Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks, INT Program INT-17-1b, Week 5-6, May 28 – June 8

Quarkonium Measurements in p+p and Heavy-ion Collisions at RHIC

Zebo Tang (唐泽波)

Department of Modern Physics, University of Science and Technology of China (USTC) State Key Laboratory of Particle Detection and Electronics

Outline

Quarkonium measurements in p+p collisions

- J/ ψ p_T spectra and feed-down
- J/ ψ polarization
- J/ ψ self-normalized yield vs. event activity
- •Υ

Quarkonia measurements in heavy-ion collisions

- J/ψ
- $\Upsilon(1S)$ and $\Upsilon(2S+3S)$

Summary

PHENIX Detector System

- 2009--2010: Hadron Blind Detector (HBD)
- 2011--present: Silicon Vertex Detector (VTX)
- 2012--present: Forward Silicon Vertex Detector (FVTX)
- Decommissioned in 2016

Stefan Bathe, BNL PAC meeting

• ee at mid-rapidity (|y| < 0.35) and $\mu\mu$ at forward rapidity (1.2<|y| < 2.2)

• Switching to large acceptance Υ measurements at mid-rapidity with sPHENIX

STAR Detector System

STAR Detector System

Period	Detectors at mid-y
2001-2005	TPC
2005-2009	TPC+EMC
2009	DAQ1k (TPC \rightarrow TPX)
2010	TPX+EMC+TOF
2013	TPX+EMC+TOF+MTD
2014-2016	TPX+EMC+TOF+MTD+HFT
2016-	+ Forward Upgrades

STAR:

- Large acceptance, excellent PID
- Excellent mid-rapidity experiment
- Expanding into forward rapidity region

J/ψ detection efficiency at RHIC

Zebo Tang (USTC)

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

Quarkonium in p+p

Quarknoium data in p+p at RHIC

Year	√s	STAR								PHENIX			
		ee					μμ			ee	μμ		
		MB	HT0	HT1	HT2	HT3		сс	bb			сс	bb
2001										0.07	0.08	PRL 2004	
2004										~0.2	~0.2	PRL 2006	
2005	200		2.8					PRC 2009		2.6	~3	PRL 2007	
2006	200			11				1110 2007	PRD 2010	6.2	22	PRD 2010 PRD 2012	PRC 2015 (ee)
2009	200	77 M	1.9			23		PLB 2013 PLB 2014 PRC 2016	PLB 2014		22		PRC 2013 (μμ)
2011	500				22			Preli.	Preli.				
2012	200 500	0.4 B	1.4		24	4.4		Preli.			0.5	PRD 2017	
2013	500				60		28	Preli.			222	arXiv:1612	
2015	200	1.1 B		38	120		120	Preli.	Preli.			PRC 2017	
2017	500	1.1 B			80	300	300						

$J/\psi p_T$ spectra in 200 GeV p+p collisions

NNLO* CSM: pQCD calculation, for direct only Misses high-p_T part

NRQCD:

Long-distance matrix elements from world-data fitting

Calculation at NLO available Agrees with data well at high- p_T

CEM:

Describes in the entire p_T

STAR : PRC80, 041902 (2009), PLB722, 55 (2013) PHENIX: PRD85, 092004 (2012) direct NNLO CS: P.Artoisenet et al., PRL101, 152001 (2008) and private communication NLO CS+CO: Y.-Q.Ma, K.Wang, and K.T.Chao, PRD 84, 114001 (2011) and private communication CEM: A.D. Frawley, T Ullrich, R. Vogt, Phys. Rept. 462, 125 (2008) and R.Vogt private communication

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

Theoretical developments

- NRQCD describes world-data at high-p_T
- CGC+NRQCD describes world-data at low- and intermediate- p_T
- ICEM describes at low- p_T , leaves room for B feed-down at high- p_T

New data compared to New theory

- New data at 200 GeV and 500 GeV from ee and $\mu\mu$ channels
- Consistent with model calculations/predictions
- Some tension for CGC+NRQCD at low-p_T

Zebo Tang (USTC)

$\psi(2S)/\psi(1S)$ ratio

- Increasing trend vs. p_T in mid- and forward rapidity
- ICEM describes data

$\chi_c/\psi(1S)$ ratio

Zebo Tang (USTC)

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

Polarization measurement is needed

measurements consistently

J/ψ polarization in p+p at 200 GeV

NLO NRQCD: Phys. Rev. Lett. 108 (2012) 242004, Phys.Rev. D90 (2014) 1, 014002, Phys.Rev.Lett 112 (2014) 18, JHEP 1505 (2015) 103 and private communication

- λ_{θ} measured in helicity frame
- PHENIX and STAR agrees in overlapping pT range
- Consistent with longitudinal polarization at moderate p_T
- Within large uncertainties, models describe data

Polarization at 500 GeV

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

λ_{θ} vs. p_{T} in p+p at 500 GeV

- Interesting trend in HX frame
- Systematically longitudinal
- Tension between data and theoretical calculations at low-p_T
- NLO NRQCD uncertainty at high- p_T need be improved

World data comparison

- High- p_T data (approximately) follows x_T scaling
- Similar as spectra
- Low- p_T ?

J/ψ production vs. event activity

- Stronger-than-linear growth for J/ψ at both energies
- Different trends for low and high-p_T

D-mesons production at LHC

"independent of p_T within uncertainties."

