Open heavy flavor from lattice studies

Sayantan Sharma

3 May, 2017

BNL-Bielefeld collaboration, Physics Letters B 737, 210, (2014), S. Mukherjee, P. Petreczky, SS Phys. Rev. D 93, 014502 (2016).

Outline

Ξ,

€ □ >

 299

Outline

[Open charm mesons at freezeout](#page-11-0)

Sayantan Sharma [INT Program INT-17-1b, UW, Seattle](#page-0-0) Slide 3 of 30 Slide 3 of 30

Ξ,

 \leftarrow

- 6

 299

Open heavy flavors: challenges

- **•** Heavy quarks are created in the initial stages of heavy-ion collisions.
- Exchange energy and momenta with the medium \rightarrow R_{AA} quantifies the suppression of high p_T heavy hadrons due to the interaction.
- \bullet \vee generated due to interactions.
- \bullet Tension between R_{AA} and v_2 . Can be understood for RHIC energies but still unresolved for LHC energies? [Courtesy, V. Greco, QM 2017]

Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.

 299

 \rightarrow \equiv \rightarrow

B \mathbf{h}

←ロ ▶ ← イ 同 →

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?

化重 的

 QQ

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?
- What is the melting temperature of heavy hadrons T_c ?

化重新

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?
- What is the melting temperature of heavy hadrons T_c ?
- Dynamic quantities like the diffusion constant D and η/S . \bullet

→ 国 トー

Melting temperature of heavy quark bound states

- The $c\bar{c}$ mesons like J/ψ , η_c are created early in HIC.
- If thermalized QGP is formed the number of J/ψ produced is much reduced due to screening of inter quark potential [Matsui & Satz, 86]
- **Tirst principles study of the spectral functions** [S. Datta et. al., 04, Ding et. al, 12, Swansea collaboration, 07,10, H. Ohno, 13] and variational method $[H.$ Ohno et. al, 11] shows melting of J/ψ at $T > 1.5$ T_c .

つへへ

Melting temperature of heavy quark bound states

- The $c\bar{c}$ mesons like J/ψ , η_c are created early in HIC.
- If thermalized QGP is formed the number of J/ψ produced is much reduced due to screening of inter quark potential [Matsui & Satz, 86]
- **Tirst principles study of the spectral functions** [S. Datta et. al., 04, Ding et. al, 12, Swansea collaboration, 07,10, H. Ohno, 13] and variational method $[H.$ Ohno et. al, 11] shows melting of J/ψ at $T > 1.5$ T_c .
- \bullet Bottomonium states \upmu . Ohno, et. al. 13,14, Swansea 14| show sequential melting above T_{c} .

つへへ

Is there really a flavor hierarchy?

- Deconfinement : Releasing of colored degrees of freedom
- Pure gauge theory: phase transition due to deconfinement has an order parameter Polyakov loop L_{ren}
- \bullet In QCD with physical masses: no exact order parameter
- \bullet Looking at the fluctuations of s and u quark numbers in the thermal medium gives an apparent impression of different T_d [C. Ratti et. al, 12, Bellweid, 12]
- **Important to look at good "order parameters" that clearly separates the** deconfined phase.

Outline

[Puzzles for open heavy flavor](#page-2-0)

Sayantan Sharma [INT Program INT-17-1b, UW, Seattle](#page-0-0) Slide 8 of 30

 \mathbb{B} is

4.0.3

 299

Characterization of freezeout surface

- **If a thermalized medium is formed** \Rightarrow **characterized by T,** μ_B **, V**
- Compare the ratio of particle yields from theory and experiments and perform a χ^2 minimization in the $\mathcal{T}-\mu_B$ plane.
- Obtain \mathcal{T}^f and μ_B^f corresponding to the collision energy
- Issues about acceptance cut, low momentum particles left out

Sayantan Sharma [INT Program INT-17-1b, UW, Seattle](#page-0-0) Slide 9 of 30

Motivation for HRG

At freezeout no more inelastic collisions⇒ the ensemble can be described by a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and Bernstein, 69,71]

$$
\ln \mathcal{Z} = \pm \sum_i g_i \frac{V}{2\pi^2} \int_0^\infty dp \rho^2 \ln \left(1 \pm \mathrm{e}^{\beta(\epsilon_i - \mu_i)} \right) ,
$$

$$
\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i \quad \& \quad \mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I l_i \; .
$$

A virial expansion can be used to estimate the effect of interactions.

