#### Open heavy flavor from lattice studies

Sayantan Sharma



3 May, 2017

BNL-Bielefeld collaboration, Physics Letters B 737, 210, (2014), S. Mukherjee, P. Petreczky, SS Phys. Rev. D 93, 014502 (2016).



#### Outline

1 Puzzles for open heavy flavor

2 Open charm mesons at freezeout

3 Relevance of our studies

#### Outline

1 Puzzles for open heavy flavor

Open charm mesons at freezeout

Relevance of our studies

# Open heavy flavors: challenges

- Heavy quarks are created in the initial stages of heavy-ion collisions.
- Exchange energy and momenta with the medium
   → R<sub>AA</sub> quantifies the suppression of high p<sub>T</sub> heavy hadrons due to the interaction.
- V<sub>2</sub> generated due to interactions.
- Tension between R<sub>AA</sub> and v<sub>2</sub>. Can be understood for RHIC energies but still unresolved for LHC energies? [Courtesy, V. Greco, QM 2017]



 Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?
- What is the melting temperature of heavy hadrons  $T_c$ ?

- Microscopic degrees of freedom in the medium both in the hadronic and QGP medium.
- For heavy quarks when is the quasi-particle approximation start to be a good description?
- What is the melting temperature of heavy hadrons  $T_c$ ?
- Dynamic quantities like the diffusion constant D and  $\eta/S$ .

# Melting temperature of heavy quark bound states

- The  $c\bar{c}$  mesons like  $J/\psi$ ,  $\eta_c$  are created early in HIC.
- If thermalized QGP is formed the number of  $J/\psi$  produced is much reduced due to screening of inter quark potential [Matsui & Satz, 86]
- First principles study of the spectral functions [S. Datta et. al., 04, Ding et. al., 12, Swansea collaboration, 07,10, H. Ohno, 13] and variational method [H. Ohno et. al., 11] shows melting of  $J/\psi$  at  $T>1.5~T_c$ .



# Melting temperature of heavy quark bound states

- The  $c\bar{c}$  mesons like  $J/\psi$ ,  $\eta_c$  are created early in HIC.
- If thermalized QGP is formed the number of  $J/\psi$  produced is much reduced due to screening of inter quark potential [Matsui & Satz, 86]
- First principles study of the spectral functions [S. Datta et. al., 04, Ding et. al, 12, Swansea collaboration, 07,10, H. Ohno, 13] and variational method [H. Ohno et. al, 11] shows melting of  $J/\psi$  at  $T>1.5\ T_c$ .
- Bottomonium states [H. Ohno, et. al. 13,14, Swansea 14] show sequential melting above  $T_c$ .



# Is there really a flavor hierarchy?

- Deconfinement : Releasing of colored degrees of freedom
- Pure gauge theory: phase transition due to deconfinement has an order parameter Polyakov loop  $L_{ren}$
- In QCD with physical masses: no exact order parameter
- Looking at the fluctuations of s and u quark numbers in the thermal medium gives an apparent impression of different  $T_d$  [C. Ratti et. al, 12, Bellweid, 12]
- Important to look at good "order parameters" that clearly separates the deconfined phase.



#### Outline

Puzzles for open heavy flavor

2 Open charm mesons at freezeout

Relevance of our studies

#### Characterization of freezeout surface

- If a thermalized medium is formed  $\Rightarrow$  characterized by  $T, \mu_B, V$
- Compare the ratio of particle yields from theory and experiments and perform a  $\chi^2$  minimization in the  $T \mu_B$  plane.
- Obtain  $T^f$  and  $\mu_B^f$  corresponding to the collision energy
- Issues about acceptance cut, low momentum particles left out



#### Motivation for HRG

At freezeout no more inelastic collisions
 ⇒ the ensemble can be described by
 a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and
 Bernstein, 69,71]

$$\ln \mathcal{Z} = \pm \sum_i g_i rac{V}{2\pi^2} \int_0^\infty dp p^2 \ln \left(1 \pm \mathrm{e}^{\beta(\epsilon_\mathrm{i} - \mu_\mathrm{i})}
ight) \; ,$$

$$\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i \ \& \ \mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I I_i$$

• A virial expansion can be used to estimate the effect of interactions.

#### Motivation for HRG

At freezeout no more inelastic collisions
 ⇒ the ensemble can be described by
 a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and
 Bernstein, 69,71]

$$\ln \mathcal{Z} = \pm \sum_{i} g_{i} \frac{V}{2\pi^{2}} \int_{0}^{\infty} dp p^{2} \ln \left(1 \pm \mathrm{e}^{\beta(\epsilon_{i} - \mu_{i})}\right) \; ,$$

$$\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i \ \& \ \mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I I_i .$$

- A virial expansion can be used to estimate the effect of interactions.
- Scattering phase shifts from expt used to calculate interaction cross-section.

