Calibrating parton energy loss

Or: what does energy loss tell us about the medium density?

Marco van Leeuwen, Nikhef, Utrecht University, CERN

Ingredients for a 'realistic' energy loss calculation

- (N)LO particle production calculation
 - PDFs, matrix elements, FF; keep track for quark and gluon jets
- Geometry: full hydro
 - Expanding Glauber probably accurate for RAA
 - Event-to-event fluctuations likely important for v_2
- Energy loss model (BDMPS, GLV, HT, LBT etc)
 - For leading hadrons: fragmentation after energy loss is a good start
 - Include fluctuations

This talk: focus on single hadrons/di-hadrons

Can use independent fragmentation

Minimal set of ingredients depends on observable Jet observables require full shower or sophisticated analytical description

RHIC and LHC

Systematic comparison of energy loss models with data Medium modelled by Hydrodynamics (2+1D, 3+1D) p_{T} dependence matches reasonably well

Summary of transport coefficient study

Arnold and Xiao, arXiv:0810.1026

HTL expectation: $\hat{q} \approx 24 \alpha_s^2 T^3 \approx 2 T^3$

Sizeable uncertainties from $\alpha_{\rm S}$, treatment of logs etc expected

Values found are in the right ballpark compared (p)QCD estimate Magnitude of parton energy loss is understood

The fly in the ointment ?

Similar fit to the data, as the JET paper, but using multiple-soft equations

 $\hat{q} = 2 K \epsilon^{3/4}$ **Hirano RHIC** $\hat{\mathbf{q}}(\tau) = \hat{\mathbf{q}}(\tau_0), \ \tau < \tau_0$ 3.0 **fKLN RHIC Glauber RHIC** $\frac{1}{3}$ $\alpha_S =$ Hirano LHC 2.5 **fKLN LHC** $K = \hat{q}/2\epsilon^{3/4}$ **Glauber LHC** pQCD expectation: K = 1 (by definition) 1.5 1.0 10 12 6 8 2 4 $\epsilon \tau_0 ~(\text{GeV/fm}^2/\text{c})$

Medium: Hydrodynamics; Hirano, Luzum&Romatschke

Armesto et al, arXiv:1606.04837

Large difference between scale factor at RHIC and LHC

Comparison to LBT

Cao, et al, arXiv:1703.000822

Factor ~1.5 between LBT fits and JET values; probably within uncertainties Heavy+light energy loss

Relating qhat to medium density, or T

There are sizeable factors of uncertainty in relation $\hat{q}(T)$

degrees of freedom

• q_T cut-off

Some of these are intrinsic uncertainties, some are convenience When comparing values from different authors, need to check what was used Ideally: use same convention when comparing calculations

Reminder: energy loss calculation uncertainties

Brick report; arXiv:1106.1106

Medium-induced radiation

Four formalisms

Multiple gluon emission

• Hard Thermal Loops (AMY)

- Dynamical (HTL) medium
- Single gluon spectrum: BDMPS-Z like path integral
- No vacuum radiation

Multiple soft scattering (BDMPS-Z, ASW-MS)

- Static scattering centers
- Gaussian approximation for momentum kicks
- Full LPM interference and vacuum radiation

Opacity expansion ((D)GLV, ASW-SH)

- Static scattering centers, Yukawa potential
- Expansion in opacity L/λ
 - (N=1, interference between two centers default)
- Interference with vacuum radiation
- Higher Twist (Guo, Wang, Majumder)
 - Medium characterised by higher twist matrix elements
 - Radiation kernel similar to GLV
 - Vacuum radiation in DGLAP evolution

Fokker-Planck rate equations

Poisson ansatz (independent emission)

DGLAP evolution

Large angle radiation

Gluon momentum k (GeV) V)

Calculated gluon spectrum extends to large k_{\perp} at small k Outside kinematic limits

GLV, ASW, HT cut this off 'by hand'

Effect of large angle radiation

Different large angle cut-offs: $k_T < \omega = x_E E$ $k_T < \omega = 2 x_+ E$

Factor ~2 uncertainty from large-angle cut-off

Energy loss distributions

L-dependence; regions of validity?

