

Measurements and calculations of very low p_T J/ ψ yield in A+A collisions

Wangmei Zha

University of Science and Technology of China

INT program INT-17-1b **Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks** May 1 – June 8, 2017

J/ψ as a sensitive probe of QGP

- **≻ Color Screening: the quark**antiquark potential is colorscreened by surrounding partons -> dissociation
	- A smoking gun signature for QGP formation

T. Matsui and H. Satz, PLB 178 (1986) 416

► Thermometer: different quarkonia states of different binding energies dissociate at different temperatures -> sequential melting

A. Mocsy EPJC61 (2009) 705

Not that simple --- other effects

\triangleright Hot medium effects:

 \checkmark Regeneration -Recombination of charm quarks

► Cold Nuclear Matter effects: \checkmark PDF modification in nucleus \checkmark Initial state energy loss Cronin effect Nuclear absorption

 \triangleright Final state effect: Dissociation by co-mover

Feed down contribution: \checkmark χ_c , ψ (2s), B-hadron ...

"Dissociation + Regeneration" picture

The interplay of these effects can explain the results from SPS to LHC!

Photon interactions in A+A

 This large flux of quasi-real photons makes a hadron collider also a photon collider!

Photon-nucleus interactions:

- \triangleright Coherent: emitted photon interacts with the entire target nucleus.
- \triangleright Incoherent: emitted photon interacts with nucleon or parton individually.
- ▶ Studied in detail for Ultra-Peripheral Collisions.

Quasi-real photons --- Equivalent photon approximation

Coherent limitation: $Q^2 \leq 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \overrightarrow{q}_T, \omega/v)$ $Q^2 = \frac{\omega^2}{\omega^2}$ $\frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \leq \omega_{max} \sim \frac{\gamma}{R}$ \overline{R} $q_T \leq 1/R$

$$
\frac{d^3N_{\gamma}(\omega,k_{\perp})}{d\omega d^2k_{\perp}} = \frac{\alpha_{em}^2 Z^2 F^2(\vec{k}) k_{\perp}^2}{\pi^2 (k_{\perp}^2 + \omega^2/\gamma^2)^2}.
$$

Weizsäcker-Williams virtual photon spectrum

Vector meson photon-production

\triangleright Vector meson production: chargeless 'Pomeron exchange' \checkmark Light meson production usually treated via vector meson dominance model: ρ , direct $\pi^+\pi^-$, ω \checkmark Heavy meson production treated with pQCD: J/ψ , ψ' , Y(1S), Y(2S), Y(3S)...

 \triangleright Sensitive to the gluon distribution:

$$
\left. \frac{d\sigma(\gamma A \to VA)}{dt} \right|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[x G_A(x, Q^2) \right]^2
$$

$$
x = \frac{M_V e^{\pm y}}{\sqrt{s}} \ Q^2 = M_V^2 / 4
$$

● Coherently:

- \checkmark Both nuclei remain intact
- \checkmark Photon/Pomeron wavelength $\lambda=$ ℎ $\frac{n}{p} > R_A$
- \mathbf{v} p_T < h/R_A ~30 MeV/c for heavy ions
- \checkmark Strong couplings ($Z\alpha_{EM} \sim 0.6$) $\hat{\to}$ large cross sections

• Interference:

- \checkmark Two indistinguishable processes (photon from A_1 or A_2)
- \checkmark Vector meson \to opposite signs in amplitude
- \checkmark Significant destructive interference for $p_T \ll 1/\langle b \rangle$

J/ψ hadronic production and photoproduction

- \bullet The J/ ψ can be produced via photoproduction
- Conventionally, only in Ultra-Peripheral Collisions (UPC)
	- \checkmark UPC conditions: b > 2R_A, no hadronic interactions
	- \checkmark Both nuclei stay intact
- The strong interactions in hadronic collisions would break the nuclei, destroy the coherent condition

Excess of J/ψ production at very low p_T with ALICE

- \checkmark Significant enhancement of J/ ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions $(50 - 90\%)$.
- \checkmark Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- \checkmark Origin from coherent photonnucleus interactions?