Compared to model

- Both PYTHIA8 and percolation model reproduce trend qualitatively
- Pushing to higher multiplicity bin for 500GeV data

Compare to model

N_{coll} vs. N_{part} in heavy-ion collisions has similar trend What a coincidence?!

Upsilon in p+p collisions

- Upsilon cross-section at 200 and 500 GeV follow world trend
- Rapidity distribution in 200 GeV seems narrower than CEM
- New data provides better baseline for p+A and A+A

J/ψ in A+A

J/ψ suppression at RHIC

Mid-rapidity: Similar suppression as SPS

Forward rapidity:

More suppression than in mid-rapidity

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

Two Puzzles!!

Melting+(Re)combination

Z. Qu, Y. Liu, N. Xu, P. Zhuang, NPA830, 335c (2009) X. Zhao, R. Rapp, PRC82, 064905 (2010)

Zebo Tang (USTC)

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

Beam energy scan at RHIC

STAR, PLB771, 13 (2017)

• No significant beam energy dependence at 17-200 GeV

Centrality dependence in 39-200 GeV

- Centrality dependence systematically described by transport model calculations
 - Suppression from melting increases with beam energy
 - (Re)combination contribution increases with beam energy

Beam energy dependence

STAR, PLB771, 13 (2017)

• SPS \rightarrow RHIC: Gradually increase

Zebo Tang (USTC)

- RHIC \rightarrow LHC: Significantly increase
- Consistently described by transport model Interplay of different effects

Mid-rapidity vs. forward rapidity

• Difference between forward and mid-rapidity in central collisions decreases with decreasing energy

Zebo Tang (USTC)

U+U vs. Au+Au at 200 GeV

Similar suppression pattern as in Au+Au 200 GeV at mid-rapidity

System size dependence

- Similar suppression at forward rapidity
- Even less suppression in U+U in central collisions
- Sign of (re)combination?

Ratio of U+U/Au+Au

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

p_T dependence in Au+Au at 200 GeV

Zebo Tang (USTC)

INT Programe INT-17-1b, 6/2/2017, U. Washington,

p_T dependence in Au+Au at 200 GeV

- Increasing trend from low to high p_T
- Described by transport models
- Although there is tension between models
- Low-p_T: CNM + Melting vs. (Re)combination High-p_T: Melting dominant
- Significantly suppression at high p_T in central collisions

INT Programe INT-17-1b, 6/2/2017, U. Washington, Seattle

RHIC vs. LHC

- Completely different p_T dependence
 - Less suppression at LHC in low-p_T
 - More suppression at LHC in high-p_T

Centrality dependence

Low- p_T : SPS ~ RHIC < LHC < 1 \rightarrow QGP effect: (Re)combination High- p_T : RHIC > LHC \rightarrow QGP effect: Melting

Prompt J/\psi suppression in Cu+Au

- Significant suppression of low- p_T prompt J/ ψ in Cu+Au
- $B \rightarrow J/\psi$ consistent with no suppression and EPS09 shadowing

B suppression in Au+Au at 200 GeV

• Strong suppression of $B \rightarrow J/\psi$ and $B \rightarrow D^0$

Inclusive vs. Non-prompt

Y Results

Upsilon in Au+Au at 200 GeV

Upsilon: cleaner probe

- Di-muon channel: 2014 data
- Di-electron channel: 2011 data
- Consistent with each other

Combined results

- $\Upsilon(1S)$:
 - More suppression towards central collisions
 - Direct $\Upsilon(1S)$ could be suppressed in (semi-)central collisions
- $\Upsilon(2S+3S)$: more suppressed than $\Upsilon(1S) \rightarrow$ Sequential suppression

RHIC vs. LHC

- Similar at RHIC and LHC
- Stronger suppression at forward rapidity at LHC
- Similar situation as J/ψ from SPS to RHIC

RHIC vs. LHC

CMS: arXiv:1611.01510

- Significantly suppressed at both RHIC and LHC
- Hints of less suppression at RHIC than at LHC

p_T dependence

Υ(1S):

- No obvious dependence
- Similar to LHC

Υ(2S+3S):

- Hint of increasing trend
- Less suppression at high-p_T

Summary (p+p)

- $J/\psi p_T$ spectrum at 200 and 500 GeV can be described by
 - CGC+NRQCD at low p_T and NLO NRQCD at high- p_T
 - ICEM at low p_T, leaves room for B feed-down
- J/ψ polarization consistent with longitudinal polarization
 - Tension between data and NRQCD at low- p_T at 500 GeV
- J/y self-normalized yield exhibits stronger-than-linear increase
 - Trend depends on p_T at RHIC, no p_T dependence at LHC?
- Upsilon:
 - Total cross-section consistent with world data and CEM
 - Rapidity distribution seems narrower than CEM

Summary (A+A)

- J/ψ has been studied extensively at RHIC
 - p_T, centrality, rapidity, collision energy and system size dependence can be systematically *described* by transport models including both melting and (re)combination effects
- Upsilon:
 - Direct $\Upsilon(1S)$ may be suppressed at RHIC
 - Excited states suppressed more, sequential melting
 - $\Upsilon(1S)$ energy and rapidity dependence issue?
- STAR has 2x Au+Au data on tape; Ru+Ru and Zr+Zr next year
- New ideas? New observables?