass 1+ multiphonon excitations (15)
and the matrix elements of the operator (3) between them and the even-even 0+ states of interest (16), and assuming
a similar scaling for single-particle excitations, it is expected for the contribution to the dimensionfull matrix element
in Eq. (30) omitted in the SSD approximation (32) to scale as
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⇤
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D
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+ !
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◆

,

(33)
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How good is the SSD approximation? Let us naively estimate the uncertainty associated to the matrix element (32)
due to the SSD truncation. Based on the expected scales for the energies of odd-mass 1+ multiphonon excitations (15)
and the matrix elements of the operator (3) between them and the even-even 0+ states of interest (16), and assuming
a similar scaling for single-particle excitations, it is expected for the contribution to the dimensionfull matrix element
in Eq. (30) omitted in the SSD approximation (32) to scale as
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processes, the EFT gives 2⌫�� decay matrix elements
consistent with experiment. In one case the agreement
extends to the 2⌫�� decay into an excited state of the
daughter nucleus.

Future work includes a more precise EFT calculation.
This would require to

i Include higher-order corrections to the Hamiltonian
for the odd-odd nuclei which will in turn correct our
LO approximation for the low-lying odd-odd states.

ii Include higher-order corrections to the e↵ective GT
operator.

These two kinds of corrections, expected to scale asp
!/⇤, would correct the reduced GT matrix elements

for 2⌫�� decays by a factor of !/⇤ ⇠ 1/3. Work to
implement these improvements is in progress.

An extension of the EFT presented here is a promis-
ing framework to estimate the matrix elements of 0⌫��
decays with theoretical uncertainties. For this purpose

the e↵ective 0⌫�� decay operator needs to be written in
terms of the DOF of the EFT, and the corresponding
LECs would have to be fixed. Since there is no experi-
mental data on 0⌫�� decay yet, the fitting of the LEC
needs to be done to other experimental data strongly cor-
related to 0⌫�� decay. Alternatively the EFT LECs can
be fitted to existing nuclear structure calculations, which
is similar to the strategy followed by interacting boson
model calculations [90]. However, the later method will
render our calculations model-dependent. We are explor-
ing di↵erent possibilities to perform this fitting.
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FIG. 4. Energy scales entering in the description of the 2⌫��
decay matrix elements from the parent 100Mo to the ground
and first excited state of the daughter 100Ru.

decay matrix element takes the form

M2⌫
GT(i ! f) ⇡

MGT(1
+
1 ! 0+f )MGT(0

+
i ! 1+1 )

D1f/mec2

=
3mec

2

g2AD1f

s
1

(ft)1+1 0+f
(ft)1+1 0+i

,

(28)

where we have written the later in terms of the ma-
trix elements (or ft values) of single-� decays or charge-
exchange reactions, calculated in Sec. IV.

How good is the SSD approximation for 2⌫�� decay?
First we focus on transitions to the ground state of the
final nucleus. We can estimate the associated uncer-
tainty within the EFT assuming that the low-lying 1+

states of an odd-odd system are described as either mul-
tiphonon or single-particle excitations. For multiphonon-
excitation states the energies and GTmatrix elements are
expected to scale as

E(1+n+1)
EFT⇠ E(1+1 ) + n! , (29)

MGT

�
0+gs ! 1+n+1

� EFT⇠
⇣!
⇤

⌘n/2
MGT

�
0+gs ! 1+1

�
, (30)

according to the power counting introduced in Eq. (19).
If we assume similar scalings for the states dominated by
single-particle excitations, the uncertainty in the 2⌫��

decay matrix element scales as

�M2⌫
GT(0

+
gs ! 0+gs)

EFT⇠
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⌘n MGT(1
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(31)

where the function

�(z, s, a) ⌘
1X

n=0

zn

(a+ n)s
, (32)

is the Lerch transcendent. The relative uncertainty � is

�(gs ! gs) =
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
. (33)

Whether the uncertainty due to the SSD approximation
is smaller or larger than the uncertainty associated with
the order at which the matrix elements are being calcu-
lated depends on the energy scales !, ⇤ and D11.
Similarly to single-� decays, we can also calculate

within the EFT the matrix elements for 2⌫�� decays
into 0+2 excited states. Figure 4 shows a diagram with
the relevant energy scales of the nuclei involved. In this
case the SSD approximation is not expected to work so
well, because the second and third terms in the sum