(ignores 'hard tail' of scatt potential)

Comparison with Higher Twist formalism

Higher Twist formalism works at the level of fragmentation functions; need to fold other results with fragmentation to compare

Suppression at same rough level, different shapes

AM, MvL, arXiv:1002.2206

Energy loss formalisms

- Differences and similarities between formalisms understood/ categorised
 - Large angle cut-off
 - Length dependence (interference effects)
- Mostly (?) 'technical' issues; can be overcome
 - Use path-integral formalism
 - Monte Carlo: exact E, p conservation
 - Full 2→3 NLO matrix elements
 - Include interference

The v₂ 'problem'

Most likely a subtle issue; many ingredients Corollary: cannot get away with partial modelling for v₂

CUJET

GLV-based E-loss

$a_{\rm S}$ runs, with cut-off at low Q

$$lpha_s \; \longrightarrow \; lpha_s(Q^2) = egin{cases} lpha_{max} & ext{if } Q \leq Q_{min} \; , \ rac{2 \; \pi}{9 \; \log(Q/\Lambda_{QCD})} & ext{if } Q > Q_{min} \; . \end{cases}$$

Cut-off is the main model parameter

Standard settings underpredict v2

Black dashed line: $\alpha_{max} \, {\rm depends} \, {\rm on} \, \phi - \Psi$ Adds ${\rm v_2}$ 'by hand'

CUJET

However, see also: CUJET3.0 Xu et al, arXiv:1509.00552

High-p_T v_2 , R_{AA} in and out of plane

RHIC

Predicted v₂ is quite sensitive to hydro settings

Needs a somewhat systematic exploration to understand whether this can constrain energy loss models and/or geometry/hydro

Noronha-Hostler et al: fluctuations

Noronha-Hostler et al, arXiv:1602.03788

Fluctuations bias v₂

NB: no energy loss fluctuations; not so clear how geometry was implemented (L)

Model(ing) uncertainties for high- $p_T v_2$

- Initial time/treatment
- Freeze-out temperature/treatment
- Length sampling in a non-uniform medium
- Event-by-event fluctuations

When reporting a model/calculation; make sure to specify these things

Length sampling

- Energy loss scales with L² —> not easy to come up with a local prescription
- · Gives trouble in 'medium averages'
 - e.g. for non-uniform medium, L is not unique (where do you stop)

Common prescription for BDMPS-MS:

$$\omega_c = \frac{1}{2}\hat{q}L^2 \qquad \qquad \omega_c^{eff} = \int_0^{x_{max}} dx \, x \, \hat{q}(x)$$

However, also need R (related to large angle cut-off) $R = \omega_c L$

Similar for GLV, need L/lambda and mu

Probably not a fundamental issue, but needs care/need to specify what is used

Alternative handle on geometry: recoil yields, I_{AA}

associated Ώφ trigger

Di-hadrons at high- p_T : recoil suppression

High- p_T hadron production in Au+Au dominated by (di-)jet fragmentation Suppression of away-side yield in Au+Au collisions: energy loss

Di-hadron yield suppression

Near side: No modification ⇒ Fragmentation outside medium? Away-side: Suppressed by factor 4-5 \Rightarrow large energy loss

Path length II: 'surface bias'

Near side trigger, biases to small E-loss

Away-side large L

Away-side (recoil) suppression I_{AA} samples longer path-lengths than inclusive, R_{AA}

Can be modelled with the same tools as inclusive particle production

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil)

Di-hadron modeling

Model 'calibrated' on single hadron R_{AA}

L² (ASW) fits data L³ (AdS) slightly below

Clear sensitivity to L dependence

L (YaJEM): too little suppression *L*² (YaJEM-D) slightly above

Modified shower generates increase at low z_T

Surface bias vs fluctuations T. Renk, arXiv:1212.0646

Surface bias differs between probes: largest for hadrons and energy/collider: stronger at RHIC

28

Di-hadrons and single hadrons at LHC

R_AA ALICE Preliminary ALICE h^{\pm} 0-5% Pb+Pb √s_{NN}=2.76 TeV Renk ASW Need simultaneous comparison to 0.8 Renk YaJEM several measurements Renk YaJEM-D to constrain geometry and E-loss 0.6 0.4 Here: R_{AA} and I_{AA} 0.2 0 10 20 30 40 50 р_т (GeV) A A A A A 0-5% Pb+Pb ALICE, arXiv:1110.0121 $8 < p_{\tau}^{trig} < 15 \text{ GeV}$ Three models: 1.5 1.5 **ASW**: radiative energy loss YaJEM: medium-induced virtuality **YaJEM-D**: YaJEM with L-dependent virtuality cut-off (induces L²) ALICE (v bkg) 0.5 0.5 Renk ASW Renk YaJEM --- Renk YaJEM-D 10 8 2 8 10 6 6 p_T^{assoc} (GeV) p_{τ}^{assoc} (GeV)

Di-hadron with high- p_T trigger

 $p_t^{trig} > 20 \text{ GeV}$ at LHC: strong signals even at low p_T^{assoc} 1-3 GeV

CMS-PAS-HIN-12-010

CMS di-hadrons: near side

CMS di-hadrons: away side

Transition enhancement \rightarrow suppression @ p_T ~ 2 GeV

Heavy flavour

Heavy flavour *R_{AA}*; mass dependence

ALICE, JHEP11, 205

Heavy flavour

MC@sHQ Boltzmann transport MC

Heavy flavour well captured by models (*v*₂ may be under predicted, like for light flavour)

T vs t in EPOS/MC@HQ

Medium parameters in MC@HQ agree well with light flavour fits

Q: how does the relation $\Delta E(T)$ compare?

