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Outline

@ Puzzles for open heavy flavor

© Open charm mesons at freezeout

© Relevance of our studies
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Open heavy flavors: challenges

@ Heavy quarks are created
in the initial stages of
heavy-ion collisions.

@ Exchange energy and
momenta with the medium
— Raa quantifies the
suppression of high pr
heavy hadrons due to the
interaction.

@ v, generated due to
interactions.

@ Tension between R4 and
v». Can be understood for
RHIC energies but still
unresolved for LHC
energies?
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@ Microscopic degrees of freedom in the medium both in the hadronic
and QGP medium.
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@ Microscopic degrees of freedom in the medium both in the hadronic
and QGP medium.

@ For heavy quarks when is the quasi-particle approximation start to be
a good description?

@ What is the melting temperature of heavy hadrons T.?

@ Dynamic quantities like the diffusion constant D and 7/S.
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Melting temperature of heavy quark bound states

@ The cC mesons like J/1, 7). are created early in HIC.
@ If thermalized QGP is formed the number of J/« produced is much reduced
due to screening of inter quark potential
@ First principles study of the spectral functions
and variational method shows melting
of J/ipat T > 1.5 T..
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Melting temperature of heavy quark bound states

@ The cC mesons like J/1, 7). are created early in HIC.

@ If thermalized QGP is formed the number of J/« produced is much reduced
due to screening of inter quark potential

@ First principles study of the spectral functions

and variational method shows melting
of J/ipat T > 1.5 T..
@ Bottomonium states show sequential melting above
T..
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Is there really a flavor hierarchy?

@ Deconfinement : Releasing of colored degrees of freedom

@ Pure gauge theory: phase transition due to deconfinement
has an order parameter Polyakov loop L.,

@ In QCD with physical masses: no exact order parameter

@ Looking at the fluctuations of s and u quark numbers in the thermal
medium gives an apparent impression of different T4

@ Important to look at good that clearly separates the
deconfined phase.
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@ Puzzles for open heavy flavor

© Open charm mesons at freezeout

© Relevance of our studies
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Characterization of freezeout surface

@ If a thermalized medium is formed = characterized by T, g, V

@ Compare the ratio of particle yields from theory and experiments and
perform a \° minimization in the 7 — g plane.

@ Obtain 77 and /Lg corresponding to the collision energy
@ Issues about acceptance cut, low momentum particles left out
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Motivation for HRG

@ At freezeout no more inelastic collisions=- the ensemble can be described by
a gas of all measured hadrons and possible resonances (HRG)

% s 2 B(e; — i
InZ:iZg,-Q—ﬂ’/o dpp In(lic( ‘)>,

e=vpP+m=m & pi=peBi+usSi+pcC+wli.

@ A virial expansion can be used to estimate the effect of interactions.
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Motivation for HRG

@ At freezeout no more inelastic collisions=- the ensemble can be described by
a gas of all measured hadrons and possible resonances (HRG)

% s 2 Be;— i
InZ:iZg;ﬁ/o dpp In(lic( ‘)>,

e=vpP+m=m & pi=peBi+usSi+pcC+wli.

@ A virial expansion can be used to estimate the effect of interactions.
@ Scattering phase shifts from expt used to calculate interaction cross-section.
@ HRG a good approximation if resonances very near to two particle threshold.
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Is it a good approximation?

@ Summary: any residual hadron interactions at the freezeout is taken into
account by considering all known resonances
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Is it a good approximation?

@ Summary: any residual hadron interactions at the freezeout is taken into
account by considering all known resonances

@ Other motivation: At low T, g = 0, thermodynamics dominated by pions
@ The interaction from 3 loop YPT within 15% of ideal gas results

@ Residual interactions o njn; ~ e~ (mitm)/T syppressed for heavy quarks —
HRG is a better approximation of QCD medium near freezeout for heavy
hadrons.
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Why charm?

e 6 ¢ ¢

The heavy charm quarks produced before QGP is formed.
Maximum T ~ 500 MeV at the LHC
mc > T: charm is not thermally generated in the hot medium

Have a near thermal distribution of momenta

At LHC energies charm abundances are quite high — statistical
hadronization similar to the light quarks?