 Ω

→ 重 * …

Motivation for HRG

At freezeout no more inelastic collisions⇒ the ensemble can be described by a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and Bernstein, 69,71]

$$
\ln \mathcal{Z} = \pm \sum_i g_i \frac{V}{2\pi^2} \int_0^\infty dp \rho^2 \ln \left(1 \pm \mathrm{e}^{\beta(\epsilon_i - \mu_i)} \right) \;,
$$

$$
\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i \quad \& \quad \mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I l_i \; .
$$

- A virial expansion can be used to estimate the effect of interactions.
- \bullet Scattering phase shifts from expt used to calculate interaction cross-section.

 Ω

医单子宫

Motivation for HRG

At freezeout no more inelastic collisions⇒ the ensemble can be described by a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and Bernstein, 69,71]

$$
\ln \mathcal{Z} = \pm \sum_i g_i \frac{V}{2\pi^2} \int_0^\infty dp \rho^2 \ln \left(1 \pm e^{\beta(\epsilon_i - \mu_i)} \right) ,
$$

$$
\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i \quad \& \quad \mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I l_i \; .
$$

- A virial expansion can be used to estimate the effect of interactions.
- **•** Scattering phase shifts from expt used to calculate interaction cross-section.
- HRG a good approximation if resonances very near to two particle threshold. [Prakash & Venugopalan, 92]

 Ω

医单子宫

Is it a good approximation?

Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

• Other motivation: At low T , $\mu_B = 0$, thermodynamics dominated by pions

 Ω

医单子宫

Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- \bullet Other motivation: At low $T, \mu_B = 0$, thermodynamics dominated by pions
- **The interaction from 3 loop** χPT **within 15% of ideal gas results [Gerber &** Leutwyler, 89]

 Ω

 \rightarrow \equiv \rightarrow

Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- \bullet Other motivation: At low $T, \mu_B = 0$, thermodynamics dominated by pions
- **The interaction from 3 loop** χPT **within 15% of ideal gas results [Gerber &** Leutwyler, 89]
- Residual interactions $\propto n_i n_j \sim {\rm e}^{-(\mathrm{m_i}+\mathrm{m_j})/\mathrm{T}}$ suppressed for heavy quarks \rightarrow HRG is a better approximation of QCD medium near freezeout for heavy hadrons.

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

- The heavy charm quarks produced before QGP is formed.
- \bullet Maximum $T \sim 500$ MeV at the LHC
- \bullet $m_c > T$: charm is not thermally generated in the hot medium
- \bullet Have a near thermal distribution of momenta $IS.Guota & R. Sharma, 14]$
- \bullet At LHC energies charm abundances are quite high \rightarrow statistical hadronization similar to the light quarks?^[Braun-Munzinger, Redlich, Stachel, 06]
- Hadronization would imply existence of deconfined medium

SATISFIED AT A

Our Setup

- We want to understand where heavy quarks deconfine from properties of heavy-light hadrons. $c\bar{c}$ states not considered.
- The analysis of bound states through the study of spectral functions difficult on the lattice.
- If the charm hadron ensemble near the freezeout well described as a hadron resonance gas characterized by T, μ_B, μ_C ,

$$
P(\hat{\mu}_C, \hat{\mu}_B) = P_M \cosh(\hat{\mu}_C) + P_{B,C=1} \cosh(\hat{\mu}_B + \hat{\mu}_C) + P_{B,C=2} \cosh(\hat{\mu}_B + 2\hat{\mu}_C) + P_{B,C=3} \cosh(\hat{\mu}_B + 3\hat{\mu}_C).
$$

• The ground state $m_{C=2} - m_{C=1} = 1$ GeV : effect on thermodynamics of $C = 2, 3$ baryons is negligible.