M2⌫
GT(0

+
gs ! 0+2 ) =

X

n=1

MGT(1+n ! 0+2 )MGT(0+gs ! 1+n )

Dn2/mec2
,

(34)
contain the same number of d operators as the first term.
Thus, based on the power counting in Eq. (19), the first
three terms are expected to scale similarly. Nevertheless,
if only the first term in Eq.(34) is taken into account, the
2⌫�� decay matrix element takes the approximate form
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We can reduce this relative uncertainty assuming that

the contributions due to the first three terms are in phase.
This yields the following matrix element

M2⌫
GT(0

+
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✓
1 +

D12

D22
+

D12

D32
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⇥D11
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MGT(1
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MGT(1
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!

⇤
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�

✓
!

⇤
, 1,

D32 + !

!

◆
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B. 2⌫�� decays

In the 2⌫�� decay two neutrons of the parent even-
even nucleus decay into two protons. Two electrons
and antineutrinos are emitted as well due to charge and
lepton-number conservation:

A(Z,N)
2��

�! A(Z + 2, N � 2) + 2e� + 2⌫e . (8)

Such decays have been detected for a dozen of nuclei, in-
cluding few cases of transitions into excited states [24].
At present the similar but kinematically less favored
�+�+ and double-EC decays have not been observed ex-
perimentally.

In principle both GT and F operators enter the de-
scription of 2⌫�� decays. Nevertheless, in decays to low-
lying states of the final daughter nucleus only the GT
part is relevant. The F operator does not connect states
with di↵erent isospin quantum number, and its strength
is almost completely exhausted by the isobaric analogue
state, which lies at an excitation energy of tens of MeVs.
The decay rate for 2⌫�� decay is then [32]

1

t2⌫if
= G2⌫

if

��M2⌫
GT

��2 , (9)

where G2⌫
if is a phase-space factor, and the nuclear matrix

element M2⌫
GT is given by

M2⌫
GT =

X

n

hf ||
P

a �a⌧
+
a ||1+n ih1+n ||

P
b �b⌧

+
b ||ii

Dnf/me
, (10)

where the electron mass me is introduced to make the
matrix element dimensionless, and the sum runs over all
|1ni states of the intermediate odd-odd nucleus. The
energy denominatorsDnf are given in terms of the energy
of the initial, final and intermediate states by

Dnf = En � Ei � Ef

2
. (11)

III. EFT FOR SINGLE-� DECAY

In the present section we formulate an EFT for the GT
decays of parent odd-odd into daughter even-even nuclei.
Our approach is valid for systems with low-energy spec-
tra and electromagnetic transitions well reproduced by an
EFT written in terms of collective DOF, which at leading
order (LO) represents a five-dimensional harmonic oscil-
lator. The theoretical uncertainties due to omitted DOF
can be propagated in the EFT up to the nuclear matrix
elements and decay half-lives, allowing for a comparison
of the EFT predictions with experimental data.

A. EFT for even-even and odd-odd nuclei

The EFT developed in Refs. [53, 54] describes the low-
energy properties of spherical even-even and odd-mass

nuclei in terms of collective excitations that can be cou-
pled to an odd neutron or proton. The e↵ective operators
are written in terms of creation and annihilation opera-
tors, which are the DOF of the EFT. These include

i Collective phonon operators d†µ and dµ, which create
and annihilate quadrupole phonons associated with
low-energy quadrupole excitations of the even-even
core.

ii Neutron operators n†
µ and nµ, which create and an-

nihilate a neutron or neutron-hole in a j⇡n
n single-

particle orbital with total angular momentum j and
parity ⇡.

iii Proton operators p†µ and pµ, which create and anni-
hilate a proton or proton-hole in a j

⇡p
p orbital.

These operators fulfill the following relations
⇥
dµ, d

†
⌫

⇤
= �⌫µ,

�
nµ, n

†
⌫

 
= �⌫µ ,

�
pµ, p

†
⌫

 
= �⌫µ . (12)

While the creation operators are the components of
spherical tensors, the annihilation operators are not.
To facilitate the construction of spherical-tensor oper-
ators with specific ranks, we define annihilation spheri-
cal tensors with components ãµ = (�1)ja+µa�µ, where
a = d, n, p and jd = 2.