Hadronization would imply existence of deconfined medium
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Our Setup

@ We want to understand where heavy quarks deconfine from properties
of heavy-light hadrons. c¢ states not considered.

@ The analysis of bound states through the study of spectral functions
difficult on the lattice.

@ If the charm hadron ensemble near the freezeout well described as a
hadron resonance gas characterized by T. g, ¢,

P(fic,fig) = Pmcosh(fic)+ P cosh(fig +
+ 'DB,C:2 COSh(/AJ,B + 2ﬁc) + 'DB,C:3 COSh(/AJ,B + 3/llc) .

@ The ground state mc—o — mc—1 =1 GeV : effect on
thermodynamics of C = 2,3 baryons is negligible.
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Our Setup

@ |t is comparatively easy to calculate the fluctuations +correlations of
B, C
it
BC 4
Xi~ = 77ga~cFrot/ T
J G/L?dujc ot/

@ The partial pressures can be constructed out of 6 fourth order
susceptibilities:
c . BC c . BC ,BC . BC
X2 X11 and Xg, X315, X225 X13 -

@ Setting 1+ = 0 one can rewrite the partial pressures in terms of these
quantities like

PM:chfxgzc=PB,C:1ing,m+n:4
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A glimpse of what goes into computations

Quark fields

4 onsites

Gauge fields
on links

Two different lattice 24° x 6, 323 x 8 to check the cut-off effects
Large enough for thermodynamic limit

The light and strange quarks are dynamical — nearly-physical
Charm quarks are like external probes —

m. determined by setting 1/4 (3m_//w + mnc) to its physical value

®© 6 ¢ ¢ ¢
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A glimpse of what goes into computations

Quark fields

4 onsites

Gauge fields
on links

Two different lattice 24° x 6, 323 x 8 to check the cut-off effects
Large enough for thermodynamic limit

The light and strange quarks are dynamical — nearly-physical
Charm quarks are like external probes —

m. determined by setting 1/4 (3mJ/w + mnc) to its physical value
On the lattice measuring susceptibilities is complimentary to the
spectral function method.
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What do we need to consider

@ An “order parameter” to characterize deconfinement of heavy quarks
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What do we need to consider

@ An “order parameter” to characterize deconfinement of heavy quarks

@ For heavy quarks the mass dependent cut—off effects are severe —
need to make our order parameter free from such effects.

0.001 T T T

SC
X22 mass +/-2%
0.0008 +1%
Extra hadrons
Measured

0.0006

0.0004

0.0002

T [MeV]

150 160 170 180 190 200
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Open charm mesons at freezeout

@ We consider two equivalent definitions of Py = & — B¢ = & — B¢
@ Ratio is like an order parameter

@ Insensitive to lattice cut-off, mass effects

@ Diagonal fluctuations dominated by mesons — not a good observable.
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@ Open charm mesons melt at T, independent of the details of the hadron
spectrum
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Fate of Charm baryons

@ We can for the first time look exclusively at the baryon sector
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Fate of Charm baryons

@ We can for the first time look exclusively at the baryon sector
@ Our “order parameter” :\2C /B — some observables may not be

suitable!
3.0 non-int. —
Ni: 8 6 quarks
BC,, BC _
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251 Bc, BC u T
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Fate of Charm baryons

@ We can for the first time look exclusively at the baryon sector
@ Our “order parameter” :\2C /B — some observables may not be

suitable!
3.0 non-int. —
Ni: 8 6 quarks
BC,, BC _
X13 /%2, ®H ]
251 Bc, BC u T
X1 /X3 @ © [ |

un-corr. @ @'

hadrons
T

140 160 180 200 220 240 260 280
@ These melt near T, too!
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Summary till now

@ Do the heavy baryons and mesons have a different freezeout surface
than the others? = look at the melting of hadrons of heavy and light
quarks
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to thermodynamics

