p+A data at the LHC

Dennis V. Perepelitsa University of Colorado Boulder

INT Program INT-17-1b: Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks

11 May 2017

and A+A & UPC p+A data at the LHC

Dennis V. Perepelitsa University of Colorado Boulder

INT Program INT-17-1b: Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks

11 May 2017

Jet physics during LHC Run 2

Jet physics during LHC Run 2

jet structure

high-energy jet

EXPERIMENT

Run 168795, Event 7578342 Time 2010-11-09 08:55:48 CET

<u>Pb+Pb 2.76 TeV</u> <u>LHC Run 1</u>

 X
 beams going into/ out of the page

no balancing jet

Run: 286834 Event: 124877733 2015-11-28 01:15:42 CEST Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV photon + multijet event ∑E_TFCal = 4.06 TeV

<u>Pb+Pb 5.02 TeV</u> <u>LHC Run 2</u>

balancing jet? ---

high-energy

photon

EMCal

HCal

8

Select jets based on finalstate (jet) kinematics:

- can only explore relative energy balance
- flavor/topology differences
 b/w pp and Pb+Pb

Select jet events based on <u>boson</u> kinematic

- absolute handle on initial
 E, direction, flavor
- can make consistent
 selection in *pp* to Pb+Pb
- no surface bias
- 9

1. What is the (absolute) amount of energy lost in cone?
→ photon+jet p_T-balance

 What is the (absolute) amount of energy lost in cone?
 photon+jet p_T-balance

2. How is the parton shower modified by medium?

photon-tagged jet fragmentation function

 What is the (absolute) amount of energy lost in cone?
 photon+jet p_T-balance

2. How is the parton shower modified by medium?

photon-tagged jet fragmentation function

3. Where does the lost energy end up?

→ photon-hadron correlations

 $X_{Jy} = \rho_T^{jet} / \rho_T y$

vary system size

Importance of unfolding... Pb+Pb pp Z Z Z Z Z Z Z Z Z Z 0 - 10 % ATLAS Preliminary 2013 pp data, 4.0 pb⁻¹ $1 \ge 3.5$ anti- $k_t R = 0.4$ jets, $\sqrt{s_{NN}} = 2.76$ TeV 2011 Pb+Pb data, 0.14 nb⁻¹ detector-free 3 2.5 2.5 detectordependent 1.5 1.5 0.5 0.5 100 < p_ < 126 GeV 203040506070809 0.10.20.30.40.50.60 **X**. **X**.1

Key final step: unfolding for <u>all</u> detector effects

- unfolding recovers non-trivial features washed away by resolution
- "2-D" unfolding difficult but ultimately necessary if we want to enter a "precision jet physics" era...

Current χ + jet comparisons are to a "smeared pp reference" (data or MC or theory calculations)_{0.5}

"min my perspective: producing final, fully Christopher McGinn unfolded results to allow more than qualitative 0.5 1.5 comparisons

Photon-tagged FF select pp and Pb+Pb events with **photon** in <u>narrow</u> *p*_T range pick jets angularly associated with photon select jets over broad $p_{\rm T}$ range measure frag. function with respect to **jet** (not χ !)

Photon-tagged FF

select *pp* and Pb+Pb events with **photon** in <u>narrow</u> *p*_T range

pick jets **angularly associated** with photon

> select **jets** over broad *p*_T range

measure **frag. function** with respect to **jet** (not γ!)

RHIC-style **y**+h doesn't distinguish E-loss from mod. of fragmentation...

testing color coherence...

- 1. γ+jet: absolute E-loss
- 2. y+jet vs. reaction plane
- 3. γ -tagged R_{AA}
- 4. missing-*p*_T flow w/ external scale
- 5. D(*z*) for γ-tagged jets in Pb+Pb & *p*+*p*
 - very nice talks on these Wed. afternoon
- 6. low-*p*_T quark jets, compare to RHIC

.... etc.

Run 2 γ+jet physics (and Run 3+4 *Z*+jet?)

p+A: initial state effects

initial state effects

cleaner environments (UPC)

cleaner probes (EW in 8.16 TeV p+Pb)

γ+multi-jet event 8.16 TeV *p*+Pb ATLAS data Precise, large-statistics pp reference data at $\sqrt{s=8}$ TeV

Appreciable initial state E-loss effects for severalhundred GeV photons...

