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Hydrodynamics is the bottleneck in JETSCAPE
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Initial 
condition

Jet shower

Hydrodynamic evolution

Hadron 
cascade

Fast (< seconds on cpu)

Slow (several hours on cpu)

• Hydrodynamic evolution is much slower than jet shower 
propagation which hinders concurrent running.
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Big-data in heavy ion collisions (Bayesian method)
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FIG. 7. Posterior distributions for the model parameters from calibrating to identified particles yields (blue, lower triangle)
and charged particles yields (red, upper triangle). The diagonal has marginal distributions for each parameter, while the
o↵-diagonal contains joint distributions showing correlations among pairs of parameters. †The units for ⌘/s slope are [GeV�1].

We place a uniform prior on the model parameters, i.e.
the prior is constant within the design range and zero
outside. Combined with the likelihood (29) and Bayes’
theorem (28), we can easily evaluate the posterior prob-
ability at any point in parameter space.

Posterior distributions are typically constructed using
Markov chain Monte Carlo (MCMC) methods. MCMC
algorithms generate random walks through parameter
space by accepting or rejecting proposal points based on

the posterior probability; after many steps the chain con-
verges to the desired posterior.
We use the a�ne-invariant ensemble sampler [113,

114], an e�cient MCMC algorithm that uses a large en-
semble of interdependent walkers. We first run O(106)
steps to allow the chain to equilibrate, discard these
“burn-in” samples, then generate O(107) posterior sam-
ples.
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III. PARAMETER ESTIMATION

With the full evolution model in hand, a number of im-
portant model parameters—related to both initial-state
entropy deposition and the QGP medium—remain un-
determined. These parameters typically correlate among
each other and a↵ect multiple observables, hence, if we
wish to describe a wide variety of experimental observ-
ables, the only option is a simultaneous fit to all param-
eters. However, it is not feasible to do this directly, since
simulating observables at even a single set of parameter
values requires thousands of individual events and signif-
icant computation time.

To overcome this limitation, we employ a Bayesian
method for parameter estimation with computationally
expensive models [23–26]. Briefly, the model is evalu-
ated at a relatively small O(102) number of parameter
points, the output is interpolated by a Gaussian pro-
cess emulator, and the emulator is used to systematically
explore the parameter space with Markov chain Monte
Carlo methods. This section summarizes the methodol-
ogy; see Ref. [32] for a complete treatment.

A. Model parameters and observables

We choose a set of nine model parameters for estima-
tion. Four control the parametric initial state:

1. the overall normalization factor,

2. entropy deposition parameter p from the general-
ized mean ansatz Eq. (14),

3. gamma shape parameter k, which sets nucleon mul-
tiplicity fluctuations in Eq. (12), and

4. Gaussian nucleon width w from Eq. (11), which
determines initial-state granularity;

the remaining five are related to the QGP medium:

5–7. the three parameters (⌘/s hrg, min, and slope) in
Eq. (4) that set the temperature dependence of the
specific shear viscosity,

8. normalization prefactor for the temperature depen-
dence of bulk viscosity Eq. (5), and

9. particlization temperature T

switch

.

This parameter set will enable simultaneous characteri-
zation of the initial state and medium, including any cor-
relations. Table I summarizes the parameters and their
corresponding ranges, which are intentionally wide to en-
sure that the optimal values are bracketed.

Having designated the model parameters and ranges,
we generated a 300 point maximin1 Latin hypercube de-
sign [110] in the nine-dimensional parameter space and

1
A “maximin” design maximizes the minimum distance between

points, thereby reducing large gaps and tight clusters.

TABLE I. Input parameter ranges for the initial condition
and hydrodynamic models.

Parameter Description Range

Norm Overall normalization 100–250

p Entropy deposition parameter �1 to +1

k Multiplicity fluct. shape 0.8–2.2

w Gaussian nucleon width 0.4–1.0 fm

⌘/s hrg Const. shear viscosity, T < Tc 0.3–1.0

⌘/s min Shear viscosity at Tc 0–0.3

⌘/s slope Slope above Tc 0–2 GeV�1

⇣/s norm Prefactor for (⇣/s)(T ) 0–2

Tswitch Particlization temperature 135–165 MeV

executed O(104) minimum-bias Pb+Pb events at each of
the 300 points. Each event consists of a single “bumpy”
(i.e. Monte Carlo sampled) initial condition and hydro
simulation followed by multiple samples of the freeze-out
hypersurface. The number of samples is roughly inversely
proportional to the event’s particle multiplicity so that
total particle production is constant across all events—
typically ⇠5 samples for central events and up to 100
for peripheral events. This strategy leads to consistent
statistical uncertainties across all parameter points and
centrality classes.
Parameter estimation relies on observables that are

sensitive to varying the model inputs. For example, bulk
viscosity suppresses radial expansion, so a meaningful es-
timate of the (⇣/s)(T ) normalization parameter requires
some measure of radial flow such as the mean transverse
momentum. Indeed, previous work has shown that fi-
nite bulk viscosity is necessary to simultaneously fit both
mean transverse momentum and anisotropic flow [44].
For the present study we compare to the centrality de-

pendence of identified particle yields dN/dy and mean
transverse momenta hpT i for charged pions, kaons, and
protons as well as two-particle anisotropic flow coe�-
cients vn{2} for n = 2, 3, 4. Table II summarizes the ob-
servables including kinematic cuts, centrality classes, and
experimental data, which are all from the ALICE experi-
ment, Pb+Pb collisions at

p
sNN = 2.76 TeV [108, 109].

