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Computing the shear viscosity

Plasma with small velocity: ~u(t, x)

σij = ∂iuj + ∂jui − 2
3 δij ∂ · u

1. The Boltzmann equation

(∂t + p · ∂x) f = C[f ]

2. Then linearize close to the (time-dependent) equilibrium:

fp = n(P · U)︸ ︷︷ ︸
equilibrium f0(t,x,p)

+ np(1 + np)χ(p)︸ ︷︷ ︸
viscous correction δf(p)

where np = 1/(eEp/T − 1).

Linearize the Boltzmann equilibrium, and solve for the viscous correction χ



Computing the shear viscosity

Plasma with small velocity: ~u(t, x)

σij = ∂iuj + ∂jui − 2
3 δij ∂ · u

1. The viscous correction, χ(p), satisfies the steady state linearized equation

np(1 + np)
pipjσij

2Tp︸ ︷︷ ︸
strain

= Cχ(p)

︸ ︷︷ ︸
linearized collision op

Find: χ(p) ∝ pipjσij
2. The shear viscosity can be found with δf = np(1 + np)χ(p)

T ij = pδij − ησij =

∫
d3p

(2π)3

pipj

Ep
(f0 + δf)

We will specify the collision operator at NLO, and solve for χ(p) and η!



Leading order Collision Operator (AMY)

(∂t + vp · ∂x) fp = C2↔2 + C1↔2

1. Collinear BremsstrhalungC1↔2:

The AMY kinetic theory
• Effective Kinetic Theory (EKT) for the phase space 

density of quarks and gluons

s

• At leading order: elastic, number-preserving 2↔︎2 
processes and collinear, number-changing 1↔︎2 
processes (LPM, AMY, all that) AMY (2003)
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which

enter or exit the boxed region are included in an e↵ective Boltzmann description.
hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find

it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,

q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧
T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:

we expand the distribution function and matrix elements to second order in the

exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) vi @fp

@pi
+

1

2
q̂ij

UV (µ)
@2fp

@pi@pj
+ O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit

vector in the direction of p, and the di↵usion tensor qij
UV (µ) controls the longitudinal

and transverse momentum di↵usion,

q̂ij
UV (µ) ⌘ q̂L,UV (µ)v̂iv̂j +

1

2
q̂UV (µ)(�ij � v̂iv̂j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for

pure gauge are at leading log

q̂UV (µ) =g2CAT
m2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g2CAT
m2

1
2⇡

log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m2
D = 2g2CA

Z
d3p

(2⇡)3
np(1 + np)

T
=

1

3
g2CAT 2 , (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point

the interpretation of these thermodynamic integrals as the Debye and asymptotic

masses is premature. This interpretation will be clear from Sec. 3, which explains
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(p, 0)

(p � !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung

rate. Hard gluon lines are labeled by their three momentum (pz , p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines

which enter or exit the boxed region are included in an e↵ective Boltzmann description.
locoll

equation as a local rate, it must be understood that the emission process can only

be localized to within a time scale set by the formation time of the radiation. The

inverse formation time will be defined as the energy di↵erence between the initial

and final states

(⌧form)�1 ⌘ �E(h, p, !) = (E! + Ep�!) � Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p, !) ' h2

2p!(p � !)
+

m2
1!

2!
+

m2
1 p�!

2(p � !)
� m2

1 p

2p
, (33){defdeltaE}

where m2
1,p is the asymptotic mass of the particle with momentum p, as summarized

in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector

which is conjugate to the (transverse) coordinate separation x? between the initial

and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-

tum kicks (of magnitude q?) which a hard particle experiences traversing the soft

classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p, p + q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to

the the typical momentum, ⇠ gT , of the background fields. The collision kernel

CR can be expressed as a Wilson loop in the (x+, x?) plane evaluated in the clas-

sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson

loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

✓
@

@t
+ v · rx

◆
f(p) = C2$2 + C1$2

2. Collisions C2↔2:

Q~T

P ~ E

when Q is soft
Replace me with plasma response

First we need to separate scales, and treat hard and soft scattering differently



Three mechanisms for transport at LO in QGP

1. Hard Collisions: 2↔ 2

Q~T

P ~ E

C2$2[µ?]| {z }
vacuum matrix elements

2. Drag, longitudinal and transverse, diffusion: collisions with soft random classical field

soft fields have p ∼ gT and large occupation numbers nB ∼ T
p ∼ 1

g

P~E

~gT ~gT q̂ij = q̂k(µ) p̂ip̂j + 1
2 q̂(µ)(�ij � p̂ip̂j)