#### Motivation for HRG

At freezeout no more inelastic collisions
 ⇒ the ensemble can be described by
 a gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and
 Bernstein, 69,71]

$$\ln \mathcal{Z} = \pm \sum_i g_i \frac{V}{2\pi^2} \int_0^\infty dp p^2 \ln \left(1 \pm \mathrm{e}^{\beta \left(\epsilon_\mathrm{i} - \mu_\mathrm{i}\right)} \right) \; ,$$

$$\epsilon_i = \sqrt{p^2 + m_i^2} \simeq m_i$$
 &  $\mu_i = \mu_B B_i + \mu_S S_i + \mu_C C_i + \mu_I I_i$ .

- A virial expansion can be used to estimate the effect of interactions.
- Scattering phase shifts from expt used to calculate interaction cross-section.
- HRG a good approximation if resonances very near to two particle threshold.
   [Prakash & Venugopalan, 92]



 Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

 Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

• Other motivation: At low T,  $\mu_B = 0$ , thermodynamics dominated by pions

 Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- Other motivation: At low T,  $\mu_B = 0$ , thermodynamics dominated by pions
- The interaction from 3 loop  $\chi PT$  within 15% of ideal gas results [Gerber & Leutwyler, 89]

 Summary: any residual hadron interactions at the freezeout is taken into account by considering all known resonances [Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- Other motivation: At low T,  $\mu_B = 0$ , thermodynamics dominated by pions
- The interaction from 3 loop  $\chi PT$  within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions  $\propto n_i n_j \sim \mathrm{e}^{-(m_i + m_j)/T}$  suppressed for heavy quarks  $\rightarrow$  HRG is a better approximation of QCD medium near freezeout for heavy hadrons.

# Why charm?

- The heavy charm quarks produced before QGP is formed.
- Maximum  $T \sim 500$  MeV at the LHC
- $m_c > T$ : charm is not thermally generated in the hot medium
- Have a near thermal distribution of momenta [S.Gupta & R. Sharma, 14]
- At LHC energies charm abundances are quite high → statistical hadronization similar to the light quarks?[Braun-Munzinger, Redlich, Stachel, 06]
- Hadronization would imply existence of deconfined medium

# Our Setup

- We want to understand where heavy quarks deconfine from properties of heavy-light hadrons.  $c\bar{c}$  states not considered.
- The analysis of bound states through the study of spectral functions difficult on the lattice.
- If the charm hadron ensemble near the freezeout well described as a hadron resonance gas characterized by  $T, \mu_B, \mu_C$ ,

$$\begin{split} P(\hat{\mu}_{C}, \hat{\mu}_{B}) &= P_{M} \cosh(\hat{\mu}_{C}) + P_{B,C=1} \cosh(\hat{\mu}_{B} + \hat{\mu}_{C}) \\ &+ P_{B,C=2} \cosh(\hat{\mu}_{B} + 2\hat{\mu}_{C}) + P_{B,C=3} \cosh(\hat{\mu}_{B} + 3\hat{\mu}_{C}) \; . \end{split}$$

• The ground state  $m_{C=2} - m_{C=1} = 1$  GeV : effect on thermodynamics of C = 2, 3 baryons is negligible.



# Our Setup

 It is comparatively easy to calculate the fluctuations +correlations of B, C

$$\chi_{ij}^{BC} = \frac{\partial^{i+j}}{\partial \hat{\mu}_i^B \partial \hat{\mu}_j^C} P_{tot} / T^4$$

 The partial pressures can be constructed out of 6 fourth order susceptibilities:

$$\chi_2^{\mathcal{C}},\chi_{11}^{\mathcal{BC}}$$
 and  $\chi_4^{\mathcal{C}},\chi_{31}^{\mathcal{BC}},\chi_{22}^{\mathcal{BC}},\chi_{13}^{\mathcal{BC}}$ . [Bielefeld-BNL collaboration, 13]

• Setting  $\mu=0$  one can rewrite the partial pressures in terms of these quantities like

$$P_{M} = \chi_{2}^{C} - \chi_{22}^{BC}, P_{B,C=1} \sim \chi_{mn}^{BC}, m+n=4$$



# A glimpse of what goes into computations



- Two different lattice  $24^3 \times 6$ ,  $32^3 \times 8$  to check the cut-off effects
- Large enough for thermodynamic limit
- ullet The light and strange quarks are dynamical o nearly-physical
- ullet Charm quarks are like external probes o quenched
- $m_c$  determined by setting  $1/4\left(3m_{J/\psi}+m_{\eta_c}\right)$  to its physical value

# A glimpse of what goes into computations



- Two different lattice  $24^3 \times 6$ ,  $32^3 \times 8$  to check the cut-off effects
- Large enough for thermodynamic limit
- ullet The light and strange quarks are dynamical o nearly-physical
- ullet Charm quarks are like external probes o quenched
- $m_c$  determined by setting  $1/4\left(3m_{J/\psi}+m_{\eta_c}\right)$  to its physical value
- On the lattice measuring susceptibilities is complimentary to the spectral function method.

