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= This talk is about the last stage of the diagram
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MADAI treatment of errors

= Seminal Model-to-Data-Comparison by Novalk,...Pratt, et al. (14)
http://link.aps.org/doi/10.1103/PhysRevC.89.034917

= But underneath the hood of this Ferrari are some squirrels
MADAI errors pegged at 6% (and 3%)

TABLE II. Observables used to compare models to data.

Observable p: weighting Centrality (%) Collaboration Uncertainty (%) Reduced uncertainty
Vo gt Average over 11 p, bins from 160 MeV/cto 1 GeV/c 20-30 STAR' [52] 12 6%

R Average over 4 p; bins from 150-500 MeV/c 0-5 STAR [53] 6 3%

Rgiqe Average over 4 p, bins from 150-500 MeV/c 0-5 STAR [53] 6 3%

Riong Average over 4 p, bins from 150-500 MeV/c 0-5 STAR [53] 6 3%

R Average over 4 p; bins from 150-500 MeV/c 20-30 STAR [53] 6 3%

Rgiqe Average over 4 p, bins from 150-500 MeV/c 20-30 STAR [53] 6 3%

Riong Average over 4 p, bins from 150-500 MeV/c 20-30 STAR [53] 6 3%
(77— 200 MeV/c < p, < 1.0GeV/c 0-5 PHENIX [54] 6 3%

(P k+k- 400 MeV/c < p, < 1.3GeV/c 0-5 PHENIX [54] 6 3%

(D)5 600 MeV/c < p, < 1.6 GeV/c 0-5 PHENIX [54] 6 3%

[§ 72y p— 200 MeV/c < p; < 1.0GeV/c 20-30 PHENIX [54] 6 3%

(P k+k- 400 MeV/c < p;, < 1.3 GeV/c 20-30 PHENIX [54] 6 3%

(D)5 600 MeV/c < p, < 1.6 GeV/c 20-30 PHENIX [54] 6 3%

7t~ yield 200 MeV/c < p; < 1.0GeV/c 0-5 PHENIX [54] 6 3%

wta~ yield 200 MeV/c < p, < 1.0GeV/c 20-30 PHENIX [54] 6 3%

#To account for nonflow correlations, the value of v, was reduced by 10% from the value reported in Ref. [52].
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MADAI Error Comparison
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with 6% errors with 3% errors
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The Dukes

= Bernard, ... Bass, et al (16) improved upon work of MADAI
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.024907

= But not with error treatment — their Tesla still has a few squirrels
principle component errors pegged at 10%

|covariance (uncertainty) matrix. As in previous work

Yields N /dy, dN, /dy

Mean pr [GeV]

stant fractional uncertainty on
L so that the covariance matrix

Flow cumulants v, {2)

(30)

iag(az Zexp)s

resent study. This is a simple

vatively account for the various
the experimental data, model

r predictions. It certainly lim-
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tative uncertainties in the final

fentrality A d is an obvious target for im-

|provement 1in future studies.
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The Dukes

= Q: Why were relative errors set to 10% ?

= A: That’s what was needed !

Yields N /dy, dNy, /dy Mean pr |GeV] Flow cumulants o, {-’}
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Comparison of most probable model results to ALICE data
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An Earlier Foray into Model-2-Data-Comparisons

= CHIMERA = Comprehensive Heavy lon Model Evaluation &
Reporting Algorithm
= Non-Bayesian generation ¢ map in T-n/s space with

simultaneous comparison PHENIX and STAR spectra, flow, HBT
https://dx.doi.org/10.1103/PhysRevC.87.044901 (RAS 2013)

= Just a Subaru, but no squirrels under the hood

= 42 evaluations performed using full statistical and systematic
errors as reported by PHENIX and STAR
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Systematic Errors in CHIMERA

= Evaluate 44 from model & data, accounting for type A & B errors

e A type: uncorrelated (o))

e B type: correlated frac.(c,)

o C type: normalization (c.)

D type: correlated tilt (not considered)

n 2
+ €p0b, + €cY1Tc — “ ;
72(en, €crp) = [(Z (¥ + eb0b, + €cthe — pul(p)) )+€g+€g]

5.‘2
i=1 L

Error definitions based on https://dx.doi.org/10.1103/PhysRevC.77.064907 pr (kr)
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How well did it work?
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Jet errors will be more challenging?

http://dx.doi.org/10.1016/j.physletb.2015.12.047 https://doi.org/10.1103/PhysRevlett.111.152301

T T T T 1 T T T T T T T T T T ]

§>N - ALICE ‘ Ch jet 0-5%, Stat unc. i 006l 5-10% antl k R 0 2

. 03 [~ Pb-Pb Vs, =2.76 TeV N 5o 0.04f

g " R-02ant-k, <07 SySt unc. (shape) i oozl +

N i Jet I Systunc. (correlated) i I
- B ATLAS vZ°®5.10% A ° ST

0.2 B ® CMS Vzan{|m1|>3} 0-10% | /o 30 % JlLdt=I0I.1l4rl1bl"_

L ALICE Vzpan{lAn|>2} 0-5% - B Pb+Pb \s,,, =2.76 TeV_
- i oy JF

| IR SR RS SRR RS SRS |
— L LA A B A |
/ 40 - 50 %
n 0.06 1

B o.o4.- + +

(a) pT’ vack > 0.15 GeV/c, pT’ e 3 GeV/c 7

Y T T S A S ST ST R 50 700 TTs0 200
0 50 100 150 p. [GeV]
:

