

Measurements and calculations of very low $p_T \; J/\psi$ yield in A+A collisions

Wangmei Zha University of Science and Technology of China

INT program INT-17-1b Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks May 1 – June 8, 2017

J/ψ as a sensitive probe of QGP

- Color Screening: the quarkantiquark potential is colorscreened by surrounding partons -> dissociation
 - A smoking gun signature for QGP formation

T. Matsui and H. Satz, PLB 178 (1986) 416

Thermometer: different quarkonia states of different binding energies dissociate at different temperatures -> sequential melting

A. Mocsy EPJC61 (2009) 705

Not that simple --- other effects

Hot medium effects:

 Regeneration
 Recombination of charm quarks

Cold Nuclear Matter effects:
 PDF modification in nucleus
 Initial state energy loss
 Cronin effect
 Nuclear absorption

Final state effect:
✓ Dissociation by co-mover

"Dissociation + Regeneration" picture

The interplay of these effects can explain the results from SPS to LHC!

Photon interactions in A+A

Electromagnetic interaction

interactions

interactions

This large flux of quasi-real photons makes a hadron collider also a photon collider!

Photon-nucleus interactions:

- \succ Coherent: emitted photon interacts with the entire target nucleus.
- Incoherent: emitted photon interacts with nucleon or parton individually.
- Studied in detail for Ultra-Peripheral Collisions.

Quasi-real photons --- Equivalent photon approximation

Coherent limitation: $Q^2 \leq 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \ \overline{q_T}, \omega/\nu)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \leq \omega_{max} \sim \frac{\gamma}{R}$ $q_T \leq 1/R$

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy $W_{\gamma p}$	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV

$$\frac{d^3 N_{\gamma}(\omega, k_{\perp})}{d\omega d^2 k_{\perp}} = \frac{\alpha_{em}^2 Z^2 F^2(\vec{k}) k_{\perp}^2}{\pi^2 (k_{\perp}^2 + \omega^2 / \gamma^2)^2}.$$

Weizsäcker-Williams virtual photon spectrum

Vector meson photon-production

✓ Vector meson production: ✓ chargeless 'Pomeron exchange' ✓ Light meson production usually treated via vector meson dominance model: ρ, direct π⁺π⁻, ω.... ✓ Heavy meson production treated with pQCD:

 J/ψ , ψ ', Y(1S), Y(2S), Y(3S)...

Sensitive to the gluon distribution:

$$\frac{d\sigma(\gamma A \to VA)}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[xG_A(x,Q^2) \right]^2$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} \quad Q^2 = M_V^2/4$$

• Coherently:

- ✓ Both nuclei remain intact
- ✓ Photon/Pomeron wavelength $\lambda = \frac{h}{n} > R_A$
- ✓ $p_T < h/R_A$ ~30 MeV/c for heavy ions
- ✓ Strong couplings ($Z\alpha_{EM} \sim 0.6$) → large cross sections

Interference:

- Two indistinguishable processes (photon from A₁ or A₂)
- ✓ Vector meson → opposite signs in amplitude
- Significant destructive interference for p_T << 1/

J/ψ hadronic production and photoproduction

- \bullet The J/ ψ can be produced via photoproduction
- Conventionally, only in Ultra-Peripheral Collisions (UPC)
 - ✓ UPC conditions: $b > 2R_A$, no hadronic interactions
 - ✓ Both nuclei stay intact
- The strong interactions in hadronic collisions would break the nuclei, destroy the coherent condition

Excess of J/ ψ production at very low p_T with ALICE

- ✓ Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- ✓ Origin from coherent photonnucleus interactions?

Measurement of J/ψ yield at very low p_T in hadronic collisions (U+U and Au+Au):

- > Enhancement of J/ ψ yield at very low p_T?
- If so, what are the properties and origin of the excess?
 - \succ p_T ,centrality and system size dependence of the excess; t distribution.