Cdiff [µ⊥] =
∂

∂pi

(
np(1 + np)q

ij(µ⊥)
∂χ(p)

∂pj

)
+ gain−terms



3. Bremm: 1↔ 2

• random walk induces collinear bremsstrhalung

P+K

K

P
~gT

• The rate of a transverse kicks of momentum q⊥ from soft fields:

ĈLO[q⊥] =
Tm2

D

q2
⊥(q2
⊥ +m2

D)

with

q̂ = g2CR

∫
d2q⊥
(2π)2

q2
⊥ĈLO[q⊥]



Drag and long-diffusion: A longitudinal force-force correlator along the light cone

where

U(a+, b+; c�) = P exp

 
ig

Z a+

b+
dl+A�(l+, c�)

!
, (25)

Ũ(a�, b�; c+) = P exp

 
ig

Z a�

b�
dl�A+(l�, c+)

!
. (26)

This particular ordering corresponds to having the upper three connected Wilson lines on the
anti-time ordered branch of the Schwinger-Keldysh contour and the lower three on the time-
ordered one. The “handle” on the bottom right corner can be trivially annihilated, but the
same is not true for the one at the bottom left, since time-like separated fields appear between
the two vertical Wilson lines there. Hence, once (q+)2 is replaced by derivatives which, when
acting on the Wilson loop, introduce the F+� electric fields, and once the q+ integration is
taken (with infinite cuto↵), squeezing the Wilson loop to the form of Eq. (22), the “handle” will
survive there. However it is not relevant in non-singular gauges and even in the light-cone gauge
A� = 0 it can be neglected at LO and NLO. The same would not be true for energy loss, where
one has a single F+� insertion (at x+) and the handle is critical in obtaining a gauge-invariant
leading-order result. ]]

Now, as observed in [5], we can write F+� as F+� = @+A�� [D�, A+] and use the equation
of motion of the Wilson line, D�U(x+) = 0, so that

U(a, x+)[D�, A+(x+)]U(x+, b) = d�
�
U(a, x+) A+(x+) U(x+, b)

�
, (27) {totald}

i.e. it the commutator acts as a total derivative (d�) and can be discarded, provided that the
boundary term vanishes. This is true in all gauges where the A+ field vanishes at large x+, such
as the Coulomb or covariant gauge. The singular light-cone gauge A� = 0 would obviously not
satisfy this.

Using translation invariance and shifting the integration by �x+ the same trick can be applied
to the other field strength insertion, so that in the end in Coulomb or covariant gauge we need
to worry only about

q̂L =
g2TR

dR

Z +1

�1
dx+Tr

⌦
U(�1, x+)@+A�(x+)U(x+, 0)@+A�(0)U(0,�1)

↵
. (28) {defqlongsimon}

Finally, let us remark that at LO and NLO operator ordering is not relevant in the soft sector in
this case. At LO we simply contract the two A� fields, obtaining a forward Wightman correlator,
i.e. the diagram shown in Fig. 2, which reads

Figure 2: The leading-order soft contribution. The double line is the adjoint Wilson line, the
black dots are the @+A� vertices. The curly line is a soft HTL gluon. {fig_lo_soft}

q̂L

����
LO soft

= g2CR

Z +1

�1
dx+

Z
d4P

(2⇡)4
e�ip�x+

(p+)2G��>(P ), (29) {lo}

7

Fz+
Fz+

Q ~gT

K

• Evaluate longitudinal force-force with hard thermal loops + sum-rules

q̂‖(µ) ∝ g2CA

∫ µ d2qT
(2π)2

∫
dq+dq0

(2π)2
〈Fz+(P )Fz+〉 2πδ(q+)︸ ︷︷ ︸

evaluate with sum-rule q0 →∞

∝ g2CA

∫ µ d2qT
(2π)2

Tm2
∞

q2
T +m2∞

∝ g2CA
m2
∞

4π
log(µ2/m2

∞)

The µ−dependence of the drag cancels against µ-dependence of the 2→ 2 rate



To much math??

q̂‖(µ) ∝
∫
dq+dq0

(2π)2
〈Fz+(P )Fz+〉 2πδ(q+)

∫
dq0

(2π)
q0q0 T

q0

[
G++
R (q0, q+)−GA(q0, q+)

]

︸ ︷︷ ︸
Use FDT (equilibrium) in an essential way

Longitudinal momentum diffusion

�µ+ µ+

q+

q̂L

����
LO

= g2CR

Z
dq+d2q?

