Errors in Model to Data Comparisons

Data Errors (some examples) Model Errors (an example) Discussion ...

Workshop on Precision Spectroscopy of QGP Institute for Nuclear Theory, UW May 25, 2017

Ron Soltz Nuclear & Particle Physics, LLNL

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

This talk is about the last stage of the diagram

MADAI treatment of errors

- Seminal Model-to-Data-Comparison by Novak,...Pratt, et al. (14) <u>http://link.aps.org/doi/10.1103/PhysRevC.89.034917</u>
- But underneath the hood of this Ferrari are some squirrels MADAI errors pegged at 6% (and 3%)

Observable	p_t weighting	Centrality (%)	Collaboration	Uncertainty (%)	Reduced uncertainty
$v_{2,\pi^{+}\pi^{-}}$	Average over 11 p_t bins from 160 MeV/c to 1 GeV/c	20-30	STAR ¹ [52]	12	6%
R _{out}	Average over 4 p_t bins from 150–500 MeV/c	0–5	STAR [53]	6	3%
R _{side}	Average over 4 p_t bins from 150–500 MeV/c	0–5	STAR [53]	6	3%
$R_{\rm long}$	Average over 4 p_t bins from 150–500 MeV/c	0–5	STAR [53]	6	3%
Rout	Average over 4 p_t bins from 150–500 MeV/c	20-30	STAR [53]	6	3%
R _{side}	Average over 4 p_t bins from 150–500 MeV/c	20-30	STAR [53]	6	3%
$R_{\rm long}$	Average over 4 p_t bins from 150–500 MeV/c	20-30	STAR [53]	6	3%
$\langle p_t \rangle_{\pi^+\pi^-}$	$200 \text{ MeV}/c < p_t < 1.0 \text{ GeV}/c$	0–5	PHENIX [54]	6	3%
$\langle p_t \rangle_{K^+K^-}$	$400 \text{ MeV}/c < p_t < 1.3 \text{ GeV}/c$	0–5	PHENIX [54]	6	3%
$\langle p_t \rangle_{n\bar{n}}$	$600 \text{ MeV}/c < p_t < 1.6 \text{ GeV}/c$	0–5	PHENIX [54]	6	3%
$\langle p_t \rangle_{\pi^+\pi^-}$	$200 \text{ MeV}/c < p_t < 1.0 \text{ GeV}/c$	20-30	PHENIX [54]	6	3%
$\langle p_t \rangle_{K^+K^-}$	$400 \text{ MeV}/c < p_t < 1.3 \text{ GeV}/c$	20-30	PHENIX [54]	6	3%
$\langle p_t \rangle_{n\bar{n}}$	$600 \text{ MeV}/c < p_t < 1.6 \text{ GeV}/c$	20-30	PHENIX [54]	6	3%
$\pi^+\pi^-$ yield	$200 \text{ MeV}/c < p_t < 1.0 \text{ GeV}/c$	0–5	PHENIX [54]	6	3%
$\pi^+\pi^-$ yield	$200 \text{ MeV}/c < p_t < 1.0 \text{ GeV}/c$	20-30	PHENIX [54]	6	3%

TABLE II. Observables used to compare models to data.

^aTo account for nonflow correlations, the value of v_2 was reduced by 10% from the value reported in Ref. [52].

MADAI Error Comparison

Lawrence Livermore National Laboratory

The Dukes

- Bernard, ... Bass, et al (16) improved upon work of MADAI <u>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.024907</u>
- But not with error treatment their Tesla still has a few squirrels principle component errors pegged at 10%

The Dukes

- Q: Why were relative errors set to 10% ?
- A: That's what was needed !

Comparison of most probable model results to ALICE data

An Earlier Foray into Model-2-Data-Comparisons

- CHIMERA = Comprehensive Heavy Ion Model Evaluation & Reporting Algorithm
- Non-Bayesian generation X² map in T-η/s space with simultaneous comparison PHENIX and STAR spectra, flow, HBT <u>https://dx.doi.org/10.1103/PhysRevC.87.044901</u> (RAS 2013)
- Just a Subaru, but no squirrels under the hood
- X² evaluations performed using full statistical and systematic errors as reported by PHENIX and STAR

Systematic Errors in CHIMERA

- Evaluate \mathcal{X}^2 from model & data, accounting for type A & B errors
- A type: uncorrelated (σ_i)
- B type: correlated frac.(σ_b)
- C type: normalization (σ_c)
- D type: correlated tilt (not considered)

$$\tilde{\chi}^2(\epsilon_b, \epsilon_c, p) = \left[\left(\sum_{i=1}^n \frac{(y_i + \epsilon_b \sigma_{b_i} + \epsilon_c y_i \sigma_c - \mu_i(p))^2}{\tilde{\sigma}_i^2} \right) + \epsilon_b^2 + \epsilon_c^2 \right]$$

Error definitions based on https://dx.doi.org/10.1103/PhysRevC.77.064907

 $p_T(k_T)$

How well did it work?

$T_{\rm cent}$	$\chi^2_{ndf} N_{coll}$			
(GeV)	PHENIX	STAR		
0.350	13.8	2.30		
0.345	2.77	1.75		
0.340	15.7	8.15		
0.335	75.9	6.87		
0.330	60.3	6.94		

 Separate systematic errors allowed <u>STAR</u> and <u>PHENIX</u> data to shift independently to achieve reasonable X² values

Jet errors will be more challenging?

