

JETS IN STRONGLY COUPLED PLASMA

PART 1: TRANSLATING VACUUM QCD TO ADS/CFT

with Jasmine Brewer, Krishna Rajagopal and Andrey Sadofyev 1602.04187, to appear

OUTLINE

Introduction and interesting jet observables

- Jet width, $C_1^{(\alpha)}$ and jet shapes
- Some background (literally)

A perturbative initial state

- Creation of jet is well described by perturbative QCD
- Interaction with plasma requires strong coupling
- Quark-antiquark has clear AdS dual: fundamental string
- Mimic ensemble of strings to match perturbative QCD

Strongly coupled evolution

- Shoot ensemble through expanding and cooling black hole
- \rightarrow Andrey

JETS IN QGP

JET ESSENTIALS

A priori: event with set of particles

- Define jet using a jet finding algorithm
- anti-k_T: group particles around energetic cores

Measurement consists of n-point function of energy flow:

- Measure energy flow (direction)
- 1-point function:

$$p_T^{\rm jet} \simeq \sum_i p_{Ti}$$

• Rescale energies: z_i

$$z_i \equiv \frac{p_{Ti}}{\sum_j p_{Tj}}$$

- Becomes trivial: $e_1 = \sum z_i = 1$
- Interesting substructure in higher point functions

JET ESSENTIALS

2-point Correlators

2-point:
$$e_2^{(eta)} = \sum_{i < j} oldsymbol{z}_i oldsymbol{z}_j heta_{ij}^eta$$

Similar information to radial moments

[see also Berger, Kucs, Sterman, hep-ph/0303051; Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 1401.2158; Larkoski, JDT, Waalewijn, 1408.3122; Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Jesse Thaler — Jet Substructure from Protons to Ions

Also works with energy distributions as opposed to only particles (z_g)

Jet shapes, jet width depend on jet axis

More non-linear than 2-point function

Find jets using anti k_{T}

• Can be interesting to look at different jet radius R (different colours)

evnt	R	i	рТ	У	phi	mult	chgmult	photons	hardest	pTinneutral
2852864	1.	0	244.398	-0.974	-0.284	74	39	31	pi+	41.581
2852864	1.	1	111.52	-0.321	2.526	28	12	14	pi-	6.121
2852864	1.	2	101.157	-2.297	2.87	46	21	21	gamma	6.055
2852864	1.	3	47.922	-1.289	-2.444	26	15	7	pi+	8.193

Can now study correlation $C_1^{(1)}$ and jet width:

- Relatively high p_T means relatively narrow jets
- Can also be compared to analytic formula (see Andrey's talk also)

Ready to look at jet shapes, energy around axis, decomposed

• There is a problem at larger radii: background subtraction in pp! 3rd jet

CMS, Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions (2016)

Ready to look at jet shapes, energy around axis, decomposed

• There is a problem at larger radii: background subtraction in pp! 3rd jet

10/20

09

08

Wilke van der Schee, MIT/Utrecht

JET ESSENTIALS – SHAPES SUB

Ready to look at jet shapes, energy around axis, decomposed

• There is a problem at larger radii: background subtraction in pp! 3rd jet

11/20

FUN FACT

Jet axis and hence jet shapes not very well behaved observable

- Particle `at the edge' shifts axis, changes jet shape
- Plot jet shape for different R:

RECAP JET SHAPES

Jet shapes are somewhat complicated, especially at large *r*

- In AA we have to subtract background, same way in pp
- Background can however be correlated, 3rd jet in pp
 - If 3rd jet is modified in QGP then this affects jet shape modification
- Cleaner observables, as $C_1^{(1)}$, but not as intuitive + similar issues

Interesting observable: jet shape modifications:

HOLOGRAPHIC STUDIES WITH REAL DATA

J. Casalderrey, D. Can Gulhan, J. Guilherme Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching R. Morad, W.A. Horowitz, Strong-coupling Jet Energy Loss from AdS/CFT (2014) A. Ficnar, S.S. Gubser and M. Gyulassy, Shooting String Holography of Jet Quenching at RHIC and LHC (2013)

ADS/CFT VISCOSITY REVISITED?

New experimental estimate for shear viscosity QGP: $\eta/s = 0.03 - 0.09$

Skipping/stressing many caveats applying N=4 SYM to QCD:

- Infinite coupling limit (QCD = intermediate coupling?)
- SYM vs YM, no confinement, what to collide?, jet production?

Idea: get strong coupling benchmark/intuition + improve model

JET PRODUCTION

Typical philosophy:

- Jet is result of hard event, as prescribed in pQCD
- Energy loss, through soft modes, and non-perturbative
- Understood quite precisely: energy fallen into horizon = thermalised

In AdS/CFT: jet = (classical) string

- Create string (quark-antiquark pair) with `jet-like' properties
 - Problem: initial condition string is 2 functions (position, velocity)

P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma (2008)

Wilke van der Schee, MIT/Utrecht

IN AN IDEAL WORLD

Use MadGraph to simulate hard creation of 3 partons:

+1390 other diagrams

Extract distributions of energies and angles:

Try and create string ensemble that looks behaves similarly

STRING PROFILE

Back-to-back string evolution

- Try several initial profiles
- Endpoint angle and energy determine profile
- Can change when considering 3D evolution (Andrey)

 This can reasonably model a single jet, with opening angle determined by C₁⁽¹⁾

LINKING STRINGS TO JET SHAPE

Construct the string ensemble

- Take representative curve from previous slide
- Energy distribution from QCD (E⁻⁶)
- Endpoint angle distributed as jet width distribution (pQCD or Pythia)
 - Free parameter needs to be fixed
- Compute jet shape (AdS/CFT prescription)
- Compare with CMS to fix parameter

DISCUSSION

Review of jet observables

• Jet shapes have some subtleties, especially 3rd jet at intermediate r

Constructing an ensemble of jets

- Strings are dual to quark-antiquark
- Obtain initial ensemble of jets from pQCD (or Pythia)
 - → construct ensemble of strings

Now ready to study strongly coupled interaction with plasma (Andrey)

- Shoot ensemble through plasma (black hole)
- How does the ensemble change?

Outlook

- Use R-differentiated measurement to distinguish narrow/wide jets? (Peter Jacobs)
- Finite coupling corrections in more realistic settings?