Sayantan Sharma INT Program INT-17-1b, UW, Seattle Slide 19 of 30



Summary till now

@ Do the heavy baryons and mesons have a different freezeout surface
than the others? = look at the melting of hadrons of heavy and light
quarks

@ Our study do not favour flavour hierarchy of freezeout

@ For the first time we could single out the charm baryon contribution
to thermodynamics

@ What does it imply for the medium properties?
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What does it imply for medium properties
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@ Deviation from HTL results between 160 — 200 MeV
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@ Deviation from HTL results between 160 — 200 MeV

@ Hadrons melt but may survive as broad excitations till 1.2 7,
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What does it imply for medium properties
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@ Deviation from HTL results between 160 — 200 MeV

@ Hadrons melt but may survive as broad excitations till 1.2 7,

@ Pressure for broad “quasi-particles” considerably lower than small width QP
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What does it imply for medium properties
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@ Deviation from HTL results between 160 — 200 MeV

@ Hadrons melt but may survive as broad excitations till 1.2 7,
@ Pressure for broad “quasi-particles” considerably lower than small width QP

@ Charm may also exist as a broad resonance with asymmetric peak in spectral

function— not a good quasi-particle.
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Charm d.o.f at deconfinement

@ Considering charm mesons+baryon+quark-like excitations

4 +
pc(T, g, pic) = pm(T) cosh <17C> + pg.c=1(T) cosh (M) +

-
pc +ps/3
T)cosh | LEF1B/3
pol T cosh (L1212

@ Considering fluctuations upto 4th order we have 2 trivial constraints
.C_.C BC_ . BC
X4 = X2 » X11 = X13-

@ A more non-trivial constraint:

a = x5 — 45 +3x5F =o.
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Charm d.o.f at deconfinement

T
tot

| [Pc/PE

0.8 1
éA i=baryon
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i=quark —A—

02} H ..'. ]
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@ Meson and baryon like excitations survive upto 1.27..

@ Quark-quasiparticles start dominating the pressure beyond T = 200 MeV =
hints of strongly coupled QGP
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Do diquarks exist beyond 7.7

@ We look specifically at the sector of strange and charm hadrons.

@ Upto 4th order derivatives additionally one has 3 more measurements

SC
X[i1g
- pe + pe — Ju
ic + 1B —Jjis
psc(T, s, pic) = Z;pg,s_j(T) cosh <f> +
J:
: : / 8/3 — 1
pm(T) cosh <@> + po(T) cosh </fc +/fsT/ /15> .

@ Di-quarks carry color quantum number...should disappear when quark
d.o.f start dominating around 200 MeV.
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Do diquarks exist beyond 7.7

® pp = XE%C] — Xﬁ%} = 0 for our data.
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@ Strange baryon-like excitations suppressed than meson-like excitations.
@ These studies consistent with screening mass of sc-mesons

and also from recent spectral function study
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Do diquarks exist beyond 7.7

@ For these calculations to be valid one should satisfy constraint
relations — smoothly connect to HRG and free gas at low and high T.

1.5 T T
Cp —B—
G

1 Cy —A—

15 . . . . . . . .
180 200 220 240 260 280 300 320 340

T (MeV)

o LQCD data agree with the constraints imposed by our proposed
model.
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How perturbative is the QGP medium

@ Screening masses can show how perturbative is the medium — less IR
sensitive, more perturbative than gluonic observables.

1/T
C(z) = / drdxdy(O(x,y,z,7)0(0,0,0,0)) ~e ™% 7 — oo,
Jo
@ Vector like excitations O = 17,1 reach the perturbative estimate quickly
2
than pseudo-scalar excitations M/ T = 27 + g;F (Eo+1/2)
,L
65 ; v"’(.... : : : -
g . . LN E3
E 6 Yy “
*A
N=8,PS —a—
55 N=10,PS s |
f N=12, pS
N&=8,V —e—
N=10,V e
s [ ‘ ‘ ‘ N=12,V
0 500 1000 1500 2000 2500 3000 3500
T (MeV)
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Charm hadron spectrum...story about missing states

@ The charm meson sector is measured experimentally to high precision.