- One cannot directly compare ALICE results to ATLAS (without a model)
- But one can ask whether deviation from zero is significant

ALICE v₂^{ch,jet} Error Analysis

	$p_{\rm T}^{\rm chjet}$ (GeV/c)	Uncertainty on $v_2^{ch jet}$						
	•	30-40	60–70	80-90	30-40	60–70	80-90	
	Centrality (%)	0–5			30–50			
Shape	Unfolding	0.017	0.012	0.016	0.016	0.011	0.015	
	p _T ^{chjet} -measured	0.013	≪ stat	≪ stat	0.024	≪ stat	≪ stat	
	$\rho_{\rm ch}(\varphi)$ fit	0.015	≪ stat	0.016	≪ stat	≪ stat	\ll stat	
Total		0.027	0.012	0.023	0.029	0.011	0.015	
Correlated	Tracking	0.009	0.009	0.009	0.007	0.007	0.007	
	$p_{\rm T}^{\rm chjet}$ -unfolded	≪ stat	≪ stat	≪ stat	≪ stat	≪ stat	\ll stat	
Total		0.009	0.009	0.009	0.007	0.007	0.007	

$$\chi^{2} \text{ for the hypothesis } v_{2}^{\text{ch jet}} = \mu_{i} \text{ is calculated by minimizing}$$
$$\tilde{\chi}^{2}(\varepsilon_{\text{corr}}, \varepsilon_{\text{shape}}) = \left[\left(\sum_{i=1}^{n} \frac{(v_{2,i} + \varepsilon_{\text{corr}} \sigma_{\text{corr},i} + \varepsilon_{\text{shape}} - \mu_{i})^{2}}{\sigma_{i}^{2}} \right) + \varepsilon_{\text{corr}}^{2} + \frac{1}{n} \sum_{i=1}^{n} \frac{\varepsilon_{\text{shape}}^{2}}{\sigma_{\text{shape},i}^{2}} \right]$$
(16)

also based on https://dx.doi.org/10.1103/PhysRevC.77.064907, yields p(m=0) = 0.009, ask Redmer for more details...

Question for the rest of us: is there a better approach?

Why not produce the full co-variance matrix?

- See upcoming publication by NIFFTE
 = Neutron Induced Fission Fragment Tracking Experiment <u>http://niffte.calpoly.edu</u>
- Co-variant inputs include
 - Beam pile-up
 - Target contamination
 - Tracking efficiency
 - Analysis cuts
- But what would we do with it?

FIG. 16. The 238 U(n,f)/ 235 U(n,f) correlation matrix measured in this work. At low neutron energy, the contaminant correction becomes the largest source of uncertainty, resulting in a large correlated region in the correlation matrix. The contaminant correction is a fixed value at all energies and as the ratio becomes small at low energy, a large relative uncertainty results. The z-axis represents the value of the correlation matrix elements.

Modeling Errors : Example from the Lattice

 From 2008—2014 HotQCD and Wuppertal-Budapest Collaborations spent 100s of millions of core hours calculating the QGP EoS for insertion into hydrodynamic code

https://dx.doi.org/10.1103/PhysRevD.90.094503 http://linkinghub.elsevier.com/retrieve/pii/S0370 269314000197

- In 2016, S. Moreland and RAS sought to answer
 - Does it matter which EoS result is used for hydro?
 - How much variation is within the systematic error bands?
 - Will we ever need to repeat these calculations on finer lattices?

Propagating Errors in the EoS

 HotQCD sys. errors calculated with simultaneous spline interpolation with continuum extrapolation. Errors impact observables by 3% or less.

And for Dinesh ...

- Bayesian determination of EoS,
- Pratt, Sangaline, Sorenson, Wang (2016) https://doi.org/10.1103/PhysRevLett.114.202301

FIG. 4. The posterior likelihood for the two parameters that describe the equation of state, X' and R, have a preference to be along the diagonal. This shows that experiment constrains some integrated measure of the overall stiffness of the equation of state, i.e. a softer equation of state just above T_c is consistent with the data if it is combined with a more rapid stiffening at higher temperature.

$$c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2}, \quad (2)$$
$$X_0 = X' R c_s(\epsilon) \sqrt{12}, \quad x \equiv \ln \epsilon / \epsilon_h,$$

where ϵ_h is the energy density corresponding to T = 165 MeV. The two parameters R and X' describe the behavior of the speed of sound at energy densities above ϵ_h . Whereas R describes how the speed of sound rises or falls for small x, X' describes how quickly the speed of sound eventually approaches 1/3 at high temperature. Once given $c_s^2(\epsilon)$, thermodynamic relations provide all other representations of the equation of state. Runs were performed for 0.5 < X' < 5, and with -0.9 < R < 2. In the limit $R \to -1$ the speed of sound will have a minimum of zero.

Conclusions

- Application of Bayesian methods to determine properties of QGP has progressed rapidly, treatment of errors has not
- Proper treatment of experimental errors is necessary if we are to compare to similar observables from different experiments
- Approach defined in <u>PhysRevC.77.064907</u> appears to be the one most followed
- Can we (must we) do better ?
- Assigning epistemic uncertainty to models is another challenge
- Future INT workshop for theory, experiment, and statistics ?

