Heavy flavor and quarkonium production in the PHSD transport

Taesoo Song (Gieβen Univ., Germany) Elena Bratkovskaya, Hamza Berrehrah, Daniel Cabrera, Juan Torres-Rincon, Laura Tolos, Joerg Aichelin, and Wolfgang Cassing

outline

- Introduction
- PHSD (Parton-Hadron-String Dynamics)
- Charm production in heavy-ion collisions
- Single electron production in HIC
- J/ψ production in HIC (in progress)
- Summary

1. introduction

- Relativistic heavy-ion collisions produce extremely hot dense nuclear matter.
- It is very interesting to know the properties of the hot dense matter.
- Heavy flavor is one of promising probes for the properties.
- Heavy flavor has a couple of characteristics:
- 1. Its production is well described by pQCD.
- 2. It is produced in a very early stage of HIC-> possibly has the information of the early stage of HIC.
- 3. .

2. PHSD (Parton-Hadron-String Dynamics)

Heavy-ion collisions in the PHSD

- High-energy BB and BM collisions produce strings (Lund string model).
- The strings fragment into hadrons or melt into quarks and antiquarks at high energy density.
- The melted quarks and antiquarks are off-shell and form off-shell gluons by their fusion.
- Partons interact in Dynamical Quasi-Particle Model (DQPM) and are hadronized into off-shell hadrons at the critical temperature (~158 MeV).
- Hadrons interact with each other, and then freeze out.

Dynamical Quasi-Particle Model for QGP

gluon self-energy: $\Pi = M_g^2 - i2\Gamma_g \omega$ quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$

- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_q , M_g)
- the imaginary part describes the interaction width of partons (G_q, G_g)
- QGP is composed of interacting Quasi-Particles.

Mass and width from HTL at high T

• g(T) is fitted to the lattice calculations on running coupling and EoS.

$$\alpha_s(T) = \frac{g^2(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f)\ln[\lambda^2(T/T_c - T_s/T_c)^2]}$$

Quark/gluon with Lorentzian spectral function

mean-field scalar potential

$$U_s(\rho_s) = \frac{dV_p(\rho_s)}{d\rho_s}$$

where ρ_{S} is scalar density, and V_{p} is the potential energy density, which is the energy density contributed by the space-like part of parton spectral function.

 U_s increases with increasing ρ_s \rightarrow Particles are outwardly accelerated in heavy ion-collisions.

It helps to reproduce experimental data

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Partonic scattering in the PHSD

quasi-)elastic collisions :

Masses change by collision

$q + q \rightarrow q + q$	$g + q \rightarrow g + q$
$q + \overline{q} \rightarrow q + \overline{q}$	$g + \overline{q} \rightarrow g + \overline{q}$
$\overline{q} + \overline{q} \rightarrow \overline{q} + \overline{q}$	$g + g \rightarrow g + g$

□ inelastic collisions :

Suppressed due to the large gluon mass

Scattering cross sections based on spectral width

Hadronization in the PHSD

 Massive colored off-shell (anti)quarks are hadronized into colorless off-shell mesons and (anti)baryons.

Energy decomposition with time

t = 0.1 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

Mesons (0)
Quarks (0)
Gluons (0)

P.Moreau

t = 1.63549 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

- Baryons (394)
- 🔵 Antibaryons (0)
- Mesons (1598)
- Quarks (4383)
- Gluons (344)

AND MENUNCI

t = 2.06543 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

- Baryons (396)
- Antibaryons (2)
- Mesons (1136)
- Quarks (5066)
- Gluons (516)

t = 3.20258 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

- Baryons (413)
- 🜔 Antibaryons (13)
- Mesons (1080)
- Quarks (4708)
- Gluons (761)

t = 5.56921 fm/c

- Quarks (3843)
- Gluons (652)

t = 8.06922 fm/c

Gluons (442)

t = 10.5692 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

- Baryons (604)
- Antibaryons (187)
- Mesons (3169)
- Quarks (2076)
- Gluons (319)

t = 15.5692 fm/c

3. Charm production in HIC

Initial production of charm

 Initial charm pairs are produced by using PYTHIA which is then tuned (e.g. y*0.9, p_T*0.84 for E=200 GeV) to reproduce FONLL (fixed-order next-to-leading log) results.

