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Some motivating questions
Can we understand the general form of effective operators independent of detailed 
implementation (SRG, OLS, Vlowk, UCOM,…)? Does it buy us anything?

What state/system independent aspects of NME in A-body systems that can be 
informed/extracted by few-body calculations? 

Is there a way to identify/understand correlations between different observables? 
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Disclaimer:

Anderson, SKB et al., PRC 82 (2010)

SKB and Roscher, PRC 86 (2012)

But see recent generalizations of Barnea, Bazak, Weiss, et al. 
PRL 114 (2015)         arXiv:1612.00923

PRC  92 (2015)         arXiv:1705.02592




quasi-exact methods

(QMC, NCSM)


limited to p-shell

Progress in Ab Initio Calculations



Progress in Ab Initio Calculations

Explosion of methods with polynomial 
scaling (CC, IMSRG, SCGF, MBPT)

Enabled  by “soft” NN and NNN 
interactions (chiral EFT, RG 
transformations) 



Renormalization Group Methods
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Bogner, Furnstahl, Schwenk, Prog. Part. Nucl. Phys. 65 (2010)

Folklore => @ low Λ simple Ψ(Λ) ==> complicated O(Λ) ? 

What about large q >> Λ  operators?  

How do interpretations change with Λ?  



Basic Problem
• Goal: Extract nuclear properties 

from experiments and predict 
them from theory 

•                                       d

•      s

• Factorization to isolate 
components and extract 
process-independent 
properties 
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e.g., nucleon knockout reaction
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Analogy with DIS in QCD

• Separation not unique, depends on 
the scale μf

• Form factor F2 independent of μf but 
pieces not

• fa(x, μf) runs with μf2 = Q2, but is 
process independent

• When does factorization hold? 

• What is the scale/scheme 
dependence of extracted props?

• Can we extract at one scale and 
evolve to another? 

• Scale/scheme dependence of 
interpretations? 

• Structure of evolved operators?

hard scale
factorization

long-distance
parton density

short-distance
Wilson coefficient

High-E QCD Low-E Nuclear
Observable:
cross section

Structure model:
spectroscopic factor

Reaction model:
 single-particle
 cross section

Open Questions



Ground rules
• Want to understand form of effective operators without 

getting bogged down in a particular scheme (OLS, SRG, 
etc.)
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I only assume for low-energy states
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Met by all softening transformations I know of…  



Wave function factorization
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RG doesn’t change long 
distance/IR structure 

Consider low-k components of low-E wf’s for A=2. 

 ⇤0
↵ (p) ⇡ Z⇤ 

⇤
↵(p)

0 1 2 3 4 5

k [fm�1]

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

 
(k

)[
fm

3/
2 ]

 �=1
3S1

 �=2
3S1

 �=1
3D1

 �=2
3D1



Wave function factorization
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Scale separation (Eα << Λ2 << q2)

Consider high-k components of low-E wf’s for A=2. 
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Operator Product Expansion
of wave function a-la Lepage
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Wave function factorization
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Wave function factorization
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Effective operators from w.f. factorization 
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Effective operators from w.f. factorization 
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Now use:

OPE for w.f.’s

O(q, p) ⇡ O(q, 0) + · · ·

IR structure unaltered

Scale separation



Effective operators from w.f. factorization 
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state-independent
high-q physics

depends on operator

state dependent
soft m.e. (low-k)

same for all high-q operators
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Scaling of high momentum operators 
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How does an operator that probes high-momentum w.f. 
components look in a low-momentum effective theory?
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E.g., momentum distribution for q >> Λ

low-E states have the same large-q tails

Generalize to arbitrary A-body states?



Scaling of high momentum tails

Creation/annihilation operators under RG evolution:
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fixed from RGE in A=2 system

SKB and Roscher, PRC 86 (2012)



Scaling of high momentum tails
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Scale separation (Λ << q < Λ0):
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- hard (high q) physics
- Universal (state-indep)
- fixed from A=2

- soft (low-k) m.e.
- same for all high-q probes
- A-dependent scale factor
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Scaling of high momentum tails

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

100

p

N
(p

) /
 A

 

 

A=2, 2−body only
A=3, 2−body only
A=4, 2−body only
A=2, PHQ 2−body only, λ=2
A=3, PHQ 2−body only, λ=2
A=4, PHQ 2−body only, λ=2
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natural explanation why high-q tails scale



Scaling of high momentum tails
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E.g., static structure functions bS(q) = b⇢†(q)b⇢(q)

Universal (state-indep) q-dependence =>  connects few-body and A-body 

State dependence encoded in low-k m.e. => 

linear correlations between observables with
same leading OPE?  (Javier’s talk)
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Scaling of high momentum tails

Factorization of generic high-q operators (schematic)
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operators at 𝚲0 
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string of creation/annihilation operators



Scaling of high momentum tails

Factorization of generic high-q operators (schematic)
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1) Decoupling => only modes p < 𝚲 in α contribute

2) Taylor expand c-# coefficients about p = 0 

     => q-dependence factorizes  
     => state-dependence from soft matrix elements Aα

Scaling if leading term dominates



Conclusions
• Simple decoupling + scale separation arguments 

generically give the form of effective operators softened by 
OLS, SRG, Vlowk,…


• Can we use scaling of A-body tails w.r.t. few-body systems 
to constrain the form of short-distance contributions to 
NME?


• Can we use factorization/OPE-like arguments to identify 
quantities that correlate w/0vBB NME? 


• How do interpretations change as Λ varied by RG 
transformations (See Sushong More’s talk)


