Electromagnetic probes of heavy-ion collisions

Gojko Vujanovic

Institute for Nuclear Theory Workshop: Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks

University of Washington Seattle, WA May 8th 2017

Fonds de recherche sur la nature et les technologies

Outline

Part I: Modelling of the QCD Medium

Viscous hydrodynamics & Hadronic observables

Part II: Sources of Dileptons

- Quark Gluon Plasma (QGP) Rate (w/ dissipative corrections)
- **Hadronic Medium (HM) Rate (w/ dissipative corrections)**
- Dilepton Cocktail

Part III: Dilepton yield and elliptic flow

- Effects of bulk viscosity on thermal (HM+QGP) dileptons
- Dilepton cocktail contribution

Conclusion and outlook

An improvement in the description of hadronic observables

IP-Glasma + Viscous hydrodynamics + UrQMD [Ryu et al., PRL **115,** 132301]

3

Viscous hydrodynamics & bulk pressure

- **Dissipative hydrodynamic equations including coupling between** bulk and shear viscous terms: 0.5
- $\tau_\pi \dot\pi^{\langle\mu\nu\rangle} {+} \pi^{\mu\nu} {=}\; 2 \eta\sigma^{\mu\nu} \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_7 \pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha}$ $-\tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma^{\nu\rangle\alpha} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}$ $T_0^{\mu\nu} = \varepsilon u^\mu u^\nu - P\Delta^{\mu\nu}$ $\partial_\mu T^{\mu\nu} = 0$ $T^{\mu\nu} = T_0^{\mu\nu} - \Pi \Delta^{\mu\nu} + \pi^{\mu\nu}$ τ_{Π} Π + Π = $-\zeta\theta - \delta_{\Pi\Pi} \Pi\theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$

 $\overline{\mathcal{A}}$

 $\eta/s = constant$

- \blacktriangleright Other than ζ and η , all transport coefficients are in G.S. Denicol et al. PRD **85** 114047, PRC **90** 024912.
- \blacktriangleright $P(\varepsilon)$: Lattice QCD EoS [P. Huovinen & P. Petreczky, NPA 837, 26]. (s95p-v1)

Dileptons and goal of this presentation

 Unlike photons, dileptons have an additional d.o.f. the invariant mass.

5

 Goal : Use the invariant mass distribution to investigate the influence bulk viscous pressure on thermal dileptons at RHIC and LHC.

Thermal dilepton rates from HM

6

The rate involves: ▶ Self-Energy [Eletsky, et al., PRC **64**, 035202] Viscous extension to thermal distribution function d^4R d^4q = α^2 π^3 $L(M)$ M^2 m_V^4 g_V^2 $\frac{v}{2}$ } – 1 3 $Im\ D_V^R$ μ $\mu \brace{\mu} n_{BE}$ $q \cdot u$ \overline{T} $\Pi_{Va} =$ $m_a m_V T$ $rac{1}{\pi q}$ d^3k $(2\pi)^3$ \overline{s} $\frac{v}{k^0} f_{Va}(s) n_a(x)$; where $x =$ $u\cdot k$ \overline{T} $T_0^{\mu\nu} + \pi^{\mu\nu} - \Pi \Delta^{\mu\nu} =$ d^3k $\frac{a^2\kappa^2}{(2\pi)^3k^0}k^{\mu}k^{\nu}\big[n_{a,0}(x)+\delta n_a^{shear}(x)+\delta n_a^{bulk}(x)\big]$ $\delta n_a^{bulk}=-$ Π z^2 $\overline{3x}$ 1 $\frac{1}{3} - c_s^2 x$ $15(\varepsilon + P)$ 1 $rac{1}{3} - c_s^2$ $\frac{1}{2} n_{a,0}(x) [1 \pm n_{a,0}(x)]$; where $z =$ \overline{m} \overline{T} $\delta n_a^{shear} = n_{a,0}(x) \left[1 \pm n_{a,0}(x)\right]$ $k^{\mu}k^{\nu}\pi_{\mu\nu}$ $2T^2(\varepsilon + P)$ The usual 14-moment expansion of Boltzmann equation in the RTA limit, see e.g. PRC **68**, 034913 RTA limit of Boltzmann equation, see PRC **93**, 044906

• Therefore: $\Pi_{Va} \to \Pi_{Va}^{ideal} + \delta \Pi_{Va}^{shear} + \delta \Pi_{VA}^{bulk}$

Bulk viscous corrections: QGP rate

 \blacktriangleright The Born rate

 d^4R d^4q = d^3k_1 $(2\pi)^3$ d^3k_2 $(2\pi)^3$ $n_q(x)n_{\bar{q}}(x)\sigma v_{12}\delta^4(q-k_1-k_2);$ where $x=$ $u\cdot k$ \overline{T}

 Shear viscous correction is obtained using the usual 14-moment expansion of the Boltzmann equation in the RTA limit.