The reference state |0i of the EFT represents the 0+

ground state of the even-even nucleus of interest. Multi-
phonon excitations of this state represent excited states
in the even-even system. Of particular relevance for our
work are one- and two-phonon excitations:

|2M1i = d†M |0i , and |IM2i =
r

1

2

�
d† ⌦ d†

�(I)
M

|0i ,
(13)

where in the notation |IMN i, I and M are the total an-
gular momentum of the state and its projection onto the
z-axis, and N is the number of phonons. We define the
coupling of two spherical tensors as in Ref [55], and refer
to Ref. [56] for a detailed description of the construction
of multiphonon excitations. We highlight that the EFT
introduced above reproduces the low-lying spectra and
electromagnetic moments and transitions of vibrational
medium-mass and heavy nuclei within the estimated the-
oretical uncertainties [53].
In a similar fashion, the ground states of adjacent odd-

mass nuclei can be described as fermion excitations of the
reference state |0i. Even though several single-particle
orbitals may be relevant, at LO in the EFT it is as-
sumed that only one orbital is required to describe the
low-energy properties of the odd-mass system. The rele-
vant single-particle orbital is inferred from the quantum
numbers of the ground state of the nucleus. This assump-
tion works well for odd-mass nuclei near shell closures
with 1/2

� ground states [54]. In these systems, a reason-
able agreement was found between the EFT predictions
and experimental data, regarding not only low-energy
excitations but also electric and magnetic moments and
transitions [54].
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a = d, n, p and jd = 2.

The reference state |0i of the EFT represents the 0+

ground state of the even-even nucleus of interest. Multi-
phonon excitations of this state represent excited states
in the even-even system. Of particular relevance for our
work are one- and two-phonon excitations:

|2M1i = d†M |0i , and |IM2i =
r

1

2

�
d† ⌦ d†

�(I)
M

|0i ,
(13)

where in the notation |IMN i, I and M are the total an-
gular momentum of the state and its projection onto the
z-axis, and N is the number of phonons. We define the
coupling of two spherical tensors as in Ref [55], and refer
to Ref. [56] for a detailed description of the construction
of multiphonon excitations. We highlight that the EFT
introduced above reproduces the low-lying spectra and
electromagnetic moments and transitions of vibrational
medium-mass and heavy nuclei within the estimated the-
oretical uncertainties [53].
In a similar fashion, the ground states of adjacent odd-

mass nuclei can be described as fermion excitations of the
reference state |0i. Even though several single-particle
orbitals may be relevant, at LO in the EFT it is as-
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FIG. 4. Energy scales entering in the description of the 2⌫��
decay matrix elements from the parent 100Mo to the ground
and first excited state of the daughter 100Ru.

decay matrix element takes the form

M2⌫
GT(i ! f) ⇡

MGT(1
+
1 ! 0+f )MGT(0

+
i ! 1+1 )

D1f/mec2

=
3mec

2

g2AD1f

s
1

(ft)1+1 0+f
(ft)1+1 0+i

,

(28)

where we have written the later in terms of the ma-
trix elements (or ft values) of single-� decays or charge-
exchange reactions, calculated in Sec. IV.

How good is the SSD approximation for 2⌫�� decay?
First we focus on transitions to the ground state of the
final nucleus. We can estimate the associated uncer-
tainty within the EFT assuming that the low-lying 1+

states of an odd-odd system are described as either mul-
tiphonon or single-particle excitations. For multiphonon-
excitation states the energies and GTmatrix elements are
expected to scale as

E(1+n+1)
EFT⇠ E(1+1 ) + n! , (29)

MGT

�
0+gs ! 1+n+1

� EFT⇠
⇣!
⇤

⌘n/2
MGT

�
0+gs ! 1+1

�
, (30)

according to the power counting introduced in Eq. (19).
If we assume similar scalings for the states dominated by
single-particle excitations, the uncertainty in the 2⌫��

decay matrix element scales as

�M2⌫
GT(0

+
gs ! 0+gs)

EFT⇠
X

n=1

⇣!
⇤

⌘n MGT(1
+
1 ! 0+gs)MGT(0+gs ! 1+1 )