(2⇡)3
Tq+(G��

R (q+, q?) � G��
A (q+, q?))

q0



Transverse momentum diffusion:

P+K
K

P~gT

The bremsstrhalung rate is proportional to the rate of transverse momentum kicks, ĈLO[q⊥]:

ĈLO[q⊥] = in medium scattering rate with momentum q⊥

• Need to compute transverse force-force correlators along the light cone. Aurenche, Gelis, Caron-Huot

q2⊥ĈLO[q⊥] =

∫
dq+dq0
(2π)2

〈Fi+(Q)Fi+〉 2πδ(q+)︸ ︷︷ ︸
evaluate with sum rule at q0 = 0

=
Tm2

D

q2⊥ +m2
D



To much math??

q̂(µ) ∝
∫
dq+dq0

(2π)2
〈Fi+(P )Fi+〉 2πδ(q+)

∫
dq0

(2π)
qiqi

T

q0

[
G++
R (q0, q+)−GA(q0, q+)

]

︸ ︷︷ ︸
Use FDT (equilibrium) in an essential way

Longitudinal momentum diffusion

�µ+ µ+

q+

q̂L

����
LO

= g2CR

Z
dq+d2q?

(2⇡)3
Tq+(G��

R (q+, q?) � G��
A (q+, q?))

q0

Pole



Gain Terms:

Random Walk

Bath Particles

k

p

Without including the “bath” particles momentum will not be conserved

(
∂t + vp ·

∂

∂x

)
δfp =

∂

∂pi

(
np(1 + np)

1
2 q̂
ij ∂χ

∂pj

)

− ∂

∂pi

(
np(1 + np)νg

∫

k
Cij(p̂ · k̂)nk(1 + nk)

∂χ(k)

∂kj

)

︸ ︷︷ ︸
Diffusion of particle-k disturbing bath particle-p from equilibrium



General structure of gain terms

1. Energy and momentum conservation:

νg

∫
d3k

(2π)3
nk(1 + nk) Cij(p̂ · k̂) = q̂‖p̂

ip̂j + 1
2 q̂(δ

ij − p̂ip̂j)

2. Tensor analysis relates q̂ and q̂‖ to ` = 0, 1 moments of scalar functions:

Cij ≡ A0(p̂ · k̂) (p̂ + k̂)i(p̂ + k̂)j︸ ︷︷ ︸
contributes to q̂‖, q̂

+A1(p̂ · k̂) (p̂× k̂)i(p̂× k̂)j︸ ︷︷ ︸
contributes to q̂

3. For shear, the particles have an ` = 2 angular distribution in steady state:

χ(p) ∝ pipjσij

For computing the shear need only certain higher moments ofA0 andA1.

Only three finite (µ⊥ independent) numbers must be computed for η !



(
χij , C

2↔2
gain χij

)
=

dAg
4

8π5T 3

∑
ab

TRaTRb

∫ ∞
0

dp p2 fa0 (p)[1± fa0 (p)]

∫ ∞
0

dk k2 fb0 (k)[1± fb0 (k)]

×
[
−0.1833

χa(p)χb(k)

pk
− 0.1360

(
χa(p)χb(k)′

p
+
χa(p)′χb(k)

k

)
− 0.3066χa(p)′χb(k)′

]
.︸ ︷︷ ︸

three numbers computed using 2↔ 2 HTL matrix elements



Summary – the full LO Boltzmann equation:

[∂t + vk · ∂x] fk =
∂

∂pi

(
np(1 + np)q

ij(µ⊥)
∂χ(p)

∂pj

)
+ gain−terms

+ C2↔2[µ] + C1↔2

1) The cutoff dependence of drag/diffusion cancels against the 2→ 2 rate!

2) Debye sector enters in just a few places.

3) Light cone sum rules.