 \triangleright Measurement of J/ ψ yield at very low p_T in hadronic collisions (U+U and Au+Au):

- \triangleright Enhancement of J/ ψ yield at very low p_T ?
- \triangleright If so, what are the properties and origin of the excess?
	- ρ_T , centrality and system size dependence of the excess; t distribution.

STAR detector

Large acceptance: $|\eta|$ < 1, 0 < ϕ < 2π

≻Time Projection Chamber (TPC) – tracking, particle identification, momentum

≻Time of Flight detector (TOF) – particle identification

≻Barrel ElectroMagnetic Calorimeter (BEMC) – electron identification, triggering

Electron Identification

J/ψ signal

J/ψ production and modification at very low p_T

 \triangleright Significant enhancement of J/ ψ yield observed at p_T interval 0 – 0.2 GeV/c for peripheral collisions (40 – 80 %)! \checkmark No significant difference between Au+Au and U+U collisions.

J/y dN/dt distribution for Au+Au 40-80%

 ρ^0 cross-section as a function of the momentum transfer squared ($t \approx p_T^2$) from STAR UPC measurements. Phys. Rev. C **77** 4910 (2008)

 \Box The slope from the exponential fit reflects the size and shape of target.

- \checkmark Similar structure to that in UPC case!
- \checkmark Indication of interference!
	- \checkmark Interference shape from calculation for UPC case PRL **84** 2330 (2000)
- \checkmark Similar slope parameter!
	- Slope from STARLIGHT prediction in UPC case – 196 (GeV/c)⁻²
	- Slope w/o the first point: 199 ± 31 (GeV/c)⁻² $\chi^2 / NDF = 1.7/2$
	- Slope w/ the first point: 164 ± 24 (GeV/c)⁻² $\chi^2 / NDF = 5.9/3$

The excess yield

 \checkmark Low p_T J/ ψ from hadronic production is expected to increase dramatically with N_{part} .

 \checkmark No significant centrality dependence of the excess yield!

- View photons as "partons" being present in fast moving ions
- J/ ψ coherent production in hadronic A+A:
	- \triangleright "Photon distribution function" induced by ions? **D** Equivalent Photon Approximation
	- **► Microscope cross sections?**
	- \Box J/ ψ cross section in γ +p convoluted with Glauber
	- \triangleright Possible disruption by the hadronic collisions?
	- \triangleright Shadowing?
	- **► Possible hot medium effects?**

The calculation of the coherent production

$$
\sigma(AA \to AAV) = \int dk \frac{dN_{\gamma}(k)}{dk} \sigma(\gamma A \to VA) = \int_0^{\infty} dk \frac{dN_{\gamma}(k)}{dk} \int_{t_{min}}^{\infty} dt \frac{d\sigma(\gamma A \to VA)}{dt} \Big|_{t=0} |F(t)|^2
$$

$$
\frac{d^3N_{\gamma}(k,r)}{dkd^2r} = \frac{Z^2 \alpha x^2}{\pi^2 kr^2} K_1^2(x) \qquad \frac{d\sigma(\gamma A \to J/\psi A; t=0)}{dt} = \frac{\alpha_{em}\sigma_{tot}^2(J/\psi A)}{4f_{J/\psi}^2}
$$

$$
\sigma_{tot}^{CM}(J/\psi A) = \int d^2r (1 - \exp(-\sigma_{tot}(J/\psi p) T_A(r)))
$$

$$
\sigma_{tot}^2(J/\psi p) = 16\pi \frac{d\sigma(J/\psi p \to J/\psi p; t=0)}{dt}
$$

$$
\frac{d\sigma(J/\psi p \to J/\psi p; t=0)}{dt} = \frac{f_{J/\psi}^2}{4\pi \alpha_{em}} \frac{d\sigma(\gamma p \to J/\psi p; t=0)}{dt}
$$

$$
\frac{d\sigma(\gamma p \to J/\psi p; t=0)}{dt} = b_{J/\psi} X_{J/\psi} W_{\gamma p}^{\epsilon_{J/\psi}}
$$

Comparison with data

- \checkmark Describe the data very well at very peripheral collisions (60-80%)!
- Overestimate at semi-central collisions!
- \checkmark The charge density distribution?