Our Setup

 \bullet It is comparatively easy to calculate the fluctuations $+$ correlations of B, C

$$
\chi_{ij}^{BC} = \frac{\partial^{i+j}}{\partial \hat{\mu}_i^B \partial \hat{\mu}_j^C} P_{tot} / T^4
$$

The partial pressures can be constructed out of 6 fourth order susceptibilities: $\chi_2^{\textsf{C}}, \chi_{11}^{\textsf{BC}}$ and $\chi_4^{\textsf{C}}, \chi_{31}^{\textsf{BC}}, \chi_{22}^{\textsf{BC}}, \chi_{13}^{\textsf{BC}}$. [Bielefeld-BNL collaboration, 13]

 \bullet Setting $\mu = 0$ one can rewrite the partial pressures in terms of these quantities like

$$
P_M = \chi_2^C - \chi_{22}^{BC}
$$
, $P_{B,C=1} \sim \chi_{mn}^{BC}$, $m + n = 4$

 Ω

医水管 医水管 医心室

A glimpse of what goes into computations

- Two different lattice $24^3 \times 6$, $32^3 \times 8$ to check the cut-off effects
- Large enough for thermodynamic limit \bullet
- The light and strange quarks are dynamical \rightarrow nearly-physical
- Charm quarks are like external probes \rightarrow quenched
- m_c determined by setting $1/4 \left(3 m_{J/\psi} + m_{\eta_c} \right)$ to its physical value

A glimpse of what goes into computations

- Two different lattice $24^3 \times 6$, $32^3 \times 8$ to check the cut-off effects
- Large enough for thermodynamic limit
- The light and strange quarks are dynamical \rightarrow nearly-physical
- Charm quarks are like external probes \rightarrow quenched
- m_c determined by setting $1/4 \left(3 m_{J/\psi} + m_{\eta_c} \right)$ to its physical value
- On the lattice measuring susceptibilities is complimentary to the spectral function method.

What do we need to consider

An "order parameter" to characterize deconfinement of heavy quarks

 \sim \sim

 QQ

What do we need to consider

- An "order parameter" to characterize deconfinement of heavy quarks
- For heavy quarks the mass dependent cut–off effects are severe \rightarrow \bullet need to make our order parameter free from such effects.

つへへ

Open charm mesons at freezeout

- We consider two equivalent definitions of $P_M = \chi_2^C \chi_{22}^{BC} = \chi_4^C \chi_{13}^{BC}$ \bullet
- \bullet Ratio is like an order parameter
- Insensitive to lattice cut-off, mass effects \bullet
- Diagonal fluctuations dominated by mesons \rightarrow not a good observable. \bullet

 \bullet Open charm mesons melt at T_c independent of the details of the hadron spectrum [Bielefeld-BNL collaboration, PLB, 14]

Fate of Charm baryons

We can for the first time look exclusively at the baryon sector

Ξ,

4.0.3

 QQ

Fate of Charm baryons

- We can for the first time look exclusively at the baryon sector
- Our "order parameter" $:\chi_{13}^{BC}/\chi_{22}^{BC}\rightarrow$ some observables may not be suitable!

つへへ

Fate of Charm baryons

- We can for the first time look exclusively at the baryon sector
- Our "order parameter" $:\chi_{13}^{BC}/\chi_{22}^{BC}\rightarrow$ some observables may not be suitable!

 \bullet These melt near T_c too!

[Bielefeld-BNL collaboration, PLB 14]

つへへ

Do the heavy baryons and mesons have a different freezeout surface than the others? \Rightarrow look at the melting of hadrons of heavy and light quarks

 QQ

- Do the heavy baryons and mesons have a different freezeout surface than the others? \Rightarrow look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout

- Do the heavy baryons and mesons have a different freezeout surface than the others? \Rightarrow look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout
- For the first time we could single out the charm baryon contribution to thermodynamics

- Do the heavy baryons and mesons have a different freezeout surface than the others? \Rightarrow look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout
- **•** For the first time we could single out the charm baryon contribution to thermodynamics
- What does it imply for the medium properties?

