Jet modification with hydro medium response

Yasuki Tachibana

Central China Normal University

in collaboration with Ning-Bo Chang, Guang-You Qin [SPRC 95, 044909 (2017)]

"Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks" Institute for Nuclear Theory, University of Washington, Seattle, May 10th, 2017

Introduction

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

Collisions with medium

- constituents
- Induced parton radiation

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

Medium effect on jet

- Collisions with medium constituents
- Induced parton radiation

Jet energy loss Modification of jet structure

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

Energy-momentum deposition

- Induced flow in QGP fluid

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

Motivation

Purpose

- Flow induced as medium response to jet shower
- Medium contribution to jet energy loss and shape

Approach

- Describe both jet shower and medium evolution
- Interaction between them

Other works about jet with medium response

B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin, D. H. Rischke ('09), G.-Y. Qin, A. Majumder, H. Song, U. Heinz ('09), R. B. Neufeld, B. Muller ('10), R. B. Neufeld, T. Renk ('10), H. Li, F. Liu, G.-L. Ma, X.-N. Wang, Y. Zhu ('11), R. B. Neufeld, I. Vitev ('12), X.-N. Wang, Y. Zhu ('13), <u>YT</u>, T. Hirano ('14, '16), R. P. G. Andrade, J. Noronha, G. S. Denicol ('14), M. Schulc, B. Tomášik ('14),...

Linearized Boltzmann Transport (+ Hydro) Model (*Fully Dynamical*)

Y. He, T. Luo, X.-N. Wang, Y. Zhu ('15), S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang ('16), Y. He, H. Stoecker, L.-G. Pang, T. Luo , E. Wang, X.-N. Wang, C. Wei ('16)

Hybrid Strong/Weak Coupling Model

J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos, K. Rajagopal ('16)

JEWEL

S. Floerchinger, K. C. Zapp ('14),...

The Coupled Jet-fluid Model

Jet shower evolution

N.-B. Chang and G.-Y. Qin, Phys. Rev. C 94, no. 2, 024902 (2016)

- Transport equations for <u>all</u> partons in jet shower
 - Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$

$$\begin{aligned} \frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} &= \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2}t) \\ &+ \frac{1}{4}\hat{q}_{j}\nabla_{k_{\perp}}^{2}f_{j}(\omega_{j},k_{j\perp}^{2},t) \\ &+ \sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\left[\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t) - \frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t)\right] \end{aligned}$$

Fluctuation- dissipation theorem

$$\hat{e}_j = \frac{q_j}{4T}$$

Higher-twist

$$\frac{d\tilde{\Gamma}_{i\to j}(\omega_j, k_{j\perp}^2 | \omega_i, 0)}{d\omega_j dk_{j\perp}^2 dt} = \frac{2\alpha_s}{\pi} \hat{q}_g \frac{x P_{i\to j}(x)}{\omega_j k_{j\perp}^4} \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$

 $(P_{i \to j}(x = \omega_j / \omega_i))$: vacuum splitting function)

Initial jet profiles are generated by PYTHIA

Jet shower evolution

N.-B. Chang and G.-Y. Qin, Phys. Rev. C 94, no. 2, 024902 (2016)

Transport equations for <u>all</u> partons in jet shower

- Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$ Collisions with medium constituents (j: parton species)

$$\frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} = \begin{bmatrix} \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2}t) & \text{Collisional energy loss} \\ (\text{longitudinal}) \\ + \frac{1}{4}\hat{q}_{j}\nabla_{k_{\perp}}^{2}f_{j}(\omega_{j},k_{j\perp}^{2},t) & \text{Momentum broadening} \\ (\text{transverse}) \\ + \sum_{i}\int d\omega_{i}dk_{i\perp}^{2} \left[\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t) - \frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t) \right]$$

Fluctuation- dissipation theorem

$$\hat{e}_j = \frac{\hat{q}_j}{4T}$$

Higher-twist

$$\frac{d\tilde{\Gamma}_{i\to j}(\omega_j, k_{j\perp}^2 | \omega_i, 0)}{d\omega_j dk_{j\perp}^2 dt} = \frac{2\alpha_s}{\pi} \hat{q}_g \frac{x P_{i\to j}(x)}{\omega_j k_{j\perp}^4} \sin^2\left(\frac{t-t_i}{2\tau_f}\right)$$

 $(P_{i \rightarrow j}(x = \omega_j / \omega_i))$: vacuum splitting function)

Initial jet profiles are generated by PYTHIA

Jet shower evolution

N.-B. Chang and G.-Y. Qin, Phys. Rev. C 94, no. 2, 024902 (2016)