In p+p collisions produced charm quark is fragmented into D meson by emitting soft gluons:

Peterson's fragmentation function

$$D_Q^H(z) \sim \frac{1}{z[1 - 1/z - \epsilon_Q/(1 - z)]^2}$$

By using the same fragmentation function for LHC energy

Cold nuclear matter effects (shadowing effect)

Charm production cross section in N*N* in HIC:

 $\sigma_{c\bar{c}}^{N^*N^*}(s) = \sum_{i,j} \int dx_1 dx_2 R_i^A(x_1, Q) R_j^A(x_2, Q) \\ \times f_i^N(x_1, Q) f_j^N(x_2, Q) \sigma_{c\bar{c}}^{ij}(x_1 x_2 s, Q).$

$$x_1 = \frac{M_T}{E_{\rm cm}} e^y,$$

$$x_2 = \frac{M_T}{E_{\rm cm}} e^{-y},$$

Scale $Q = (M_{T_1} + M_{T_2})/2$

 $R_i^A(x_1,Q)$, $R_i^A(x_2,Q)$ for *i=j=gluon* are obtained from the EPS09 using that charm production is dominated by gluon fusion:

Charm scattering in QGP (DQPM)

□ Elastic scattering with off-shell massive partons $Q+q(g) \rightarrow Q+q(g)$

massive gluon with a finite width is exchanged: it plays the role of the regulator which removes divergence

scattering cross section rapidly increases near T_c due to g(T)

Massive quark/gluon→ less number of scattering, but less forward scattering, compared to massless pQCD

the scattering cross sections are multiplied by 2 in PHSD

Hadronization of charm quark in HIC

Coalescence probability

$$f(\boldsymbol{\rho}, \mathbf{k}_{\rho}) = \frac{8g_M}{6^2} \exp\left[-\frac{\boldsymbol{\rho}^2}{\delta^2} - \mathbf{k}_{\rho}^2 \delta^2\right]$$
$$\boldsymbol{\rho} = \frac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2), \quad \mathbf{k}_{\rho} = \sqrt{2} \ \frac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{m_1 + m_2}$$

 $coalescence \qquad fragmentation \\ fragmentation$

Coalescence probability in Pb+Pb at 2.76 TeV

Hadronic scattering of D mesons

1. <u>D-meson scattering with mesons</u>

Model: effective Lagrangian approach with heavy-quark spin symmetry

L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, J. M. Torres-Rincon, Annals Phys. 326, 2737 (2011)

Interaction of $D=(D^0, D^+, D^+_s)$ and $D^*=(D^{*0}, D^{*+}, D^{*+}_s)$ with octet $(\pi, K, Kbar, \eta)$:

$$\mathcal{L}_{LO} = \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_{D}^{2} \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_{D}^{2} \langle D^{*\mu} D_{\mu}^{*\dagger} \rangle + ig \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle D_{\mu}^{*} u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^{*} u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta} U = u^{2} = \exp\left(\frac{\sqrt{2}i\Phi}{f}\right) \qquad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

2. D-meson scattering with baryons

Model: G-matrix approach: interactions of $D=(D^0,D^+,D^+_s)$ and $D^*=(D^{*0},D^{*+},D^{*+}_s)$ with nucleon octet $J^P=1/2^+$ and Delta decuplet $J^P=3/2^+$

C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, L. Tolos, Phys. Rev. D 87, 074034 (2013)

R_{AA} at LHC (2.76 TeV)

Shadowing effect is important

 \Box It suppresses the low p_T and slightly enhances the high p_T part of R_{AA}

 \Box Shadowing effect has small impact on v_2

How to be hadronized is important! (coalescence vs fragmentation)

without any rescattering (partonic and hadronic)

□Hadronization by fragmentation only (as in pp) \rightarrow R_{AA}=1 □ Coalescence (not in pp!) shifts R_{AA} to larger p_T → ,nuclear matter' effect

4. Single electron production in HIC (both charm and bottom contribute)

Charm & bottom production in p+p (tuned Pythia vs. FONLL)

Fragmentation & semileptonic decay

• By using the same Peterson's fragmentation function

- $D \to K + e + \overline{v_e}$
- $B \to D + \frac{e}{v_e} + \overline{v_e}$
- Assuming constant transition amplitude,

Comparison with experimental data in p+p @ 62.4 and 200 GeV

Cold nuclear matter effects (d+Au) Mid-rapidity (e) Forward/backward-rapidites (µ)

Charm & bottom quark interactions in QGP

Total cross sections Differential cross sections 10² PHSD c+a -> c+a b+q -> b+q 5 T=1.5 T_ 10¹ Sqrt(s)=Sqrt(s_)+2 GeV dơ/dcosθ (mb) 4 m_=pole mass a (mb) 10⁰ m_=1.5 GeV 3 m_=4.8 GeV c+q -> c+q 10⁻¹ b+q -> b+q 2 T=1.5 T_ m_=pole mass 10⁻² m_=1.5 GeV 1 PHSD m,=4.8 GeV 10-3 0 --0.5 0.0 0.5 -1.0 1.0 3 6 12 0 9 E_{c.m.} (GeV) cosθ

Total cross sections are similar, but bottom cross section is more highly forward peaked, because it is heavier.