#### What do we need to consider

• An "order parameter" to characterize deconfinement of heavy quarks



#### What do we need to consider

- An "order parameter" to characterize deconfinement of heavy quarks
- For heavy quarks the mass dependent cut—off effects are severe → need to make our order parameter free from such effects.



#### Open charm mesons at freezeout

- We consider two equivalent definitions of  $P_M=\chi_2^{C}-\chi_{22}^{BC}=\chi_4^{C}-\chi_{13}^{BC}$
- Ratio is like an order parameter
- Insensitive to lattice cut-off, mass effects
- Diagonal fluctuations dominated by mesons  $\rightarrow$  not a good observable.



 Open charm mesons melt at T<sub>c</sub> independent of the details of the hadron spectrum [Bielefeld-BNL collaboration, PLB, 14]

# Fate of Charm baryons

• We can for the first time look exclusively at the baryon sector

### Fate of Charm baryons

- We can for the first time look exclusively at the baryon sector
- Our "order parameter"  $:\chi^{BC}_{13}/\chi^{BC}_{22}\to$  some observables may not be suitable!



### Fate of Charm baryons

- We can for the first time look exclusively at the baryon sector
- Our "order parameter"  $:\chi^{BC}_{13}/\chi^{BC}_{22} \to \text{some observables may not be suitable!}$



• These melt near  $T_c$  too!

[ Bielefeld-BNL collaboration, PLB 14]

 Do the heavy baryons and mesons have a different freezeout surface than the others? ⇒ look at the melting of hadrons of heavy and light quarks

- Do the heavy baryons and mesons have a different freezeout surface than the others? ⇒ look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout

- Do the heavy baryons and mesons have a different freezeout surface than the others? ⇒ look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout
- For the first time we could single out the charm baryon contribution to thermodynamics

- Do the heavy baryons and mesons have a different freezeout surface than the others? ⇒ look at the melting of hadrons of heavy and light quarks
- Our study do not favour flavour hierarchy of freezeout
- For the first time we could single out the charm baryon contribution to thermodynamics
- What does it imply for the medium properties?

### What does it imply for medium properties



■ Deviation from HTL results between 160 – 200 MeV

## What does it imply for medium properties



- Deviation from HTL results between 160 − 200 MeV
- ullet Hadrons melt but may survive as broad excitations till 1.2 $T_c$

### What does it imply for medium properties



- Deviation from HTL results between 160 200 MeV
- Hadrons melt but may survive as broad excitations till 1.2T<sub>c</sub>
- Pressure for broad "quasi-particles" considerably lower than small width QP
   Biro & Jakovac, 141

## What does it imply for medium properties



- Deviation from HTL results between 160 200 MeV
- Hadrons melt but may survive as broad excitations till  $1.2T_c$
- Pressure for broad "quasi-particles" considerably lower than small width QP [ Biro & Jakovac, 14]
- Charm may also exist as a broad resonance with asymmetric peak in spectral function→ not a good quasi-particle.

#### Charm d.o.f at deconfinement

Considering charm mesons+baryon+quark-like excitations

$$p_{C}(T, \mu_{B}, \mu_{C}) = p_{M}(T) \cosh\left(\frac{\mu_{C}}{T}\right) + p_{B,C=1}(T) \cosh\left(\frac{\mu_{C} + \mu_{B}}{T}\right) + p_{q}(T) \cosh\left(\frac{\mu_{C} + \mu_{B}/3}{T}\right).$$

- Considering fluctuations upto 4th order we have 2 trivial constraints  $\chi_4^C = \chi_2^C$ ,  $\chi_{11}^{BC} = \chi_{13}^{BC}$ .
- A more non-trivial constraint:

$$c_1 \equiv \chi_{13}^{BC} - 4\chi_{22}^{BC} + 3\chi_{31}^{BC} = 0.$$

[Mukherjee, Petreczky, SS, PRD 2015]

#### Charm d.o.f at deconfinement



- Meson and baryon like excitations survive upto  $1.2T_c$ .
- Quark-quasiparticles start dominating the pressure beyond  $T \gtrsim 200 \text{ MeV} \Rightarrow$  hints of strongly coupled QGP [Mukherjee, Petreczky, SS, PRD 2015]

# Do diquarks exist beyond $T_c$ ?

- We look specifically at the sector of strange and charm hadrons.
- Upto 4th order derivatives additionally one has 3 more measurements  $\chi^{BSC}_{[112]}$

$$p_{SC}(T, \mu_B, \mu_C) = \sum_{j=0}^{1} p_{B,S=j}(T) \cosh\left(\frac{\mu_C + \mu_B - j\mu_S}{T}\right) + p_{D}(T) \cosh\left(\frac{\mu_C + \mu_B}{T}\right) + p_{D}(T) \cosh\left(\frac{\mu_C + \mu_B/3 - \mu_S}{T}\right).$$

• Di-quarks carry color quantum number...should disappear when quark d.o.f start dominating around 200 MeV.