Heavy Flavour diffusion coefficients

Duke fit: *R*_{AA}, *v*₂, RHIC+LHC Y Xu, Quark Matter 2017 STAE D⁶, 0-109 STAR D*, 10-00% STARD*, 0-80% 0.2 Aug 200 GeV 0.05 4 5 PT [GeV] 6 PT [GeV] p_T [GeV] ALCE D⁰, D⁴, D⁴ ALICE D⁰, D¹, D¹⁺ ALICE D¹, D 03 a c 34 <8 GeV 0.8 SKD1 K ID G81 30-50% Ph+Ph@2.26 TeV 02 Pb+Pb62.76 TeV 3 10 12 1 p_T [GeV] IL DAY

Physical model: Linearized Boltzmann Transport Cao et al, PRC 92, 024907 Comparison of various models/fits

F.Riek,and R.Rapp,H.Ding,A.Francis,O.Kaczmarek,et.al,Phys.Rev.C 82,035201(2010)Phys.Rev.D 86,014509(2012)M.He,R.J.Fries,and R.Rapp,D.Banerjee,S.Datta,R.Gavai,P.Majumdar,Phys.Rev.Lett 11,112301(2013)Phys.Rev.D 85,014510(2012)

First comparisons of heavy flavour transport coefficients Still early days; work needed to understand (dis-)agreements

Relation D_s and \hat{q}

However, perturbative estimate $D_s = 30/2$ pi T —> qhat ~ 0.6 GeV²/fm

Why is the perturbative estimate of D_s so large?

LO: Svetitsky, PRD 37, 2484

Charm v₂, v₃

LHC run 2 data for charm v₂, v₃ becoming very precise

Should revisit the fits with the new data

And compare heavy and light flavour where possible!

Summary

- Magnitude of energy loss understood at the semiquantitative level
 - Several sizable uncertainties in energy loss kernels; would be nice to improve
- Some differences in convention/practice also enter the discussion: a_s, log(E/T), ndf
 - Mixed together with 'intrinsic' uncertainties from soft sector?
 - Can be mostly addressed by agreement on conventions
- A real (semi-)quantative test of our understanding requires multiple observables
 - + R_{AA} , v_2 , di-hadron, light and heavy flavour
 - Takes out some of the 'convention uncertainties'

Thanks for your attention

Heavy flavour 5 TeV

Barbano, QM

No lack of calculations... Only a few describe R_{AA} and v_2 at the same time

Should find out what this tells us about energy loss (modelling)

Density in EPOS/MC@sHQ

Caveats:

- Final value depends energy loss, density for $\tau < 0.6$ fm/c
- Energy loss model not fully benchmarked against BDMPS-Z/GLV

v₂ in Higher Twist

Qin and Majumder, arXiv:0910.3016

Di-hadrons and single hadrons at LHC

Questions about energy loss

- What is the dominant mechanism: radiative or elastic?
 - Heavy/light, quark/gluon difference, L² vs L dependence
- How important is the LPM effect?
 - $L^2 vs L$ dependence
- Can we use this to learn about the medium?
 - Density of scattering centers?
 - Temperature?
 - Or 'strongly coupled', fields are dominant?

Phenomenological questions:

Large vs small angle radiation Mean ΔE ? How many radiations? Virtuality evolution/interplay with fragmentation?

Effects in R_{AA}

Use different observables to disentangle contributions

Summary/conclusion

 Measured R_{AA} is in reasonable agreement with expectations:

 $\hat{q} = 1.9 \pm 0.7 \ GeV^2/fm$ at LHC, $\tau_0 = 0.6 \ fm/c$

- q/T³ \approx 4, HTL expectation \approx 2, so suppression larger than expected Absolute 'calibration' difficult: $\Delta E \propto \alpha_s^3 T^3$
- Other observables also fall in place: v_2 , heavy flavour
- Potential to infer medium density evolution with multiple observables
 - Needs work, theory+experiment
- New tools/directions are being pursued: jets, multiparticle measurements

MC tools: JEWEL

Publicly available Zapp, Krauss, Wiedemann, arXiv:1212.1599

LHC

Elastic+radiative energy loss; follows BDMPS-Z in appropriate limits Medium: Bjorken-expanding Glauber overlap

RHIC

 \mathbf{R}_{AA}

 $T_{\rm i} = 350 \text{ MeV} @ \tau_0 = 0.8 \text{ fm/}c$

 $T_{\rm i} = 530 \text{ MeV} @ \tau_0 = 0.5 \text{ fm/}c$

Good agreement with JET collaboration values

JEWEL jet fragmentation

MC generators allow more differential exploration of jet modification, radiated energy NB: soft radiation model-dependent