(D11 + n!)/mec2

=
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
M2⌫

GT(0
+
gs ! 0+gs) ,

(31)

where the function

�(z, s, a) ⌘
1X

n=0

zn

(a+ n)s
, (32)

is the Lerch transcendent. The relative uncertainty � is

�(gs ! gs) =
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
. (33)

Whether the uncertainty due to the SSD approximation
is smaller or larger than the uncertainty associated with
the order at which the matrix elements are being calcu-
lated depends on the energy scales !, ⇤ and D11.
Similarly to single-� decays, we can also calculate

within the EFT the matrix elements for 2⌫�� decays
into 0+2 excited states. Figure 4 shows a diagram with
the relevant energy scales of the nuclei involved. In this
case the SSD approximation is not expected to work so
well, because the second and third terms in the sum

M2⌫
GT(0

+
gs ! 0+2 ) =

X

n=1

MGT(1+n ! 0+2 )MGT(0+gs ! 1+n )

Dn2/mec2
,

(34)
contain the same number of d operators as the first term.
Thus, based on the power counting in Eq. (19), the first
three terms are expected to scale similarly. Nevertheless,
if only the first term in Eq.(34) is taken into account, the
2⌫�� decay matrix element takes the approximate form

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

MGT(1+gs ! 0+2 )MGT(0+gs ! 1+1 )

D12/mec2

⇡D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) , (35)

with the relative uncertainty

�(gs ! 0+2 ) =
D12

D22
+

D12

D32
+

D12

⇤
�

✓
!

⇤
, 1,

D32 + !

!

◆
.

(36)
We can reduce this relative uncertainty assuming that

the contributions due to the first three terms are in phase.
This yields the following matrix element

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

✓
1 +

D12

D22
+

D12

D32

◆

⇥D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) ,

(37)

and the reduced relative uncertainty

�(gs ! 0+2 ) =
!

⇤

✓
D12

D22
+

D12

D32

◆
+
D12

⇤
�

✓
!

⇤
, 1,

D32 + !

!

◆
.

(38)
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FIG. 4. Energy scales entering in the description of the 2⌫��
decay matrix elements from the parent 100Mo to the ground
and first excited state of the daughter 100Ru.
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expected to scale as

E(1+n+1)
EFT⇠ E(1+1 ) + n! , (29)

MGT

�
0+gs ! 1+n+1

� EFT⇠
⇣!
⇤

⌘n/2
MGT

�
0+gs ! 1+1

�
, (30)

according to the power counting introduced in Eq. (19).
If we assume similar scalings for the states dominated by
single-particle excitations, the uncertainty in the 2⌫��

decay matrix element scales as

�M2⌫
GT(0

+
gs ! 0+gs)

EFT⇠
X

n=1

⇣!
⇤

⌘n MGT(1
+
1 ! 0+gs)MGT(0+gs ! 1+1 )

(D11 + n!)/mec2

=
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
M2⌫

GT(0
+
gs ! 0+gs) ,

(31)

where the function

�(z, s, a) ⌘
1X

n=0

zn

(a+ n)s
, (32)

is the Lerch transcendent. The relative uncertainty � is

�(gs ! gs) =
D11

⇤
�

✓
!

⇤
, 1,
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Whether the uncertainty due to the SSD approximation
is smaller or larger than the uncertainty associated with
the order at which the matrix elements are being calcu-
lated depends on the energy scales !, ⇤ and D11.
Similarly to single-� decays, we can also calculate

within the EFT the matrix elements for 2⌫�� decays
into 0+2 excited states. Figure 4 shows a diagram with
the relevant energy scales of the nuclei involved. In this
case the SSD approximation is not expected to work so
well, because the second and third terms in the sum

M2⌫
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+
gs ! 0+2 ) =

X

n=1

MGT(1+n ! 0+2 )MGT(0+gs ! 1+n )

Dn2/mec2
,

(34)
contain the same number of d operators as the first term.
Thus, based on the power counting in Eq. (19), the first
three terms are expected to scale similarly. Nevertheless,
if only the first term in Eq.(34) is taken into account, the
2⌫�� decay matrix element takes the approximate form

M2⌫
GT(0

+
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We can reduce this relative uncertainty assuming that

the contributions due to the first three terms are in phase.
This yields the following matrix element
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+
gs ! 0+2 ) ⇡

✓
1 +
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D22
+

D12

D32

◆

⇥D11

D12

MGT(1
+
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MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) ,
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and the reduced relative uncertainty

�(gs ! 0+2 ) =
!