 \sim \sim

Deviation from HTL results between 160 − 200 MeV \bullet

- Deviation from HTL results between 160 − 200 MeV \bullet
- Hadrons melt but may survive as broad excitations till $1.2T_c$ \bullet

つへへ

- Deviation from HTL results between 160 − 200 MeV \bullet
- Hadrons melt but may survive as broad excitations till $1.2T_c$ \bullet
- Pressure for broad "quasi-particles" considerably lower than small width QP \bullet [Biro & Jakovac, 14]

つへへ

- Deviation from HTL results between 160 − 200 MeV \bullet
- Hadrons melt but may survive as broad excitations till $1.2T_c$ \bullet
- Pressure for broad "quasi-particles" considerably lower than small width QP \bullet [Biro & Jakovac, 14]
- Charm may also exist as a broad resonance with asymmetric peak in spectral \bullet function \rightarrow not a good quasi-particle. つへへ

Charm d.o.f at deconfinement

● Considering charm mesons+baryon+quark-like excitations

$$
p_C(T, \mu_B, \mu_C) = p_M(T) \cosh\left(\frac{\mu_C}{T}\right) + p_{B,C=1}(T) \cosh\left(\frac{\mu_C + \mu_B}{T}\right) +
$$

$$
p_q(T) \cosh\left(\frac{\mu_C + \mu_B/3}{T}\right).
$$

• Considering fluctuations upto 4th order we have 2 trivial constraints $\chi_4^C = \chi_2^C$, $\chi_{11}^{BC} = \chi_{13}^{BC}$.

• A more non-trivial constraint: $c_1 \equiv \chi_{13}^{BC} - 4\chi_{22}^{BC} + 3\chi_{31}^{BC} = 0.$

[Mukherjee, Petreczky, SS, PRD 2015]

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Charm d.o.f at deconfinement

- Meson and baryon like excitations survive upto $1.2T_c$. \bullet
- \bullet Quark-quasiparticles start dominating the pressure beyond $T \gtrsim 200$ MeV \Rightarrow hints of strongly coupled QGP [Mukherjee, Petreczky, S[S, P](#page-39-0)R[D 2](#page-41-0)[0](#page-38-0)[15](#page-39-0)[\]](#page-40-0) QQ

Do diquarks exist beyond T_c ?

- We look specifically at the sector of strange and charm hadrons.
- Upto 4th order derivatives additionally one has 3 more measurements $\chi_{[\rm 112]}^{\mathit{BSC}}$

$$
p_{SC}(T, \mu_B, \mu_C) = \sum_{j=0}^{1} p_{B,S=j}(T) \cosh\left(\frac{\mu_C + \mu_B - j\mu_S}{T}\right) +
$$

$$
p_M(T) \cosh\left(\frac{\mu_C + \mu_S}{T}\right) + p_D(T) \cosh\left(\frac{\mu_C + \mu_B/3 - \mu_S}{T}\right).
$$

Di-quarks carry color quantum number...should disappear when quark d.o.f start dominating around 200 MeV.

 209

Do diquarks exist beyond T_c ?

- **Strange baryon-like excitations suppressed than meson-like excitations.**
- These studies consistent with screening mass of sc-mesons γ . Maezawa et. \bullet al., PRD 2015] and also from recent spectral function study [I Kelly, J.I. Skullerud,

2017]

Do diquarks exist beyond T_c ?

For these calculations to be valid one should satisfy constraint relations \rightarrow smoothly connect to HRG and free gas at low and high T.

LQCD data agree with the constraints imposed by our proposed model.

How perturbative is the QGP medium

 \bullet Screening masses can show how perturbative is the medium \rightarrow less IR sensitive, more perturbative than gluonic observables.