STAR detector

Large acceptance: |η| < 1, 0 < φ < 2π</p>

Time Projection Chamber (TPC) – tracking, particle identification, momentum

Time of Flight detector (TOF) – particle identification

Barrel ElectroMagnetic Calorimeter (BEMC) – electron identification, triggering

Electron Identification

J/ψ signal

J/ψ production and modification at very low p_T

➢ Significant enhancement of J/ψ yield observed at p_T interval 0
 − 0.2 GeV/c for peripheral collisions (40 − 80 %)!
 ✓ No significant difference between Au+Au and U+U collisions.

J/ψ dN/dt distribution for Au+Au 40-80%

Phys. Rev. C **77** 4910 (2008) ρ^0 cross-section as a function of the momentum transfer squared ($t \approx p_T^2$) from STAR UPC measurements.

The slope from the exponential fit reflects the size and shape of target.

- ✓ Similar structure to that in UPC case!
- ✓ Indication of interference!
 - ✓ Interference shape from calculation for UPC case PRL 84 2330 (2000)
- ✓ Similar slope parameter!
 - Slope from STARLIGHT prediction in UPC case – 196 (GeV/c)⁻²
 - ✓ Slope w/o the first point: $199 \pm 31 (\text{GeV/c})^{-2} \chi^2 / NDF = 1.7/2$
 - ✓ Slope w/ the first point: $164 \pm 24(\text{GeV/c})^{-2}$ $\chi^2/NDF = 5.9/3$

The excess yield

✓ Low $p_T J/\psi$ from hadronic production is expected to increase dramatically with N_{part}.

✓ No significant centrality dependence of the excess yield!

- View photons as "partons" being present in fast moving ions
- J/ ψ coherent production in hadronic A+A:
 - "Photon distribution function" induced by ions?
 Equivalent Photon Approximation
 - Microscope cross sections?
 - **I** J/ ψ cross section in γ +p convoluted with Glauber
 - Possible disruption by the hadronic collisions?
 - Shadowing?
 - Possible hot medium effects?

The calculation of the coherent production

$$\begin{aligned} \sigma(AA \to AAV) &= \int dk \frac{dN_{\gamma}(k)}{dk} \sigma(\gamma A \to VA) = \int_{0}^{\infty} dk \frac{dN_{\gamma}(k)}{dk} \int_{t_{min}}^{\infty} dt \frac{d\sigma(\gamma A \to VA)}{dt} \Big|_{t=0} |F(t)|^{2} \\ \frac{d^{3}N_{\gamma}(k,r)}{dkd^{2}r} &= \frac{Z^{2}\alpha x^{2}}{\pi^{2}kr^{2}} K_{1}^{2}(x) & \frac{d\sigma(\gamma A \to J/\psi A; t=0)}{dt} = \frac{\alpha_{em}\sigma_{tot}^{2}(J/\psi A)}{4f_{J/\psi}^{2}} \\ \sigma_{tot}^{CM}(J/\psi A) &= \int d^{2}\mathbf{r} \left(1 - \exp\left(-\sigma_{tot}(J/\psi p) T_{A}(\mathbf{r})\right)\right) \\ \sigma_{tot}^{2}(J/\psi p) &= 16\pi \frac{d\sigma(J/\psi p \to J/\psi p; t=0)}{dt} \\ \frac{d\sigma(J/\psi p \to J/\psi p; t=0)}{dt} = \frac{f_{J/\psi}^{2}}{4\pi\alpha_{em}} \frac{d\sigma(\gamma p \to J/\psi p; t=0)}{dt} \\ \frac{d\sigma(\gamma p \to J/\psi p; t=0)}{dt} &= b_{J/\psi} X_{J/\psi} W_{\gamma p}^{\epsilon_{J/\psi}} \end{aligned}$$

 $\mathrm{d}t$

Comparison with data

- ✓ Describe the data very well at very peripheral collisions (60-80%)!
- Overestimate at semi-central collisions!
- ✓ The charge density distribution?