These observables characterize the lowest-order moments
of the transverse momentum and flow distributions; in-
cluding higher-order quantities such as mean-square mo-
menta hp2T i [33] and four-particle cumulants vn{4} [111]
could enable a more precise fit.
When computing simulated observables, we strive to

replicate experimental methods as closely as possible. We
selected the same centrality classes as the correspond-
ing experimental data by sorting each design point’s
minimum-bias events by charged-particle multiplicity
dN

ch

/d⌘ at midrapidity (|⌘| < 0.5) and dividing the
events into the desired percentile bins. We computed
identified dN/dy and hpT i by simple counting and aver-
aging of the desired species at midrapidity (|y| < 0.5);

• Bayesian method 

PRC 94.024907,   J.E.Bernhard. et.el.

PRL. 114, 202301,  S. Pratt, et.el

P (X|Y ) =
P (Y |X)P (X)

P (Y )

X: model —— Y: data

104 ⇠ 107 events
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Big-data in heavy ion collisions (Deep Convolution Neural Network)
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•              events from CLVisc and iEBE-VISHNU (by C.Shen, Z.Qiu, H.C.Song, 
J.Bernhard, S.Bass, U.Heinz) are used, more are needed in the future for other studies.

• Huge amount of labeled events are required to get the most relevant feature in 
supervised learning (no matter what kind of initial state fluctuations or irrelevant 
parameters are employed in the model).

LongGang Pang                 Identifying QCD transition using deep learning 

�#Q�K#LMK#!NDP#

27

CNN

Brain/CNN

Dog

Cat

crossover or 
1st order transition        

⇢(pT ,�)

An EoS-meter of QCD transition from deep learning 
Long-Gang Pang, K.Zhou, N.Su, H.Petersen, H.Stocker and X.-N.Wang,   arxiv:1612.04626v2

O(104)

http://inspirehep.net/record/1503189
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Graphics Processing Unit (GPU) for parallelization

5

• GPUs have more processing elements (PE) than CPUs. 
4992 PE/Cuda cores (GPU Tesla K80) vs 8-18 cores 
(Intel Xeon E5 server CPU)

• Peak performance: 5.6 Tflops (Tesla K80) vs ~700 
Gflops (Intel Xeon E5 server CPUs)

Fig from Nvidia company
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GPU memory (Global memory)
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Introduction to GPU parallel computing GPU architecture

Memory access on GPU

Global Memory

Global memory: GPU side, 1� 12 GB, speed 100� 300 GB/s, latency 400 clock
cycles.

400 clock cycles == (400 +) or (100 *) or (20-40 square root).

Use more workitems per workgroup to hide latency (warp switching).

Do extra calculation other than Global memory access.

Slowest
LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 11 / 33
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GPU memory (Local memory)
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Introduction to GPU parallel computing GPU architecture

Memory access on GPU

Local Memory

Local memory: on CU, 16� 64KB, speed 600� 800 GB/s, latency 1� 40 clock
cycles

Used when multi workitems in the same workgroup share data

No data sharing, do not use local memory (slower than private memory).

Faster

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 11 / 33
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GPU memory (private memory)
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Introduction to GPU parallel computing GPU architecture

Memory access on GPU

Private memory

Private memory: on PE, 16-64K per CU.

Used if global/local/constant memory is accessed by one workitem multiple
times.

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 11 / 33
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3+1D hydro on GPU GPU parallel in my project

Reduction for spectra and max energy density

Parallel reduction to get
maximum, minimum,
summation for a big array.

Stop hydro evolution when
maximum temperature of
QGP smaller than freeze out
temperature.

Calc. spectra by summation
over all the freeze out
hyper-surface elements.

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 20 / 33

First application of GPU parallelization

9
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3+1D hydro on GPU GPU parallel in my project

Spectra calculation on GPU (perfect task)

Perfect job for GPU

dN

dY pT dpT d�
=

gs

(2⇡)3

Z

⌃

p

µ
d⌃µ

1
exp((p · u� µ)/TFO)± 1

(2)

Up to 200, 000 small pieces of d⌃µ.

Usually need 41 rapidity(Y ) bins, 15 transverse momentum(pT ) bins, 48
azimuthal angle(�) bins.