⇤

✓
D12

D22
+

D12

D32

◆
+
D12

⇤
�

✓
!

⇤
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!

◆
.
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How good is the SSD approximation for 2⌫�� decay?
First we focus on transitions to the ground state of the
final nucleus. We can estimate the associated uncer-
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where we have written the later in terms of the ma-
trix elements (or ft values) of single-� decays or charge-
exchange reactions, calculated in Sec. IV.

How good is the SSD approximation for 2⌫�� decay?
First we focus on transitions to the ground state of the
final nucleus. We can estimate the associated uncer-
tainty within the EFT assuming that the low-lying 1+

states of an odd-odd system are described as either mul-
tiphonon or single-particle excitations. For multiphonon-
excitation states the energies and GTmatrix elements are
expected to scale as

E(1+n+1)
EFT⇠ E(1+1 ) + n! , (29)

MGT

�
0+gs ! 1+n+1

� EFT⇠
⇣!
⇤

⌘n/2
MGT

�
0+gs ! 1+1

�
, (30)

according to the power counting introduced in Eq. (19).
If we assume similar scalings for the states dominated by
single-particle excitations, the uncertainty in the 2⌫��

decay matrix element scales as

�M2⌫
GT(0

+
gs ! 0+gs)

EFT⇠
X

n=1

⇣!
⇤

⌘n MGT(1
+
1 ! 0+gs)MGT(0+gs ! 1+1 )

(D11 + n!)/mec2

=
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
M2⌫

GT(0
+
gs ! 0+gs) ,

(31)

where the function

�(z, s, a) ⌘
1X

n=0

zn

(a+ n)s
, (32)

is the Lerch transcendent. The relative uncertainty � is

�(gs ! gs) =
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
. (33)

Whether the uncertainty due to the SSD approximation
is smaller or larger than the uncertainty associated with
the order at which the matrix elements are being calcu-
lated depends on the energy scales !, ⇤ and D11.
Similarly to single-� decays, we can also calculate

within the EFT the matrix elements for 2⌫�� decays
into 0+2 excited states. Figure 4 shows a diagram with
the relevant energy scales of the nuclei involved. In this
case the SSD approximation is not expected to work so
well, because the second and third terms in the sum

M2⌫
GT(0

+
gs ! 0+2 ) =

X

n=1

MGT(1+n ! 0+2 )MGT(0+gs ! 1+n )

Dn2/mec2
,

(34)
contain the same number of d operators as the first term.
Thus, based on the power counting in Eq. (19), the first
three terms are expected to scale similarly. Nevertheless,
if only the first term in Eq.(34) is taken into account, the
2⌫�� decay matrix element takes the approximate form

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

MGT(1+gs ! 0+2 )MGT(0+gs ! 1+1 )

D12/mec2

⇡D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) , (35)

with the relative uncertainty

�(gs ! 0+2 ) =
D12

D22
+

D12

D32
+

D12

⇤
�

✓
!

⇤
, 1,

D32 + !

!

◆
.

(36)
We can reduce this relative uncertainty assuming that

the contributions due to the first three terms are in phase.
This yields the following matrix element

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

✓
1 +

D12

D22
+

D12

D32

◆

⇥D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) ,

(37)

and the reduced relative uncertainty

�(gs ! 0+2 ) =
!

⇤

✓
D12

D22
+

D12

D32

◆
+
D12

⇤
�

✓
!

⇤
, 1,

D32 + !

!

◆
.

(38)
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FIG. 4. Energy scales entering in the description of the 2⌫��
decay matrix elements from the parent 100Mo to the ground
and first excited state of the daughter 100Ru.
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where we have written the later in terms of the ma-
trix elements (or ft values) of single-� decays or charge-
exchange reactions, calculated in Sec. IV.