 Bulk viscous correction derived from a generalized Boltzmann equation, which includes thermal quark masses (m) [PRD **53**, 5799]

$$
k^{\mu}\partial_{\mu}n - \frac{1}{2}\frac{\partial(m^2)}{\partial x} \cdot \frac{\partial n}{\partial k} = C[n]
$$

In the RTA approximation with α_s a constant [PRC **93**, 044906] $\delta n_{q}^{bulk}=-% {\displaystyle\sum\limits_{k}} \delta n_{q}^{bulk} \label{delta}%$ Π z^2 $\overline{\mathcal{X}}$ $-\alpha$ $15(\varepsilon + P)$ 1 $rac{1}{3} - c_s^2$ $n_{FD}(x)[1 - n_{FD}(x)];$ where $z =$ \overline{m} \overline{T}

I Therefore: d^4R d^4q = d^4R^{ideal} d^4q + $d^4\delta R^{shear}$ d^4q $+$ $d^4\delta R^{bulk}$ d^4q

Dilepton Cocktail 8

- For $0.3 < M < 1$ GeV, sources of cocktail dileptons considered here are originating from η , η' , ω , ϕ mesons.
- Dileptons originate from Dalitz decays η , $\eta' \to \gamma \ell^+ \ell^-$, $\omega \to \pi^0 \ell^+ \ell^$ and $\phi \to \eta \ell^+ \ell^-$ as well as direct decays $\omega, \phi \to \ell^+ \ell^-$.
- Using the Vector Dominance Model (VDM), the dynamics of these decays has been computed in Phys. Rept. **128**, 301.
- Note that the ρ meson is not included in the cocktail (yet!) as this is a broad resonance and its width needs to be carefully included when computing cocktail momentum distribution.

Dilepton Cocktail Pro

- The goal here to obtain the final hadronic distribution of η , η' , ω , ϕ to be decayed into dileptons. Two methods will be
- used:
	- *1. Direct hadron production from hydrodynamic simulation (Cooper-Frye prescription including only hadronic resonance decays)*
	- *2. Note that Cooper-Frye prescription needs to be modified in order to take into account the width of the meson. This will be done in the future.*
	- *3. Hadrons produced after UrQMD*
- Note that there is no dynamical generation of dileptons during UrQMD evolution.
- UrQMD is only used to improve the momentum distribution of mesons (notably by capturing hadronic collisions).

Anisotropic flow

Flow coefficients

 $\frac{dN}{dt}$ $\frac{1}{dMp_Tdp_Td\phi dy} =$ 1 2π $\frac{dN}{dt}$ $\frac{1}{dMp_T dp_T dy}\bigg[1 + \sum_{n=1}$ ∞ $2v_n \cos(n\phi - n\Psi_n)$

Three important notes:

- 1. Within an event: v_n 's are a yield weighted average of the different sources (e.g. HM, QGP, …).
- 2. The switch between HM and QGP rates we are using a linear interpolation, in the region $184 \text{ MeV} < T < 220 \text{ MeV}$, given by the EoS [NPA **837**, 26]
- 3. Averaging over events: the flow coefficients (v_n) are computed via

 v_n {SP} = $v_n^{\gamma^*}$ v_n^h cos $\left[n \left(\Psi_n^{\gamma^*} \right) \right]$ $-\Psi_n^h$ $\left|\nu_n^h\right|^2\Big \rangle^{1/2}$

Paquet et al., PRC **93**, 044906 Vujanovic et al., PRC **94,** 014904

Lastly, the temperature at which hydrodynamics (or thermal) dilepton radiation are stopped is $T_{switch} = 145$ MeV at LHC, while at RHIC T_{switch} = 165 MeV. Cocktail dileptons follow.

Bulk viscosity and dilepton yield at LHC

Bulk viscosity reduces the cooldown rate of the medium, by viscous heating and also via reduction of radial flow acceleration at late times.

 \blacktriangleright Dilepton yield is increased in the HM sector, since for $T < 184$ MeV purely HM rates are used.

Thermal $v_2(M)$ is a yield weighted average of QGP and HM contributions:

 $M > 0.8$ GeV: the yield goes from being HM dominated to being QGP dominated. Though, ζ does $\overline{\mathcal{L}}v^{HM}_2(M)$, it also increases HM yield and \therefore weight to $v_2^{HM}(M)$. So, thermal $v_2(M)$ 1.

Thermal $v_2(M)$ is a yield weighted average of QGP and HM contributions:

- $M > 0.8$ GeV: the yield goes from being HM dominated to being QGP dominated. Though, ζ does $\overline{\mathcal{L}}v^{HM}_2(M)$, it also increases HM yield and \therefore weight to $v_2^{HM}(M)$. So, thermal $v_2(M)$ 1.
- \overline{M} < 0.8 GeV: HM yield dominates. There are cancellation between ↑ $H\overline{M}$ yield owing to ζ and $\downarrow v_2^{HM}(M)$.

Thermal + Cocktail dileptons: LHC/RHIC

At the LHC, as $T_{sw} = 145 \text{ MeV}$, the contribution of the dilepton cocktail from a hydro simulation does not play a prominent role as far as the total $v_2(M)$, except in the region $M < 0.65$ GeV.