Light cone and associated dimensional reduction in thermal QCD (S. Caron-Huot)

• Heuristic reason:

Hard Parton “sees” undisturbed soft modes (on light cone), which sample the statistical weight

Parton

Prob ∝ eS(x−, z) = (0, 0) (x−, z) = (0, z)

• Use coordinates (Weldon)

x−, z, x⊥︸ ︷︷ ︸
coordinates

p0, p+, p⊥︸ ︷︷ ︸
momenta

P 2 = 2p0p+ + p2
+ + p2

⊥︸ ︷︷ ︸
squared four momentum

• Computing the correlator with euclidean formulation, p0 → ωn = (2πT )n

G(x−=0, p+, pz) = T
∑

n

1

2ωnp+ + p2
+ + p2

⊥
≈ T

p2
⊥ + p2

+

⇐ 3D propagator



Effective 3D Lagrangian, EQCD, for light cone physics: S. Caron-Huot

LEQCD =
1

4
F aijF

a
ij + tr

(
(DiA0)2

)
+m2

D tr
(
A2

0

)
+ . . .

• It is not difficult to compute to the order of interest:

g2CR 〈Fi+(q+, q⊥)Fi+〉
∣∣∣
q+=0

=g2CR

( −T
q2
⊥ +m2

D︸ ︷︷ ︸
3D
〈
A0A0

〉
+

T

q2
⊥︸︷︷︸

3D 〈AzAz〉

)

• 3D Lattice simulations of the effective theory can provide non-perturbative input

– First start: Marco Panero, Kari Rummukainen, Adreas Schafer, PRL, arxiv:1307.5850

Many things need to be checked before this a useful non-perturbative tool!

But still its a great idea . . .



Lattice computation of C(q⊥): M. Panero et al, PRL

V (r⊥) = g2CF

∫
d2q⊥
(2π)2

(
1− eiq⊥·r⊥

)
Ĉ[q⊥]
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Fig. 8. Results for C(x?) at two di↵erent values of the temperature. The Debye mass used as
a scale for the axes and plugged in the NLO perturbative calculation12 is the non-perturbative

one.63 Figure taken from the original reference.13

The q̂soft extracted in this way also contains a residual logarithmical dependence on

x?, reflecting the leading-order UV divergence of q̂soft (see Eq. (66)) that is absorbed

by the hard contribution. We refer to13,64 for further details on the matching

procedure and the addition of the leading-order hard contribution.26 Once this has

been performed, Panero et al. report an estimate for q̂ of 6 GeV2/fm at their lower

temperature of 398 MeV, with an estimated uncertainty of 15 to 20%. We remark

that higher-order contributions from the hard scale, as well as the possible collinear

contribution mentioned in Sec. 3.3, are absent from this determination.

A possible limitation to the approach we have outlined is that it relies on a

separation of scale between the hard particles, with momenta of order ⇡T , and the

soft and ultrasoft fields, characterized by gT and g2T . However, as the authors

remark, the literature suggests (see for instance60,65,66 ) that analytical computa-

tions relying on this separation of scales may be su�ciently accurate down to low

temperatures, perhaps, suprisingly, down to67 T ⇠ 2Tc.

It is worth remarking that the NLO perturbative calculation predicts at the

origin a negative linear slope,p i.e. ci < 0 in Eq. (78), which is not observed

in the lattice calculation. This can be attributed to discretization errors, which

are more severe at short distances, corresponding to the UV region p? � mD

in momentum space. At leading order in PT, the dominant UV behavior (1/p2
?)

cancels between the longitudinal and transverse one-gluon exchanges, as shown

in Eq. (65), leaving a m2
D/p4

? correction. This cancellation, while exact in the

continuum, is only approximate on the lattice. D’Onofrio, Kurkela and Moore68

have estimated the associated error to be of order a/x? and hence especially relevant

at short distances. Their computation of the renormalization properties of Eq. (76)

to order a can help alleviating these discretization e↵ects.

pDue to the super-renormalizability of EQCD, each loop order causes a di↵erent power-law be-
havior for C, so that higher orders cannot contaminate this e↵ect.