Photon flux induced by Au

Collision system : Au+Au 200 GeV The same magnitude outside the nucleus. Big difference inside the nucleus!

Calculations with nuclear form factor

- ✓ Describe the data very well at very peripheral collisions (60-80%)!
- ✓ Still overestimate at semi-central collisions!
- Cancellation of photon flux or target in the overlapping region?

Different scenarios for calculations

Calculations with different scenarios

- ✓ Different scenarios have different trend toward central collisions!
- ✓ Spectator+Spectator: under predict the data in semi-central collisions.
- To distinguish the different scenarios, measurements at central collisions are needed!
- ✓ Cold Nuclear and hot medium effects are not included in the calculation.

p_T shape with different scenarios

Reaction plane in hadronic collisions

In UPC, no special direction can be determined.
 Reaction plane can be extracted by the copious produced tracks in hadronic collisions.

The elliptic flow vanishes at low pT and central collisions!

Production versus ϕ (relative to reaction plane)

✓ Probe of initial geometry of the overlap region!

p_T shape with interference

 \checkmark Dramatically change the p_T spectra!

Different interference pattern in different centrality!

The effect is relative small with spectator coupling!

t distribution

✓ Both scenarios describe the data reasonably well!

$\boldsymbol{\phi}$ distribution with interference

Rapidity distribution with interference

Dramatically change the rapidity distribution with nucleus coupling!
 Stay unaffected with spectator coupling!

Cross section with interference

The cross section with nucleus coupling is decreased in central collisions!

Summary

- ➢ Significant excess of J/ψ yield at p_T interval 0 − 0.2 GeV/c is observed for peripheral collisions (40 − 80%).
- The excess trend shows no significant centrality dependence (30 80%) within uncertainties, which is beyond the expectation from hadronic production.
- The properties of the excess are consistent with the physical picture of coherent photon-nucleus interactions.
 - ✓ Similar dN/dt distribution to that in UPC case.
 - ✓ Indication of interference at p_T interval 0 0.03 GeV/c.
 - The extracted nuclear form factor slope is consistent with nucleus size.

Theoretical calculations describe the data of peripheral collisions (60 – 80%)

- ✓ Different scenarios have different trend toward central collisions!
- Semi-central and central collisions: Nucleus+ Nucleus => overestimate
 Spectator+Spectator => underestimate
- $\checkmark p_T$ and φ distribution: sensitive to the target
- ✓ The interference effect plays an important role for the production

Discussion

Hadronic produced J/ ψ : B-hadron decay Feed-down from χ_c (18%) and ψ (2s)(10% Color Screening Regeneration	 J/ψ from photoproduction: No B-hadron decay No feed-down from χ_c (18%) Color Screening Negligible regeneration 	
	More sensitive to the color screening of direct produced J/ψ ?	
Photoproduction in UPC: Very clean Impact parameter and ∳ dependence NO! ➤ Perspectives:	Photoproduction in hadronic collisions: Not clean Impact parameter and ϕ dependence YES! Test the medium?	

- ✓ Measurements in more central collisions
- \checkmark p_T shape and ϕ measurement: the target is nucleus or spectator?
- ✓ photon-photon process (π^0 , η , η' , f₂(1270), a₂(1320), $\pi^++\pi^-$, e⁺+e⁻, $\mu^++\mu^-$...): test the photon emitter (spectator or nucleus)
- ✓ Incoherent contribution?
- ✓ Cold Nuclear Matter and hot medium effects?

Measurements beyond J/ψ

- ✓ Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range.
- ✓ The observation of coherent photon photon interactions!
- ✓ To test the photon emitter (Nucleus or Spectator?)

t distribution for dielectron

✓ The size of photon interaction range?

Outlook

Photon-nucleus physics: probing the low x parton facility: electron-proton collider future electron-ion collider

Measurements at very low p_T in hadronic A+A collisions

Test the QGP medium