# Do diquarks exist beyond $T_c$ ?

•  $p_D = \chi_{[211]}^{BSC} - \chi_{[112]}^{BSC} = 0$  for our data.



- Strange baryon-like excitations suppressed than meson-like excitations.
- These studies consistent with screening mass of sc-mesons [Y. Maezawa et. al., PRD 2015] and also from recent spectral function study [I Kelly, J.I. Skullerud,

# Do diquarks exist beyond $T_c$ ?

ullet For these calculations to be valid one should satisfy constraint relations o smoothly connect to HRG and free gas at low and high T.



 LQCD data agree with the constraints imposed by our proposed model.

## How perturbative is the QGP medium

ullet Screening masses can show how perturbative is the medium o less IR sensitive, more perturbative than gluonic observables.

$$C(z) = \int_0^{1/T} d\tau dx dy \langle \mathcal{O}^{\dagger}(x, y, z, \tau) \mathcal{O}(0, 0, 0, 0) \rangle \sim e^{-m_{\mathcal{O}} z}, z \to \infty,$$

• Vector like excitations  $\mathcal{O}=\bar{\psi}\gamma_{\mu}\psi$  reach the perturbative estimate quickly than pseudo-scalar excitations  $M/T=2\pi+\frac{g^2C_F}{2\pi}\left(E_0+1/2\right)$  [Bi-BNL collaboration, preliminary].



# Charm hadron spectrum...story about missing states

- The charm meson sector is measured experimentally to high precision.
- Many charm baryons states not measured yet predicted from lattice and quark models [Ebert et. al, 10, Padmanath et. al., 13]
- Even spin-parity of ground state  $\Lambda_c$  not measured!





# Relevance for QCD thermodynamics

- We construct hadron resonance gas model with experimentally known states: PDG-HRG
- Compare with HRG with experimental+additional states: QM-HRG
- The partial pressure of mesons are similar
- In the baryon sector the difference starts showing up [Bielefeld-BNL collaboration, 14]



#### Our results

- Our methodology allows us to look at charm baryon sector exclusively
- Also look into the specific quantum number channels

• all hadrons:  $\frac{\chi_{13}^{BC}}{\chi_{4}^{C}-\chi_{13}^{BC}}$ 

• S=1,2 hadrons:  $\frac{\chi_{112}^{BSC}}{\chi_{13}^{SC} - \chi_{11}^{BSC}}$ 

• Q=1,2 hadrons :  $\frac{\chi_{112}^{BQC}}{\chi_{13}^{QC} - \chi_{112}^{BQC}}$ 





Our data from QCD seems to support the existence of these additional baryon states!

#### Outline

Puzzles for open heavy flavor

Open charm mesons at freezeout

Relevance of our studies

- We could for the first time distinctly investigate the baryon and the meson sectors for heavy-light systems
- The charm mesons and baryons melt near  $T_c o$  similar to the light quarks.



## Many more charm baryons at freezeout?

- Interpret experiments to theory it is crucial to account for hadron abundances correctly
- Found evidence for the thermodynamic imprint of yet to be measured charm baryons
- These resonances should be taken into account for feed-down corrections.



• Open charm hadrons melt at  $T_c \Rightarrow$  freezeout temperature for  $D_s$  is now well known Input for heavy flavour transport?

- Open charm hadrons melt at  $T_c \Rightarrow$  freezeout temperature for  $D_s$  is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout  $\rightarrow$  can it explain the  $R_{AA}$  for open-charm mesons?

- Open charm hadrons melt at  $T_c \Rightarrow$  freezeout temperature for  $D_s$  is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout  $\rightarrow$  can it explain the  $R_{AA}$  for open-charm mesons?
- Our study supports the picture of a broad D-meson resonance immediately beyond  $T_c$  as predicted from T-Matrix approach. [M. He, R. J. Fries, R. Rapp. 121.

- Open charm hadrons melt at  $T_c \Rightarrow$  freezeout temperature for  $D_s$  is now well known Input for heavy flavour transport?
- Additional baryons may contribute to hadronic interactions near the freezeout → can it explain the R<sub>AA</sub> for open-charm mesons?
- Our study supports the picture of a broad D-meson resonance immediately beyond T<sub>c</sub> as predicted from T-Matrix approach. [M. He, R.
   J. Fries, R. Rapp, 12].
- Can one find the 3D effective potential that decides the screening mass and heavy quark number fluctuations from T-Matrix approach?