Neutrino magnetic moment, sterile neutrinos and Big Bang Nucleosynthesis

Baha Balantekin University of Wisconsin

INT July 11, 2017 At lower energies, beyond Standard Model physics is described by local operators

Introduce a magnetic moment operator, $\hat{\mu}$

Example: Neutrino-electron scattering via magnetic moment

$$\sigma \propto \sum_{i} \left| \left\langle \mathbf{v}_{i} | \hat{\mu} | \mathbf{v}_{e} \right\rangle \right|^{2} = \left\langle \mathbf{v}_{e} | \hat{\mu}^{\dagger} \hat{\mu} | \mathbf{v}_{e} \right\rangle$$

Dirac magnetic moment
$$\hat{\mu}^{\dagger} = \hat{\mu}$$

Majorana magnetic moment
$$\hat{\mu}^{T} = -\hat{\mu}$$

The matrix representation of this operator is best given in the mass basis

$$\delta m^2 - m_i^2 - m_j^2$$
$$A = s - m_e^2 - m_i^2$$
$$\lambda = A^2 - 4m_e^2 m_i^2$$

A reactor experiment measuring electron antineutrino magnetic moment is an inclusive one, i.e. it sums over all the neutrino final states

$$\frac{d\sigma}{dT_e} = \frac{\alpha^2 \pi}{m_e^2} \mu_{\text{eff}}^2 \left[\frac{1}{T_e} - \frac{1}{E_v} \right]$$
$$\mu_{\text{eff}}^2 = \sum_i \left| \sum_j U_{ej} e^{-iE_j L} \mu_{ji} \right|^2$$

$$\frac{d\sigma}{dT} = \frac{G_F^2 m_e}{2\pi} \left[\left(g_V + g_A \right)^2 + \left(g_V - g_A \right)^2 \left(1 - \frac{T}{E_v} \right)^2 + \left(g_A^2 - g_V^2 \right) \frac{m_e T}{E_v^2} \right]$$
 weak
$$+ \frac{\pi \alpha^2 \mu^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_v} \right)$$
 magnetic

 $g_v = 2 \sin^2 \theta_W + 1/2$

 $g_A = \begin{cases} +1/2 \text{ for electron neutrinos} \\ -1/2 \text{ for electron antineutrinos} \end{cases}$

Neutrino Magnetic Moment in the Standard Model

Standard Model (Dirac)

Physical Processes with a Neutrino Magnetic Moment

A large enough neutrino magnetic moment implies enhanced plasmon decay rate: $\gamma \rightarrow vv$. Since the neutrinos freely escape the star, this is turn cools

a red giant star faster delaying helium ignition.

Globular cluster M5 → µ_v < 4.5 × 10⁻¹² µ_B (95% C.L.)

arXiv:1308.4627

Neutrino magnetic moment may impact stellar evolution

Heger, Friedland, Giannotti and Cirigliano, Astrophys.J. 696, 608 (2009)

Ionization rate

Contours of constant Y_P

The change in the BBN abundances due to the neutrino magnetic moment

Solid lines:
$$\mu_{e\tau} = 10^{-11} \mu_B$$

black: $\mu_{\mu\tau} = 10^{-11} \mu_B$
red: $\mu_{\mu\tau} = 4 \times 10^{-10} \mu_B$
blue: $\mu_{\mu\tau} = 6 \times 10^{-10} \mu_B$

Dashed lines: $\mu_{e\tau} = 6 \times 10^{-10} \mu_B$ black: $\mu_{\mu\tau} = 10^{-11} \mu_B$ red: $\mu_{\mu\tau} = 4 \times 10^{-10} \mu_B$ blue: $\mu_{\mu\tau} = 6 \times 10^{-10} \mu_B$

Vassh, Grohs, Balantekin, Fuller, arXiv:1510.0042

$$\rho_{\text{relativistic}} = \frac{\pi^2}{15} T_{\gamma}^4 \left[1 + \frac{7}{8} N_{\text{effective}} \left(\frac{4}{11} \right)^{4/3} \right]$$

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH², ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIN², AND SCOTT W. RANDALL¹

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.
² NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Submitted to ApJ, 2014 February 10

100 Flux (cnts s⁻¹ keV⁻¹) XMM - MOS + . Hut. Perseus (with core) Diffuse X-ray Background 317 ks Cluster X-ray M31 0.3 0.2 Residuals Unresolved CXB 10 0.1 Milky Way $m_{\rm s} \; [{\rm keV}]$ -0.1 BMW -0.2 Eff. Area (cm²) 310 305 Calor 1 ³⁰⁰ ⊑ 3 100-300 pc Fornax Core 3.8 3.2 3.4 3.6 Energy (keV) Tremaine-Gunn Bound 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} See also : arXiv:1204.5477 [hep-ph],

 $\sin^2 2\theta$

F. Bezrukov, A. Kartavtsev, M. Lindner

"The reactor anomaly"

Then comes the bump!

0.6

0.4 0.2

0.2

9

Does the reactor-flux anomaly imply active-sterile neutrino mixing?