Photon flux induced by Au

Collision system : Au+Au 200 GeV The same magnitude outside the nucleus. Big difference inside the nucleus!

Calculations with nuclear form factor

- \checkmark Describe the data very well at very peripheral collisions (60-80%)!
- \checkmark Still overestimate at semi-central collisions!
- \checkmark Cancellation of photon flux or target in the overlapping region?

Different scenarios for calculations

Calculations with different scenarios

- Different scenarios have different trend toward central collisions!
- \checkmark Spectator+Spectator: under predict the data in semi-central collisions.
- \checkmark To distinguish the different scenarios, measurements at central collisions are needed!
- \checkmark Cold Nuclear and hot medium effects are not included in the calculation.

p_T shape with different scenarios

Reaction plane in hadronic collisions

 \triangleright In UPC, no special direction can be determined. \triangleright Reaction plane can be extracted by the copious produced tracks in hadronic collisions.

Production versus ϕ (relative to reaction plane)

 \checkmark Probe of initial geometry of the overlap region!

p_T shape with interference

 \checkmark Dramatically change the p_T spectra!

- \checkmark Different interference pattern in different centrality!
- \checkmark The effect is relative small with spectator coupling!

t distribution

 \checkmark Both scenarios describe the data reasonably well!

ϕ distribution with interference

Rapidity distribution with interference

 \checkmark Dramatically change the rapidity distribution with nucleus coupling! \checkmark Stay unaffected with spectator coupling!

Cross section with interference

 \checkmark The cross section with nucleus coupling is decreased in central collisions!

Summary

- \triangleright Significant excess of J/ ψ yield at p_T interval 0 0.2 GeV/c is observed for peripheral collisions (40 – 80%).
- \triangleright The excess trend shows no significant centrality dependence (30 80%) within uncertainties, which is beyond the expectation from hadronic production.
- \triangleright The properties of the excess are consistent with the physical picture of coherent photon-nucleus interactions.
	- \checkmark Similar dN/dt distribution to that in UPC case.
	- \checkmark Indication of interference at p_T interval 0 0.03 GeV/c.
	- \checkmark The extracted nuclear form factor slope is consistent with nucleus size.

\triangleright Theoretical calculations describe the data of peripheral collisions (60 -80%

- \checkmark Different scenarios have different trend toward central collisions!
- \checkmark Semi-central and central collisions: Nucleus + Nucleus => overestimate Spectator+Spectator => underestimate
- \checkmark p_T and ϕ distribution: sensitive to the target
- \checkmark The interference effect plays an important role for the production

Discussion

Measurements in more central collisions

 $\sqrt{p_{T}}$ shape and ϕ measurement: the target is nucleus or spectator?

- \checkmark photon-photon process $(\pi^0, \eta, \eta', f_2(1270), a_2(1320), \pi^+ + \pi^-, e^+ + e^-,$
- μ^+ + $\mu^-.$): test the photon emitter (spectator or nucleus)
- \checkmark Incoherent contribution?

Cold Nuclear Matter and hot medium effects?

Measurements beyond J/ ψ

- \checkmark Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range.
- \checkmark The observation of coherent photon photon interactions!
- \checkmark To test the photon emitter (Nucleus or Spectator?)

t distribution for dielectron

 \checkmark The size of photon interaction range?

Outlook

Photon-nucleus physics: probing the low x parton facility: electron-proton collider future electron-ion collider

Measurements at very low p_T in hadronic A+A collisions

Test the QGP medium