Hadronization of c and b quarks

Coalescence probability of bottom seems larger at high pt, but it becomes similar expressed in term of transverse velocity.

Comparison with Exp. data at 200 GeV

Comparison with Exp. data at 62.4 GeV

5. J/ψ production in HIC (in progress)

J/ψ production in p+p collisions

Charm pair production J/ψ formation (pQCD process) (non-pQCD process) depends on model

models

Color singlet model

Only charm pair with the same quantum number as a charmonium can form a bound state

Non-Relativistic QCD (NRQCD) : Color octet model

QCD Lagrangian is expanded in power of $1/M_{\rm Q}$ Both color singlet and octet contribute to charmonium formation

Color evaporation model

Color charge evaporates during the process of charmonium formation

new approach

Sudden approximation

- $\Phi = J/\psi(1S)$, $\chi_c(1P)$, $\psi'(2S)$
- $\lim_{t\to\infty} \langle \Phi(t) | c\bar{c}(-t) \rangle \approx \langle \Phi | c\bar{c} \rangle$: sudden approximation
- $|\langle \Phi | c \bar{c} \rangle|^2 \sim$ Wigner function, Phys.Rev. C94 (2016) 034901

$$\begin{split} \Phi^W_{\rm S}(\mathbf{r},\mathbf{p}) &= 8 \frac{D}{d_1 d_2} \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right], \\ \Phi^W_{\rm P}(\mathbf{r},\mathbf{p}) &= \frac{16}{3} \frac{D}{d_1 d_2} \left(\frac{r^2}{\sigma^2} - \frac{3}{2} + \sigma^2 p^2\right) \\ &\times \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right], \end{split}$$

$$r = r_c - r_{\bar{c}}$$
$$p = \frac{p_c - p_{\bar{c}}}{2}$$

D : degeneracy of Φ d₁ : degeneracy of c d₂ : degeneracy of anti-c $\sigma \sim$ radius of Φ

J/ψ production in p+p collisions

Charm from PYTHIA after tuning

in good agreement with FONLL calculations at RHIC and LHC

Relative momentum distribution in c.m. frame

Comparison with PHENIX data

 $r_{J/\psi} = 0.5 \ fm$, $r_{\chi c} = 0.55 \ fm$, r_{ψ} , $= 0.9 \ fm$ similar to the radii from potential model

Comparison with ALICE data we use the same charmonia radii as at RHIC

Feed-down from excited charmonia $\chi c \rightarrow J/\psi + \gamma \qquad \psi' \rightarrow J/\psi + \pi + \pi$

In relativistic heavy-ion collisions

- (without considering the shadowing effect)
- About 20 pairs of charm and 120 pairs of charm are produced in a small volume in central heavy-ion collisions at RHIC and LHC, respectively.
- There might be mixing between two different charm pairs in charmonium formation.

Without any nuclear matter effect

- 1. Charmonium production from two different charm quark pairs enhances total J/ψ
- 2. According to lattice QCD, the radii of charmonia increase (weakly binding) at high T. It suppresses total J/ψ

To be more realistic

 Charm quarks strongly interact in the nuclear matter (charm momentum-position and the formation times of charmonia might change)

- The existence of bound states in QGP?
- Cold nuclear matter effect (shadowing ...)

6. summary

- Parton-Hadron-String Dynamics (PHSD) with heavy flavor works reasonably well from BES to LHC energies.
- In PHSD initial heavy quarks are generated by PYTHIA and tuned to FONLL calculations.
- Cold nuclear matter (shadowing) effect is implemented by EPS09.
- In QGP, partonic scattering cross sections are calculated in the Dynamical Quasi-Particle Model (DQPM).
- Heavy flavor is hadronized through either coalescence or fragmentation.
- In HG, hadronic scattering cross sections are calculated in effective lagrangian with heavy quark spin symmetry.

- Quarkonium (J/ψ) production in p+p collisions can be described by the Wigner projection in space+momentum.
- The same method applied to HIC, J/ψ production is enhanced due to the dense population of ccbar pairs in a small volume even without any nuclear matter effect.
- Now it is in progress to take into account the nuclear matter effect.