@ Many charm baryons states not measured yet predicted from lattice
and quark models

@ Even spin-parity of ground state A. not measured!

P - AclGeVl .
35 o == = _ ] = o 1
—_——— =7 & do 3
= - @
L1 - [ 1
—
- o EMEE B s *
25+ ) : = ]
alle m= @
. . Lol : m : i
) . . . ezq)enmemally‘eslat‘)llsh‘ed states = Pl SR
osf- i
12" 32" 512" 712% 92* 12 3/2° 527 7727 92 1172
06F i
' ot st 1232 s
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Relevance for QCD thermodynamics

@ We construct hadron resonance gas model with experimentally known
states: PDG-HRG

@ Compare with HRG with experimental+additional states: QM-HRG

@ The partial pressure of mesons are similar

@ In the baryon sector the difference starts showing up

= QM-HRG
P, mm QM-HRG-3.5
== QM-HRG-3

- - PDG-HRG

0.0003

0.0001 -
Il
P
0.0015 - M
0.0005 T[MeV] ]
Il Il Il
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Our results

@ Our methodology allows us to look
at charm baryon sector exclusively

@ Also look into the specific quantum

05 F uc, e - ]
XoSSG-xEE) Charm baryon/meson
number channels l e |
B .4 4
. X13 L QM-HRG-3 == |
e all hadrons: = 03 1 QM-HRG =— |
4 7X13 - PDG-HRG ==
B¢ r 1
e S=1,2 hadrons: —f25 02 p C o
X13 — X112 05 b 3P 89C non-int.
XBQC i 12 A AR quarks .
— . 112 F i
e Q=1,2 hadrons : —ac - Bqc oa b TR L |
X13° ~ X112 -
031 / Charged-charm
A= agleevi ~ " _ T
== —_— 07 X2 /Xis Xi2) Strange-charm
35 == ———— ]
 — = 05 - NS 6]
= B8
03 T[Mev] |
- L L L L L L L L L L L L

experimentally established states Y

1RraRt R TR AR 1/ MY &2 7 9 12 140 150 160 170 180 190 200 210

Our data from QCD seems to support the existence of these additional baryon
states!
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@ Puzzles for open heavy flavor

© Open charm mesons at freezeout

© Relevance of our studies
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Conclusions

@ We could for the first time distinctly investigate the baryon and the
meson sectors for heavy-light systems

@ The charm mesons and baryons melt near T. — similar to the light

quarks.
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Many more charm baryons at freezeout?

@ Interpret experiments to theory it is crucial to account for hadron
abundances correctly

@ Found evidence for the thermodynamic imprint of yet to be measured
charm baryons

@ These resonances should be taken into account for feed-down

corrections.
05 - XECUxS-xES)  Charm baryon/meson 7
L o m B
04 b “ u 4
L QM-HRG-3 == |
o3 b QM-HRG == |
. PDG-HRG
L ,BQC,,QC_ BQC non-int, 4
0.5 1= X2 /X3 X2 ) quarks

1 /mm charm
| D

BSC/ SC_\ BSC
X2 /X3 X))
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05 Ng8 6
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Conclusions

@ Open charm hadrons melt at 7. = freezeout temperature for D is
now well known
Input for heavy flavour transport?
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freezeout — can it explain the R4, for open-charm mesons?
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@ Our study supports the picture of a broad D-meson resonance
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Conclusions

@ Open charm hadrons melt at 7. = freezeout temperature for D is
now well known
Input for heavy flavour transport?

@ Additional baryons may contribute to hadronic interactions near the
freezeout — can it explain the R4, for open-charm mesons?

@ Our study supports the picture of a broad D-meson resonance
immediately beyond T, as predicted from T-Matrix approach.

@ Can one find the 3D effective potential that decides the screening
mass and heavy quark number fluctuations from T-Matrix approach?
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