Di-photon event $p+Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$ $p_{T,1}^{\gamma} = 36.7 \text{ GeV}, \eta_1 = 0.96, \phi_1 = 0.21$ $p_{T,2}^{\gamma} = 34.2 \text{ GeV}, \eta_2 = 1.68, \phi_2 = -2.91$ $\sum E_T^{Pb} = 19.9 \text{ GeV}$

Xp Xp XA 0000 access to Low-XA!

Can expect ~3000 pairs with $p_{T1,2} > 16$ GeV

top quarks in p+A

32

Fundamental particle, previously unobserved in HI collisions

➡ some impact for nPDFs

p+A: final state effects(?)

Checking N_{coll} calibration with EW bosons...

... higher statistics W measurements in Run 2 data soon available

0-10% p+A or 70-90% A+A?

credit to R. Weller and P. Romatschke

0-10% p+A or 70-90% A+A?

credit to R. Weller and P. Romatschke

Would like to use N_{coll} -scaled hard process rates (R_{pA})...

... unfortunately, contributions from interesting (but likely not jet quenching) physics...

... so use intra-event momentum correlations

jet quenching in ultra-central p+A?

near-side ridge persists to 9-12 GeV in p+A (0-0.003% events) finite-v₂ out to 10 GeV (0-1% events) ► <u>repeat in 8.16 TeV!</u>

... search for onset of jet quenching?

E-by-E energy loss

42

1. do we understand small-N_{part} collision geometries?

2. models that successfully describe periph. R_{AA} data — what do they predict for p+A E-loss?

3. can we place a limit (or observe?) energy loss in small systems?

γ +jet in 8.16 TeV p+A data

high degree of experimental control in pp

<u>>10k ptv > 40 GeV</u> in 0-1% events

(based on measured 8 TeV pp x-section)

small systems at sPHENIX

GEANT4 Simulation Pythia8 **y**+multijet

200 GeV p+Au @ L_{int} = 400 nb^{-1} / week × 10 weeks: precise, high-statistics program to probe small systems

Outer HCal

Inner HCal

MAPS+INTT+TPC

FMCal

γ+jet in highmult. *p*+Pb

Thank you!

47

γ+jet in

Pb+Pb

tt in p+Pb

dijets in UPC (y+jet)

two MC Glauber events showing only the **participating** nucleons in the transverse plane

same N_{part}/N_{coll} value

one is p+A, one is A+A...

two MC Glauber events showing only the **participating** nucleons in the transverse plane

same N_{part}/N_{coll} value

one is p+A, one is A+A...

Centrality "biases"

Centrality "splitting" for jets at RHIC

scales with $\mathbf{X}_{\mathbf{P}}$ (or $X_{\mathbf{F}}$)

b/w rapidities at LHC

"Splitting" for dijets at large η

scales with x_T b/w RHIC & LHC

not trivial energy conservation

"shrinking proton" picture

typical proton

anti-correlation between <u>longitudinal momentum</u> structure and <u>transverse spatial</u> structure

DVP, Cole, Strikman, <u>PRC 93 (2016) 011902</u> Bzdak et al. <u>PRC 93 (2016) 044901</u> 53

Armesto et al. <u>PLB 747 (2015) 441</u> Kordell, Majumder <u>hep-ph/1601.02595</u>

"shrinking proton" picture

typical proton

we know the proton fluctuates event by event...

nucleus acts as an "analyzer" sensitive to the proton's transverse size

Tune a model to **d+Au**, predict **p+Au** and **3He+Au**

double parton scattering in p+A

4-jet production: Blok, Strikman, Wiedemann EPJC 73 (2013) 2433

superfast quarks

- Select final-state dijet events where $x_A > 1$ configurations dominate
 - ⇒ e.g. $-5 < \eta_1 < -3$, $|\eta_2| < 2.5$, $p_T^{\text{dijet}} > 150 \text{ GeV}$
- Rate sensitive to the nucleon interactions at very short distance scales
 - \rightarrow for 70/nb of 8 TeV p+Pb data, 200-1200 events depending on SRC model 62

baseline

bias towards multijet final states