How good is the SSD approximation for 2⌫�� decay?
First we focus on transitions to the ground state of the
final nucleus. We can estimate the associated uncer-
tainty within the EFT assuming that the low-lying 1+

states of an odd-odd system are described as either mul-
tiphonon or single-particle excitations. For multiphonon-
excitation states the energies and GTmatrix elements are
expected to scale as

E(1+n+1)
EFT⇠ E(1+1 ) + n! , (29)

MGT

�
0+gs ! 1+n+1

� EFT⇠
⇣!
⇤

⌘n/2
MGT

�
0+gs ! 1+1

�
, (30)

according to the power counting introduced in Eq. (19).
If we assume similar scalings for the states dominated by
single-particle excitations, the uncertainty in the 2⌫��

decay matrix element scales as

�M2⌫
GT(0

+
gs ! 0+gs)

EFT⇠
X

n=1
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⇤

⌘n MGT(1
+
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=
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, 1,
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M2⌫

GT(0
+
gs ! 0+gs) ,

(31)

where the function

�(z, s, a) ⌘
1X

n=0

zn

(a+ n)s
, (32)

is the Lerch transcendent. The relative uncertainty � is

�(gs ! gs) =
D11

⇤
�

✓
!

⇤
, 1,

D11 + !

!

◆
. (33)

Whether the uncertainty due to the SSD approximation
is smaller or larger than the uncertainty associated with
the order at which the matrix elements are being calcu-
lated depends on the energy scales !, ⇤ and D11.
Similarly to single-� decays, we can also calculate

within the EFT the matrix elements for 2⌫�� decays
into 0+2 excited states. Figure 4 shows a diagram with
the relevant energy scales of the nuclei involved. In this
case the SSD approximation is not expected to work so
well, because the second and third terms in the sum

M2⌫
GT(0

+
gs ! 0+2 ) =

X

n=1

MGT(1+n ! 0+2 )MGT(0+gs ! 1+n )

Dn2/mec2
,

(34)
contain the same number of d operators as the first term.
Thus, based on the power counting in Eq. (19), the first
three terms are expected to scale similarly. Nevertheless,
if only the first term in Eq.(34) is taken into account, the
2⌫�� decay matrix element takes the approximate form

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

MGT(1+gs ! 0+2 )MGT(0+gs ! 1+1 )

D12/mec2

⇡D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) , (35)

with the relative uncertainty

�(gs ! 0+2 ) =
D12

D22
+

D12

D32
+

D12

⇤
�

✓
!

⇤
, 1,

D32 + !

!

◆
.

(36)
We can reduce this relative uncertainty assuming that

the contributions due to the first three terms are in phase.
This yields the following matrix element

M2⌫
GT(0

+
gs ! 0+2 ) ⇡

✓
1 +

D12

D22
+

D12

D32

◆

⇥D11

D12

MGT(1
+
1 ! 0+2 )

MGT(1
+
1 ! 0+gs)

M2⌫
GT(0

+
gs ! 0+gs) ,

(37)

and the reduced relative uncertainty

�(gs ! 0+2 ) =
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⇤

✓
D12
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✓
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⇤
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D32 + !

!

◆
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Summary	and	outlook

We	studied	single-𝛽 and	2𝜈𝛽𝛽 decays	within	a	collective	EFT	
• Matrix	elements	for	single-𝛽 decays	to	the	ground	and	excited	states	of	spherical	nuclei	

can	be	consistently	described	within	an	EFT	that	describes	the	later	systems	as	even-even	
collective	cores	coupled	to	an	additional	neutron	and/or	proton

• Matrix	elements	for	2𝜈𝛽𝛽 decays	calculated	within	the	SSD	approximation	consistently	
describe	observed	decays	when	the	theoretical	uncertainty	estimate	is	taken	into	account

• NLO	corrections	to	the	Hamiltonian	for	the	odd-odd	system	and	the	effective	GT	operator	
are	expected	to	decrease	the	uncertainty	by	a	factor	of	1/3.	These	corrections	are	feasible

FUTURE	GOAL
• Calculate	matrix	elements	for	0𝜈𝛽𝛽 decays	with	uncertainty	estimates.	This	would	require	

us	to	write	the	corresponding	operators	in	terms	of	the	effective	degrees	of	freedom.	
Since	there	is	no	available	experimental	data	the	LECs	to	other	nuclear	structure	
calculations,	or	highly	correlated	data
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