 $C(z) = \int^{1/T}$ 0 $d\tau d$ xdy $\langle {\cal O}^\dagger(x,y,z,\tau) {\cal O}(0,0,0,0)\rangle \ \sim {\rm e}^{-{\rm m}_{{\cal O} } z}, {\rm z} \to \infty,$

Vector like excitations $\mathcal{O}=\bar{\psi}\gamma_\mu\psi$ reach the perturbative estimate quickly than pseudo-scalar excitations $M/T = 2\pi + \frac{g^2\,C_F}{2\pi}\left(E_0 + 1/2\right)$ [Bi-BNL collaboration, preliminary].

Charm hadron spectrum...story about missing states

- The charm meson sector is measured experimentally to high precision.
- Many charm baryons states not measured yet predicted from lattice \bullet and quark models [Ebert et. al, 10, Padmanath et. al., 13]
- Even spin-parity of ground state Λ_c not measured!

Relevance for QCD thermodynamics

- We construct hadron resonance gas model with experimentally known states: PDG-HRG
- Compare with HRG with experimental+additional states: QM-HRG \bullet
- The partial pressure of mesons are similar \bullet
- In the baryon sector the difference starts showing up $[Belec]$ Bielefeld-BNL collaboration, 14] \bullet

Our results

- Our methodology allows us to look at charm baryon sector exclusively
- Also look into the specific quantum number channels
	- all hadrons: $\frac{\chi_{13}^{BC}}{\chi_{4}^{C}-\chi_{13}^{BC}}$ 13
	- S=1,2 hadrons: $\frac{\chi_{112}^{BSC}}{\chi_{13}^{SG} \chi_{112}^{BSC}}$
	- 112 • $Q=1,2$ hadrons : BQC 112 χ QC $\frac{1}{13} - \chi$ BQC 112

 $1.7.147$

Our data from QCD seems to support the existence of these additional baryon states!

 Ω

メス 国家

[Puzzles for open heavy flavor](#page-2-0)

[Open charm mesons at freezeout](#page-11-0)

 \mathbb{B} is

4.0.3

 QQ

- We could for the first time distinctly investigate the baryon and the meson sectors for heavy-light systems
- The charm mesons and baryons melt near $T_c \rightarrow$ similar to the light quarks.

 $Q \cap$

Many more charm baryons at freezeout?

- Interpret experiments to theory it is crucial to account for hadron abundances correctly
- Found evidence for the thermodynamic imprint of yet to be measured charm baryons
- These resonances should be taken into account for feed-down \bullet corrections.

Open charm hadrons melt at $\mathcal{T}_c \Rightarrow$ freezeout temperature for D_s is now well known Input for heavy flavour transport?

4.0.3

 $\leftarrow \equiv +$

 QQ

- Open charm hadrons melt at $\mathcal{T}_c \Rightarrow$ freezeout temperature for D_s is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout \rightarrow can it explain the R_{AA} for open-charm mesons?

 Ω

∢ ≣ ⊳ ⊹

- Open charm hadrons melt at $\mathcal{T}_c \Rightarrow$ freezeout temperature for D_s is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout \rightarrow can it explain the R_{AA} for open-charm mesons?
- Our study supports the picture of a broad D-meson resonance immediately beyond T_c as predicted from T-Matrix approach. [M. He, R. J. Fries, R. Rapp, 12].

- Open charm hadrons melt at $\mathcal{T}_c \Rightarrow$ freezeout temperature for D_s is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout \rightarrow can it explain the R_{AA} for open-charm mesons?
- Our study supports the picture of a broad D-meson resonance immediately beyond T_c as predicted from T-Matrix approach. [M. He, R. J. Fries, R. Rapp, 12].
- Can one find the 3D effective potential that decides the screening mass and heavy quark number fluctuations from T-Matrix approach?

 Ω

 $A \equiv \mathbf{1} \times A \equiv \mathbf{1} \times \mathbf{1} \equiv \mathbf{1}$