• Transport equations for <u>all</u> partons in jet shower

- Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$ Collisions with medium constituents (j: parton species)

$$\frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} = \begin{bmatrix} \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2}t) & \text{Collisional energy loss} \\ (\text{longitudinal}) \\ + \frac{1}{4}\hat{q}_{j}\nabla_{k\perp}^{2}f_{j}(\omega_{j},k_{j\perp}^{2}t) & \text{Momentum broadening} \\ + \sum_{i}\int d\omega_{i}dk_{i\perp}^{2} \left[\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2})\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t) - \frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t) \right] \end{bmatrix}$$

$$Medium-induced radiation$$

$$\psi_{j}$$

$$fuctuation- dissipation theorem$$

$$\hat{e}_{j} = \frac{\hat{q}_{j}}{4T}$$

$$Higher-twist$$

$$\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},0)}{d\omega_{j}dk_{j\perp}^{2}dt}dt} = \frac{2\alpha_{s}}{\pi}\hat{q}_{g}\frac{xP_{i\rightarrow j}(x)}{\omega_{j}k_{j\perp}^{4}}\sin^{2}\left(\frac{t-t_{i}}{2\tau_{f}}\right)$$

$$(r_{i,j}(x-\omega_{j}\omega_{j})) \times accum splitting function)$$

$$Initial jet profiles are generated by PytHIA$$

Space-time evolution of QGP medium

Hydrodynamic equation with source term

- Describe hydrodynamic response to jet and background expansion

• Source term

$$\begin{split} J^{\nu}\left(x\right) &= -\sum_{j} \int \frac{d\omega_{j} dk_{j\perp}^{2} d\phi_{j}}{2\pi} k_{j}^{\nu} \left. \frac{df_{j}(\omega_{j}, k_{j\perp}^{2}, t)}{dt} \right|_{\text{col.}} \delta^{(3)}\left(x - x^{\text{jet}}(k_{j}, t)\right) \\ \hline \mathbf{Momentum exchange} \\ \text{between medium and jet} \\ \left. \frac{df_{j}(\omega_{j}, k_{j\perp}^{2}, t)}{dt} \right|_{\text{col.}} &= \left(\hat{e}_{j} \frac{\partial}{\partial \omega_{j}} + \frac{1}{4}\hat{q}_{j} \nabla_{k\perp}^{2}\right) f_{j}(\omega_{j}, k_{j\perp}^{2}, t) \\ \left. x^{\text{jet}}(k_{j}, t) = x_{0}^{\text{jet}} + \frac{k_{j}}{\omega_{j}} t \end{split}$$

Assumption

Instantaneous local thermalization of deposited energy and momentum

Simulations and Results

- Collisional energy loss (and absorption)
 Kick outside the jet cone (by momentum broadening)
 - lick outside the jet cone (by momentum broadening

- 1) Collisional energy loss (and absorption)
- 2) Kick outside the jet cone (by momentum broadening)
- 3) Medium-induced radiation outside the jet cone

- 1) Collisional energy loss (and absorption)
- 2) Kick outside the jet cone (by momentum broadening)
- 3) Medium-induced radiation outside the jet cone

Full jet energy loss and suppression (Jet Quenching)

1) Collisional energy loss (and absorption)

2) Kick outside the jet cone (by momentum broadening)

3) Medium-induced radiation outside the jet cone

Particles from excited medium (Jet-correlated, cannot be subtracted)

- Partially compensate the lost energy via 1) and 2)

 $\Delta \frac{dN}{d^3p} = \left. \frac{dN}{d^3p} \right|_{\text{w/jet}} - \left. \frac{dN}{d^3p} \right|_{\text{w/o jet}} + \frac{dN}{d^3p} \right|_{\text{w/o jet}} + \sum_{i=1}^{N} \frac{Cooper-\text{Frye formula}}{(2\pi)^3} \int_{\Sigma} \frac{p_i^{\mu} d\sigma_{\mu}(x)}{\exp[p_i^{\mu} u_{\mu}(x)/T(x)] \mp 1}$

Full jet energy loss and suppression

(jets are generated by Pythia & MC Glauber)

Full jet energy loss and suppression

(jets are generated by Pythia & MC Glauber)

Full jet energy loss and suppression

(jets are generated by Pythia & MC Glauber)

(jets are generated by PYTHIA & MC Glauber)

 δr

iet

direction

 $r = \sqrt{(\eta_p - \eta_{\text{jet}})^2 + (\phi_p - \phi_{\text{jet}})^2}$

Jet shape function

$$\rho(r) = \frac{1}{N_{\text{jet}}} \sum_{\text{jet}} \left[\frac{1}{p_T^{\text{jet}}} \frac{\sum_{\text{trk} \in (r-\delta r/2, r+\delta r/2)} p_T^{\text{trk}}}{\delta r} \right]$$

- Inclusive, $p_T^{\rm jet} \ge 100 \, {\rm GeV}/c \, (R=0.3)$

Summary

YT, Chang, Qin, PRC 95, 044909 (2017)

Full jet shower + hydro model

- Jet shower evolution: transport equations for partons in jet
- Medium evolution: hydrodynamic equation with source term

Constructed from jet transport equation

- Medium response contribution to jet energy loss
 - Increase of jet cone size dependence
- Medium response contribution to jet shape modification
 - Further broadening of jet shape
 - Significantly modification except for very small-r
 - Medium contribution dominates large-r region