Does the reactor-flux anomaly imply active-sterile neutrino mixing?

 β -decays of many isotopes in a reactor are more complicated than we assumed:

Neutrino wave function:

$$e^{ikx} = \underbrace{1}_{\text{allowed app.}} + \underbrace{ikx}_{\text{first forbidden}} + \frac{1}{2} \underbrace{(ikx)^2}_{\text{second forbidden}} + \dots$$

Questions about sterile neutrinos in no specific order

• Is there any \overline{v}_{μ} disapperance?

- Do both reactor and non-reactor v
 e[']s disappear?
 Is there visible oscillatory behavior?
 Can the sterile nature of the new flavors be established
 - without recourse to the Z width?
 - Is there any associated CP violation?

Oscillatory behavior of the neutral-current event rate, would establish, without recourse to the Z-width, oscillation into sterile flavor(s).

Neutrino Coherent Scattering

$$\begin{split} \nu + A &\to \nu + A \\ \frac{d\sigma}{d\cos\theta} = \frac{G_F^2}{8\pi} \left\{ Z^2 \left(4\sin^2\theta_W - 1 \right) + N \right\}^2 E_\nu^2 (1 + \cos\theta) \\ T_{\text{av. recoil}} = \frac{2}{3A} \left(\frac{E_\nu}{\text{MeV}} \right) \text{keV} \end{split}$$

- First calculated by Freedman.
- This reaction is background to the dark matter searches with nuclear targets.
- Nuclear form factors need to be included. McLaughlin, Engel.
- A calculation for scintillators with the state-of-the-art nuclear interactions is shown on the left.

PROSPECT Collaboration, arXiv:1512.02202

At very close distances to the reactor
and for
$$m_4^2 \ge 1 \text{ eV}^2$$

 $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - 2|U_{e4}|^2 + 2|U_{e4}|^4$

Корр

$$\frac{d\sigma}{dT_e} = \frac{\alpha^2 \pi}{m_e^2} \mu_{\text{eff}}^2 \left[\frac{1}{T_e} - \frac{1}{E_v} \right]$$
$$\mu_{\text{eff}}^2 = \sum_i \left| \sum_j U_{ej} e^{-iE_j L} \mu_{ji} \right|^2$$

For a sufficiently heavy sterile neutrino the phases with $(E_4 - E_i)L$ average to zero $\mu_{eff}^2 = \sum_{i,j=1}^3 \left[U_{ei} \left(\mu \mu^+ \right)_{ij} U_{je}^+ \right] + U_{e4} \left(\mu \mu^+ \right)_{44} U_{4e}^+$

For a sufficiently heavy sterile neutrino the phases with $(E_4 - E_i)L$ average to zero

$$\begin{split} \mu_{eff}^{2} &= \sum_{i,j=1}^{3} \left[U_{ei} \left(\mu \mu^{+} \right)_{ij} U_{je}^{+} \right] + U_{e4} \left(\mu \mu^{+} \right)_{44} U_{4e}^{+} \\ & \Longrightarrow \mu_{eff}^{2} \leq \sum_{i=1}^{3} \mu_{i4}^{2} + \left(1 - \left| U_{e4} \right|^{2} \right) \sum_{i,j=1}^{3} \mu_{ij}^{2} \end{split}$$

Giunti and Zavanin

A positive result would be consistent with 3+1 light active neutrinos and NH, IH, and quasi-degenerate scenario, but not definitive as to mechanism

$$\left|m_{\beta\beta}\right| = \left|\left|U_{e1}\right|^{2} m_{1} + \left|\left|U_{e2}\right|^{2} e^{i\alpha_{2}} m_{2}\right| + \left|\left|U_{e3}\right|^{2} e^{i\alpha_{3}} m_{3}\right| + \left|\left|U_{e4}\right|^{2} e^{i\alpha_{4}} m_{4}\right|\right|$$

Neutrinos from core-collapse supernovae

 $\begin{array}{c} \bullet M_{\rm prog} \geq 8 \ M_{\rm sun} \Rightarrow \Delta E \approx 10^{53} \ {\rm ergs} \approx \\ 10^{59} \ {\rm MeV} \end{array}$

•99% of the energy is carried away by neutrinos and antineutrinos with $10 \le E_v \le 30 \text{ MeV} \implies 10^{58} \text{ neutrinos}$

CP-violation

$$T_{23}T_{13}T_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$c_{ij} = \cos\theta_{ij} \qquad s_{ij} = \sin\theta_{ij}$$