Estimate q̂soft ' 2T 3 for a quark jet



Next-to-Leading Order



Use the Boltzmann equation for shear viscosity:

Plasma with small velocity: ~u(t, x)

σij = ∂iuj + ∂jui − 2
3 δij ∂ · u

η

s
∝ 1

g4

[
C + log(1/g)︸ ︷︷ ︸

LO Boltzmann (AMY)

+

O(g log) +O(g)︸ ︷︷ ︸
“NLO”, from soft gT gluons, nB ' T

ω ' 1
g

+ . . .
]



O(g) Corrections to Hard Collisions, Drag/Diffusion, Bremm:

1. No corrections to Hard Collisions:

2. Corrections to Longitudinal diffusion:

Fz+Fz+

P

The p� integration can be closed below, yielding

q̂L

����
(1)

+

= �ig4CRCAT 2

Z

CR

dp+d2p?
(2⇡)3

Z
d4Q

(2⇡)4

✓
i

�Ep(q� � i✏)(q� + �Ep � i✏)

◆
⇢��

rr (Q)

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

The q� integration can be closed in the upper half-plane, giving

q̂L

����
(1)

+

= g4CRCAT 2

Z

CR

d4P

(2⇡)4

Z
dq+d2q?

(2⇡)3


i

�E2
p

G��
R (q� = 0) � i

�E2
p

G��
R (q� = ��Ep)

�

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

This vanishes on the CR, because the square bracket is at least linear in �Ep.
The second and third term are identical to Eq. (59) and thus vanish. Only the last term

contributes, yielding

q̂L

����
+

= �g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4
2⇡�(p� + q�)

4
G��

rr (P )G��
rr (Q), (66) {crossfinal}

which cancels Eq. (62).

A.3 The cat eye

P

Q

P + Q

Figure 5: The cat-eye diagram {fig_cateye}

The amplitude reads, with label c (GUY METRIC)

q̂L

����
c

= g4CRCA

Z +1

�1
dx+

Z x+

0

dx+0
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4
e�ip�x+

e�iq�x+0
�µ⌫⇢(�P,�Q, P + Q)

⇥p+(p+ + q+)


G�⇢

A (P + Q)G�⌫
rr (Q)G�µ

rr (P ) + G�⇢
rr (P + Q)G�⌫

R (Q)G�µ
rr (P )

+G�⇢
rr (P + Q)G�⌫

rr (Q)G�µ
R (P )

�
, (67)

where I have defined the three-gluon vertex as

gfabc�µ⌫⇢(P, Q, K) ⌘ �gfabc [gµ⌫(P � Q)⇢ + g⌫⇢(Q � K)µ + g⇢µ(K � P )⌫ ] , (68) {threegluon}

16

~gT

~gT

• Nonlinear interactions of soft classical fields changes the force-force correlator

• Doable because of HTL sum rules (light cone causality)



3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

Q = (q+, q−, q⊥) = (gT, g2T, gT )

θ ∼ mD/E

ĈLO[q⊥] =
Tg2m2

D

q2
⊥(q2
⊥ +m2

D)
→ A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q− ∼ gT .

Q = (q+, q−, q⊥) = (gT, gT, gT )

θ ∼
√

mD/E

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss



3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

Q = (q+, q−, q⊥) = (gT, g2T, gT )

θ ∼ mD/E

ĈLO[q⊥] =
Tg2m2

D

q2
⊥(q2
⊥ +m2

D)
→ A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q− ∼ gT .

Q = (q+, q−, q⊥) = (gT, gT, gT )

θ ∼
√

mD/E

The semi-collinear radiation is done with the replacement, ĈLO[q⊥]→ ĈLO[q̂, δE]



4. Gain Terms:

(a) The structure of the gain terms is the same as LO – three numbers:

(
χij , C

2↔2
gain χij

)
=

dAg
4

8π5T 3

∑
ab

TRaTRb

∫ ∞
0

dp p2 fa0 (p)[1±fa0 (p)]

∫ ∞
0

dk k2 fb0 (k)[1±fb0 (k)]

×
[
−0.1833

χa(p)χb(k)

pk
− 0.1360

(
χa(p)χb(k)′

p
+
χa(p)′χb(k)

k

)
− 0.3066χa(p)′χb(k)′

]

(b) It is about a two-year long calculation to do at NLO

NLO diffusion and cross
• At NLO one has these types of diagrams

• For diffusion (left): application of light-cone techniques still 
possible, huge simplification and closed-form results
Transverse (NLO    ) is finite Caron-Huot (2008)
Longitudinal (NLO      ) is UV log-divergent JG Moore Teaney (2015)