15

At RHIC, as $T_{sw} = 165$ MeV, the footprint of the dilepton cocktail left onto the total $v_2(M)$ is more significant.

Thermal + Cocktail dileptons: LHC/RHIC

At the LHC, as $T_{sw} = 145 \text{ MeV}$, the contribution of the dilepton cocktail from a hydro simulation does not play a prominent role as far as the total $v_2(M)$, except in the region $M < 0.65$ GeV.

16

At RHIC, as $T_{sw} = 165$ MeV, the footprint of the dilepton cocktail left onto the total $v_2(M)$ is more significant. However, the method employed to obtain the cocktail (e.g. Hydro vs UrQMD) is less important.

Thermal + Cocktail dileptons at RHIC

 The increase in anisotropic flow build-up, can also be seen via the hydrodynamic momentum anisotropy $\varepsilon_P = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle}$ $\langle T^{xx}+T^{yy}\rangle$

18

 \blacktriangleright $\langle T^{xx} \pm T^{yy} \rangle \equiv$ ≡ 1 N_{events} \sum i N_{events} $\int \tau' d\tau' \int d^2x \mathcal{L}(T_i^{xx} \pm T_i^{yy})$ τ_{0} τ where the $\int_{\tau_0}^{\check\tau} \tau' d\tau' \int d^2x_\perp$ integrates over a space-time region in HM.

 Hadrons emitted at late time are sensitive to ε_P at late times. Dileptons are emitted throughout the entire evolution and therefore are picking up the entire evolution history of ε_p .

19

 \blacktriangleright The $v_2(M)$ of dileptons from the cocktail, which are emitted at late times, behaves similarly to the $v_2^{ch}\{2\}$ charged hadron.

 1.2

 0.4

 0.6

 0.8

M [GeV]

1

 1.4

Conclusions

21

- Starting from IP-Glasma initial conditions for the hydro evolution, a first thermal and cocktail dilepton calculation was performed, with bulk viscosity in the hydro evolution, both at RHIC and LHC energies.
- Bulk viscosity increases the yield of thermal dileptons owing to viscous heating and reduction in radial flow acceleration at later times.
- \blacktriangleright The presence of the dilepton cocktail is more important for the total $v₂(M)$ at top RHIC energy, than at collision LHC energy.
- Though bulk viscosity does generate interesting dynamics at RHIC, which are reflected in the thermal dilepton $v_2(M)$, the dilepton cocktail masks part of these dynamics.

Outlook 22

- **Investigate the dynamics of elastic vs inelastic collisions in a** (hadronic) transport model that includes dynamical dilepton radiation (i.e. SMASH), and study their effects on dilepton $v_2(M)$.
- Include semi-leptonic decays of open charm hadrons in the low to intermediate mass range, so that comparison with dilepton data can be made.

Backup Slides

Cocktail: Hydro vs UrQMD at RHIC

24

As mentioned, the $\uparrow v_2(M)$ with bulk viscosity is influenced by switching temperature.

25

26

As mentioned, the $\uparrow v_2(M)$ with bulk viscosity is influenced by switching temperature.

 \blacktriangleright Indeed, running the hydrodynamical evolution until $T_{switch} = 150$ MeV, the effect is reduced, but is still present in the $M \sim 0.9$ GeV & $M > 1.1$ GeV regions.

Bulk viscosity and QGP $v₂$ at LHC

 \blacktriangleright $\langle T^{xx} \pm T^{yy} \rangle \equiv$ ≡ 1 Nevents \sum i N_{events} τ $\int \tau' d\tau' \int d^2x \lfloor (T_i^{xx} \pm T_i^{yy})$ τ_{0} where the $\int_{\tau_0}^{\tau} \tau' d\tau' \int d^2x_\perp$ integrates only over the **QGP** phase.

28

$$
\delta n_a^{bulk} = -\frac{\Pi \left[\frac{z^2}{3} \frac{1}{x} - \left(\frac{1}{3} - c_s^2 \right) x \right]}{15(\varepsilon + P) \left(\frac{1}{3} - c_s^2 \right)^2} n_{a,0}(x) \left[1 \pm n_{a,0}(x) \right]; \ z = \frac{m}{T}; \ x = \frac{u \cdot k}{T}
$$

29

− \overline{E} \overline{T} effects are responsible for the shape seen in QGP v_2 , as $\frac{\Pi}{s+1}$ $\varepsilon + P$ doesn't change sign.

Viscous correction in the QGP

Effects of viscous corrections on the QGP $v_2(M)$

30

Bulk viscosity and HM $v₂$ at LHC

 However, HM dileptons are modestly affected by δn effects.

31

 \blacktriangleright v_2^{HM} is only affected by flow anisotropy.

Nhere $\int_{\tau_0}^{\tau} \tau' d\tau' \int d^2x_{\perp}$ in $(T^{xx} \pm T^{yy})$ integrates only over the **HM** region.

NLO QGP dilepton results $\begin{array}{|c|c|c|c|c|}\hline \text{NLO QGP dilepton results} & & \text{32} \\\hline \end{array}$

Some diagrams contributing