Е

$$\begin{split} i\frac{\partial}{\partial t} \begin{pmatrix} \psi_{e} \\ \tilde{\psi}_{\mu} \\ \tilde{\psi}_{\tau} \end{pmatrix} &= \begin{bmatrix} T_{13}T_{12} \begin{pmatrix} E_{1} & 0 & 0 \\ 0 & E_{2} & 0 \\ 0 & 0 & E_{3} \end{pmatrix} T_{12}^{\dagger}T_{13}^{\dagger} + \begin{pmatrix} V_{e\mu} & 0 & 0 \\ 0 & s_{23}^{2}V_{\tau\mu} & -c_{23}s_{23}V_{\tau\mu} \\ 0 & -c_{23}s_{23}V_{\tau\mu} & c_{23}^{2}V_{\tau\mu} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{e} \\ \tilde{\psi}_{\mu} \\ \tilde{\psi}_{\tau} \end{pmatrix} \\ \tilde{\psi}_{\tau} \end{pmatrix} \\ \tilde{\psi}_{\tau} &= \sin\theta_{23}\psi_{\mu} - \sin\theta_{23}\psi_{\tau} \\ \tilde{\psi}_{\tau} &= \sin\theta_{23}\psi_{\mu} + \cos\theta_{23}\psi_{\tau} \\ V_{e\mu} &= 2\sqrt{2}G_{F}N_{e} \left[1 + O\left(\alpha\frac{m_{\mu}}{m_{W}}\right)^{2} \right] \\ V_{\tau\mu} &= -\frac{3\sqrt{2}\alpha G_{F}}{\pi\sin^{2}\theta_{W}} \left(\frac{m_{\tau}}{m_{W}}\right)^{2} \left[\left(N_{p} + N_{n}\right)\log\frac{m_{\tau}}{m_{W}} + \left(\frac{N_{p}}{2} + \frac{N_{n}}{3}\right) \right] \end{split}$$

We need to solve an evolution equation

 $i\frac{\partial}{\partial t}U = HU$

If we ignore $V_{\tau\mu}$ it is easy to show that the CP-violating phase factorizes:

$$U(\delta) = SU(\delta = 0)S^{\dagger} \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix}$$

This factorization still holds when collective oscillations are include, but breaks down if there is spin-flavor precession

This factorization implies that neither

 $P(v_e \rightarrow v_e)$

nor

$$P(\nu_{\mu} \rightarrow \nu_{e}) + P(\nu_{\tau} \rightarrow \nu_{e})$$

depend on the CP-violating phase δ .

If the ν_{μ} and ν_{τ} luminosities are the same at the neutrinosphere of a core-collapse supernova, this factorization implies that ν_{e} and ν_{e} fluxes observed at terrestrial detectors will not be sensitive to the CP-violating phase! To see its effects you need to measure ν_{μ} and ν_{τ} luminosities separately!

If you see the effects of δ in either charged- or neutral current scattering that may mean any of the following:

- There are new neutrino interactions beyond the standard model operating either within the neutron star or during propagation.
- Standard Model loop corrections (very easy to quantify) are seen.
- There are sterile neutrino states.

Factorization of the CP-violating phase if there are no sterile neutrinos

$$H(\delta) = H_{v} + H_{vv} = \mathbf{S}H(\delta = 0)\mathbf{S}^{\dagger}$$
$$\mathbf{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix}$$

Holds if neutrino magnetic moment is ignored.

- MSW Hamiltonian: Balantekin, Gava, Volpe, Phys. Lett B662, 396 (2008).
- Collective Hamiltonian in the mean-field approximation: Gava, Volpe, Phys. Rev. D78, 083007 (2008).
- Exact collective Hamiltonian: Pehlivan, Balantekin, Kajino, Phys. Rev. D90, 065011 (2014).

Collective oscillations of three flavors with magnetic moment

Neutrinos: $T_{ij}(|\mathbf{p}|,\mathbf{p}) = a_i^{\dagger}(\mathbf{p})a_i(\mathbf{p})$ Antineutrinos: $T_{ii}(-|\mathbf{p}|,\mathbf{p}) = -b_i^{\dagger}(\mathbf{p})b_i(\mathbf{p})$ $H_{vv} = \frac{G_F}{\sqrt{2}V} \sum_{i,j=1}^{3} \sum_{E,\mathbf{p}} \sum_{E',\mathbf{p}'} \left(1 - \cos\theta_{\mathbf{pp}'}\right) T_{ij}(E,\mathbf{p}) T_{ji}(E',\mathbf{p}')$ $\underbrace{H_{v} + H_{vv}}_{\text{with } \delta \neq 0} = S_{\tau}^{\dagger} (\underbrace{H_{v} + H_{vv}}_{\text{with } \delta = 0}) S_{\tau}$ with $\delta \neq 0$

$$\underbrace{H_{v} + H_{vv} + H_{SFP}(\mu)}_{\text{with } \delta \neq 0} = S_{\tau}^{\dagger} \left(\underbrace{H_{v} + H_{vv} + H_{SFP}(\mu_{eff})}_{\text{with } \delta = 0} \right) S_{\tau}$$

$$\mu_{eff} = S_{\tau}^{\dagger} \mu S_{\tau} = \begin{pmatrix} 0 & \mu_{12} & \mu_{13} e^{i\delta} \\ -\mu_{12} & 0 & \mu_{23} e^{i\delta} \\ -\mu_{13} e^{i\delta} & -\mu_{23} e^{i\delta} & 0 \end{pmatrix}$$
Pehlivan *et al.*, Phys. Rev.D 90, 065011 (2014)