• For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only bruteforce HTL. Silver lining: they’re finite, so 
just estimate the number and vary it
Ansatz: LO cross x mD/T(~g) x arbitrary constant that we vary

HTL 
propagators 
and vertices

q̂L

q̂

q̂NLO = q̂LO +
g4C2

AT 3

32⇡2

mD

T

�
3⇡2 + 10 � 4 ln 2

�
q̂L(µ?)LO =g2CAT

Z
d2q?
(2⇡)2

m2
1

q2
? + m21

q̂L(µ?)NLO =g2CAT

Z
d2q?
(2⇡)2

m2
1 + �m2

1
q2
? + m21 + �m21

⇡ g2CAT

Z
d2q?
(2⇡)2


m2

1
q2
? + m21

+
q2
?�m

2
1

(q2
? + m21)2

�

(c) Anticipate it to be small, and thus we make an ansatz:

CNLOgain = CLOgain ×
mD

T
× c`=2

︸ ︷︷ ︸
We will vary this coefficient!



The NLO Boltzmann equation – a preview:

The NLO Boltzmann equation – a preview:

[@t + vk · @x] fk =
�
C

q̂k(µ)

di↵ + C
�q̂k(µ)

di↵

�
+

�
C

q̂(µ)
di↵ + C�q̂

di↵

�
+ Cgain

+ C2$2[µ] + C1$2 + �C1$2 + Csemi�coll[µ]

The µ-dependence of the drag at NLO cancels the µ-dependence of

semi-collinear radiation

Cutoff dependence cancels

The µ-dependence of the drag at NLO cancels the µ-dependence of

semi-collinear radiation



Semi-collinear radiation – a new kinematic window

2 → 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2↔ 2 collision:

θ ∼ √
g

is not physically distinct from the wide angle brem

θ ∼ √
g

q− ∼ gT

Need both processes

– For harder gluons, q− → T , bremm becomes a normal 2→ 2 process.

– For softer gluons, q− → g2T , wide angle bremm matches onto collinear limit.



Brem and collisions at wider angles (but still small!)

• Semi-collinear emission:

pout ≡ z pinpin

q− =δE =∆p−∼ gT

• The matrix element is:

|M|2 (2π)4δ4(Ptot) ∝ 1 + z2

z︸ ︷︷ ︸
QCD splitting fcn

∫
Q

1

(q−)2
〈Fi+(Q)Fi+〉︸ ︷︷ ︸
scattering-center

2πδ(q− − δE)

All of the dynamics of the scattering center in a single matrix element 〈Fi+(Q)Fi+〉,
– a transverse force-force correlator + energy exchange



The scattering center:

Ĉ[q⊥, δE] =

∫

Q

1

(q−)2
〈Fi+(Q)Fi+〉 2πδ(q− − δE)

1. Soft-correlator has wide angle brem = cut

2. And plasmon scattering = poles
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Figure 5.11: A sample integrand of Eq. (5.97) with �E = 0.5 and p02? = 0.7.
The continuous part corresponds to the cut contribution and the two peaks to
the longitudinal and transverse poles.

In wide-angle bremsstrahlung (and plasmon collisions), we started with
p? ⇠ p

gT . When this transverse momentum becomes soft gT ⌧ p? ⌧ p
gT ,

this process reduces to the LO collinear bremsstrahlung. At wide angle, the
LPM e↵ect can be neglected since the formation time is short. By taking the
limit p? ! 0, �E = p0� ! 0 and the matrix elements become

h
|M |2L⇢L + |M |2T⇢T

i����
p00=p0z+�E

! 16e2
X

s

q2
sdF CF g2 1 + z2

z

p02?
2(�E)2

�
⇢L + ⇢T sin2 ✓

�
. (5.98)

Here ⇢L + ⇢T sin2 ✓ = ⇢µ⌫vµv⌫ is same as the LO result in Eq. (5.23) (see
also Eq. (5.163) in Appendix A). In order to obtain the NLO correction, we
subtract the LO bremsstrahlung contribution which is given by

16e2
X

s

q2
sdF CF g2

Z 1

k

dpz

2⇡

Z 1

0

dp2
?

2(2⇡)

Z 1

0

dp02?
2(2⇡)

1

2p2k02k
nF

p (1 � nF
k0)

1 + z2

z

Z 1

�1

dp0z

2⇡

T

p00
p02?