P, I (GeV/o)

* One cannot directly compare ALICE results to ATLAS (without a model)
* But one can ask whether deviation from zero is significant
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ALICE v,M€t Error Analysis

p%hjﬁ (GeV/c) Uncertainty on vgh Jet
30-40 60-70 80-90 30-40 60-70 80-90
Centrality (%) 0-5 30-50
Shape Unfolding 0.017 0.012 0.016 0.016 0.011 0.015
p%hjEt-measured 0.013 « stat « stat 0.024 « stat « stat
Pen (@) fit 0.015 « stat 0.016 « stat « stat « stat
Total 0.027 0.012 0.023 0.029 0.011 0.015
Correlated Tracking 0.009 0.009 0.009 0.007 0.007 0.007
p%hjet—unfolded « stat < stat < stat « stat « stat « stat
Total 0.009 0.009 0.009 0.007 0.007 0.007

x2 for the hypothesis vgh Jt — u; is calculated by minimizing

n
-2 (V2,i + &corrOcorr,i + Eshape — Mi)2
X (Ecorrs Eshape) = Z 5

i=1 9
n 2
1 &h
2 shape
+8corr+_ 2 : 2 (16)
n“ o .
i=1 ~shape,i

also based on https://dx.doi.org/10.1103/PhysRevC.77.064907, yields p(m=0) = 0.009,
ask Redmer for more details...

Question for the rest of us: is there a better approach?
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Why not produce the full co-variance matrix?

= See upcoming publication by NIFFTE
= Neutron Induced Fission Fragment
Tracking Experiment http://niffte.calpoly.edu

= Co-variant inputs include
— Beam pile-up
— Target contamination
— Tracking efficiency
— Analysis cuts

= But what would we do with it?

Energy [MeV]

il
o

Energy [MeV]

FIG. 16. The ***U(n,f)/***U(n,f) correlation matrix mea-
sured in this work. At low neutron energy, the contaminant
correction becomes the largest source of uncertainty, resulting
in a large correlated region in the correlation matrix. The con-
taminant correction is a fixed value at all energies and as the
ratio becomes small at low energy, a large relative uncertainty
results. The z-axis represents the value of the correlation ma-
trix elements.
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Modeling Errors : Example from the Lattice

= From 2008—2014 HotQCD and Wuppertal-Budapest
Collaborations spent 100s of millions of core hours calculating
the QGP EoS for insertion into hydrodynamic code

https://dx.doi.org/10.1103/PhysRevD.90.094503
http://linkinghub.elsevier.com/retrieve/pii/S0370
269314000197

stout HISQ
(e-3p)/T4 B W
p/T4 B
s/4T4 B8

T [MeV]

= In 2016, S. Moreland and RAS sought to answer
— Does it matter which EoS result is used for hydro?
— How much variation is within the systematic error bands?
— Will we ever need to repeat these calculations on finer lattices?
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Propagating Errors in the EoS ol epggag =t
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And for Dinesh ...

1.5

1.0

& o5

= Bayesian determination of EoS,

0.0

05 /

= Pratt, Sangaline, Sorenson, Wang (2016)
https://doi.org/10.1103/PhysRevlett.114.202301

FIG. 4. The posterior likelihood for the two parameters that

describe the equation of state, X’ and R, have a preference

to be along the diagonal. This shows that experiment con-

0.3+ e -empmEeTEEEETES strains some integrated measure of the overall stiffness of the

e equation of state, i.e. a softer equation of state just above T,

//:7 is consistent with the data if it is combined with a more rapid
7

= stiffening at higher temperature.

Prior
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Cs(e) Cs(eh)+ (3 Cs<€h)) X0$+x2+X/27 ( )
Xo = X'Reg(e)V12, z=1Ine/ep,

Posterior where €, is the energy density corresponding to T' = 165

rm o p MeV. The two parameters R and X’ describe the behav-

= ior of the speed of sound at energy densities above ¢p,.
/-;,‘"d‘- Whereas R describes how the speed of sound rises or falls
ww 0.2F &7 _____ o for small z, X’ describes how quickly the speed of sound
h \ -7 Q eventually approaches 1/3 at high temperature. Once
i ——= WB given c2(e), thermodynamic relations provide all other

0.1F —-—- S95 representations of the equation of state. Runs were per-
formed for 0.5 < X’ < 5, and with —0.9 < R < 2. In the
limit R — —1 the speed of sound will have a minimum

0'8.1 0.2 03 0.4 of zero.
T |GeV]
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Conclusions

= Application of Bayesian methods to determine properties of QGP
has progressed rapidly, treatment of errors has not

= Proper treatment of experimental errors is necessary if we are to
compare to similar observables from different experiments

= Approach defined in PhysRevC.77.064907 appears to be the one
most followed

= Can we (must we) do better ?
= Assigning epistemic uncertainty to models is another challenge

= Future INT workshop for theory, experiment, and statistics ?
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