2(�E)2
(⇢L + ⇢T sin2 ✓)

����
p00=p0z

. (5.99)
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Finite energy transfer sum-rule

θ ∼ √
g

q− ∼ gT

• The small angle bremm rate involves a transverse force force correlator∼ q̂

q2
⊥ĈLO[q⊥] =

∫ ∞

−∞

dq0

2π
〈Fi+Fi+(Q)〉|q+=0 =

Tm2
D

q2
T +m2

D︸ ︷︷ ︸
Rate of transverse kicks of q⊥

• The wide angle bremm rate involves a finite q+ = δE generalization∼ q̂(δE)

∫ ∞

−∞

dq0

2π
〈Fi+Fi+(Q)〉|q+=−δE = T

[
2(δE)2(δE2 + q2

⊥ +m2
D) +m2

Dq
2
⊥

(δE2 + q2
⊥ +m2

D)(δE2 + q2
⊥)

]

︸ ︷︷ ︸
Rate of transverse kicks of q⊥ and energy transfer q+ = δE

At NLO the collision kernel for q̂ gets is replaced with C[q⊥]→ C[q⊥, δE]



Matching between brem and drag

semi-collinear radiation

What happens when the
radiated gluon is soft?

• The semi-collinear emission rate diverges logarithmically when the gluon gets soft

Γsemi−coll ∼ g2CA

∼ g3T 2

︷ ︸︸ ︷
δm2
∞

4π
log

(
2TmD

µ

)

When the gluon becomes soft need to relate radiation and drag.



Computing the NLO drag:

The final result, with the linear divergence dropped, is

q̂L

����
ct

semi�coll

= �g4CRCAT 2mD(1 ± n(p))

8⇡2
ln

2mDT
�
µNLO
?

�2 , (51)

which matches the UV-log divergence in the soft region.

A Longitudinal momentum di↵usion at NLO

some intro here

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}

It reads (label h)

q̂L

����
h

= �g4CR

Z +1

�1
dx+

Z x+

0

dx+0
Z x+0

0

dx+00
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4

⇥e�ip�x+

e�iq�(x+0�x+00)(p+)2G��
rr (P )G��

rr (Q), (52) {defhardself}

where the ordering of the two propagator is not really relevant, what matters is that they all
receive a Bose enhancement. The Wilson line integrations yield

q̂L

����
h

= g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4

✓
i

(p� + i✏)2(p� + q� + i✏)
� adv

◆
(p+)2G��

rr (P )G��
rr (Q).

(53) {hardselfmom2}
We set out to perform the p+ in the complex plane. The (p+)2 at the numerator will give rise to
contribution from the arcs at large |p+| but, contrary to the leading-order case, p� is not fixed
to be zero, so there are poles at p+ = �p�/2 from the statistical factor. We can either do some
numerator algebra to separate the arc contribution from the Euclidean contribution or we can
use (p0, p�) coordinates rather than (p+, p�) ones. We go with the first option and write

T (p+)2

p+ + p�/2
= Tp+ � Tp�

2
+

T (p�)2

4(p+ + p�/2)
. (54)

The first term yields the contour deformation, the second will vanishes as we shall show (no poles
and no contour contributions) and the third can be dealt with using Euclidean technology.

We start with the first one, additional label a for arc. We deform p+ away from the real axis,
calling CR and CA the contours in the upper and lower half-planes respectively. The retarded
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The p� integration can be closed below, yielding

q̂L

����
(1)

+

= �ig4CRCAT 2

Z

CR

dp+d2p?
(2⇡)3

Z
d4Q

(2⇡)4

✓
i

�Ep(q� � i✏)(q� + �Ep � i✏)

◆
⇢��

rr (Q)

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

The q� integration can be closed in the upper half-plane, giving

q̂L

����
(1)

+

= g4CRCAT 2

Z

CR

d4P

(2⇡)4

Z
dq+d2q?

(2⇡)3


i

�E2
p

G��
R (q� = 0) � i

�E2
p

G��
R (q� = ��Ep)

�

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

This vanishes on the CR, because the square bracket is at least linear in �Ep.
The second and third term are identical to Eq. (59) and thus vanish. Only the last term

contributes, yielding

q̂L

����
+

= �g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4
2⇡�(p� + q�)

4
G��

rr (P )G��
rr (Q), (66) {crossfinal}

which cancels Eq. (62).

A.3 The cat eye

P

Q

P + Q

Figure 5: The cat-eye diagram {fig_cateye}

The amplitude reads, with label c (GUY METRIC)

q̂L

����
c

= g4CRCA

Z +1

�1
dx+

Z x+

0

dx+0
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4
e�ip�x+

e�iq�x+0
�µ⌫⇢(�P,�Q, P + Q)

⇥p+(p+ + q+)


G�⇢

A (P + Q)G�⌫
rr (Q)G�µ

rr (P ) + G�⇢
rr (P + Q)G�⌫

R (Q)G�µ
rr (P )

+G�⇢
rr (P + Q)G�⌫

rr (Q)G�µ
R (P )

�
, (67)

where I have defined the three-gluon vertex as

gfabc�µ⌫⇢(P, Q, K) ⌘ �gfabc [gµ⌫(P � Q)⇢ + g⌫⇢(Q � K)µ + g⇢µ(K � P )⌫ ] , (68) {threegluon}

16

+ + …..
• Evaluate NLO longitudinal force-force with hard thermal loops + sum-rules

• Only change relative to LO is the replacement m2
∞ → m2

∞ + δm2
∞

η(µ) ∝ g2CA

∫ µ d2pT
(2π)2

m2
∞ + δm2

∞
p2
T +m2∞ + δm2∞

∝ leading order + g2CA
δm2
∞

4π

[
log

(
µ2
⊥

m2∞

)
− 1

]

︸ ︷︷ ︸
NLO correction to drag

The cutoff dependence of the drag cancels against the semi-collinear emission rate



The NLO Boltzmann equation review:

The NLO Boltzmann equation – a preview:

[@t + vk · @x] fk =
�
C

q̂k(µ)

di↵ + C
�q̂k(µ)

di↵

�
+
�
C

q̂(µ)
di↵ + C�q̂

di↵

�
+ Cgain

+ C2$2[µ] + C1$2 + �C1$2 + Csemi�coll[µ]

The µ-dependence of the drag at NLO cancels the µ-dependence of

semi-collinear radiation

Cutoff dependence cancels

Further reorganization:

• Semi-collinear corrections + a bit more can be incorporated into C1↔2 with:

ĈLO[q⊥]→ ĈLO[q⊥, δE]

• The bit more is precisely the NLO longitudinal diffusion coefficient

[∂t + vk · ∂x] fk = C
q̂‖(µ)

diff +
(
C
q̂(µ)
diff + Cδq̂diff

)
+ Cgain

+ C2↔2[µ] + souped up C1↔2︸ ︷︷ ︸
uses Ĉ[q⊥, δE]

+δC1↔2



Results:

I’ll skip details of quarks . . .



Shear viscosity:
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NLO corrections are large and dominated by q̂!



Baryon number diffusion:
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NLO corrections are large and dominated by q̂!



Comparison with “NLO” results on the photon emission rate

2k(2π)3 dΓ

d3k
= Photon emission rate per phase-space

(L
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+
N
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L
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αs=0.30
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“NLO” corrections are modest and roughly momentum independent



Summary

1. QCD Kinetics = collisions, drag-diffusion, bremm

2. We have constructed a Boltzmann equation valid to NLO

• Use for energy loss, shear viscosity, photon emission, . . .

3. Close relation between drag, wide angle emissions, quasi-particle mass shift.

• Use a euclidean formalism to compute δm∞ and q̂ij(µ) and Ĉ[q⊥, δE]

4. 3D lattice simulations can give non-perturbative inputs for QCD kinetics

• The δm∞ and Ĉ[q⊥, δE] can be computed

5. Almost all of the NLO modifications of η/s and D arise from modifications of q̂

Thank you!



Comparison with “NLO” results on the photon emission rate

2k(2π)3 dΓ

d3k
= Photon emission rate per phase-space
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“NLO” corrections are modest and roughly momentum independent



The different contributions at NLO for photons:

large-θ radiation suppressed at NLO

small-θ radiation enhanced at NLO

 0

 0.5

 1

 1.5

 2

 2.5

 2  4  6  8  10  12  14  16  18  20

(L
O

+
N

L
O

)/
 L

O

k/T

αs=0.15

small-θ radiation only

large-θ radiation only

full result