More than 300 resonance particles.

For each event, needs to calc. exp function 200, 000 ⇤ 41 ⇤ 15 ⇤ 48 ⇤ 300 times.

Pb+Pb 2.76TeV/n, 20-25%

CPU (i5-430M) GPU (GT-240M) GPU (K20)
Smooth spec. for ⇡+ 7 minutes 30 seconds 0.5 seconds

Table : GPU(48 cuda cores) in my laptop is 10-30 times faster than CPU. Recent NVIDIA
K20 GPU has 2496 cuda cores.

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 19 / 33

Spectra calculation on GPU

10
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OpenCL vs Cuda vs OpenAcc
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Introduction to GPU parallel computing What is OpenCL?

What is OpenCL?

Open Computing Language (OpenCL) from wikipedia

OpenCL is a framework for writing programs that execute
across heterogeneous platforms consisting of central processing
units (CPUs), graphics processing units (GPUs), digital signal
processors (DSPs), field-programmable gate arrays (FPGAs)
and other processors.

Open Standard maintained by Khronos org.

Host language: C/C++/Python/Julia/Java.

Device language: C99 (subset)

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 12 / 33

CUDA:
Specific for Nvidia GPUs, C/C++/Python/
Modern deep learning libraries all uses CUDA

OpenACC: 
Like OpenMP, pragma for loop parallelization.

CLVisc uses OpenCL

Massively parallel simulations of relativistic fluid
dynamics on graphics processing units with CUDA

Dennis Bazowa,⇤, Ulrich Heinza, Michael Stricklandb

aDepartment of Physics, The Ohio State University, Columbus, OH 43210 United States
bDepartment of Physics, Kent State University, Kent, OH 44242 United States

Abstract

Relativistic fluid dynamics is a major component in dynamical simulations of the
quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of
the full three-dimensional dissipative dynamics of the quark-gluon plasma with
fluctuating initial conditions are computationally expensive and typically require
some degree of parallelization. In this paper, we present a GPU implementation
of the Kurganov-Tadmor algorithm which solves the 3+1d relativistic viscous hy-
drodynamics equations including the effects of both bulk and shear viscosities.
We demonstrate that the resulting CUDA-based GPU code is approximately two
orders of magnitude faster than the corresponding serial implementation of the
Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests
such as the relativistic shock-tube and Gubser flow.
Keywords: Relativistic fluid dynamics, Quark-gluon plasma, GPU, CUDA,
Parallel computing

PROGRAM SUMMARY
Manuscript Title: Massively parallel simulations of relativistic fluid dynamics on graph-
ics processing units with CUDA
Authors: Dennis Bazow, Ulrich Heinz, Michael Strickland
Program Title: GPU-VH
Journal Reference:
Catalogue identifier:
Licensing provisions: none

⇤Corresponding author.
E-mail address: bazow.1@osu.edu (D. Bazow)

Preprint submitted to Computer Physics Communications August 24, 2016
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CLVisc, L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015 
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Model (3+1D viscous hydrodynamics)
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CLVisc: a (3+1)D viscous hydrodynamics parallelized on GPU using OpenCL

CLVisc, L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015 
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KT algorithm for PDE (old implementation in CLVisc)
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3+1D hydro on GPU GPU parallel in my project

KT algorithm on GPU

In 3d, each cell shares data with 12 neighbors, better to use local memory.

Performance of KT evolution for most central Pb+Pb collisions

CPU (E5-2650) K20 (5 ⇤ 5 ⇤ 5 block) K20 (7 ⇤ 7 ⇤ 7 block)
1 hour 3 minutes 50 seconds

5 ⇤ 5 ⇤ 5 block with T

µ⌧ , ", P , Uµ, cs2 in local memory

7 ⇤ 7 ⇤ 7 block with T

µ⌧ , ", P , vi in local memory

LongGang Pang Relativistic Hydrodynamics On GPU June 15, 2015 17 / 33

ideal hydrodynamics

Too many halo cells, use too much local memory, difficult to 
implement in viscous hydro.
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KT algorithm for PDE (new implementation in CLVisc)

14

5

un�1 is not known, ideal hydrodynamics is employed to
get u⇤1.

In 3D KT algorithm, the required data to update the
source terms S

⇡

, S
N

, S
T

and S⇧ at lattice (i, j, k) are
4 components in (", v

x

, v
y

, v
⌘

), 10 components in ⇡µ⌫ ,
2 components in N and ⇧, on 13 lattice grids. As a
result, at least 16 ⇥ 13 = 208 float numbers are used
to update one hydrodynamic cell. Without using local
memory, there are too many redundant fetching from
global memory to private memory, which slows down the
calculation. In the beginning, a 3D stencil was used to
fetch a 3D block of data to local memory, all the threads
in the same work group read data from local memory.
However, numerous halo cells are needed in each direc-
tion in order to update the boundary cells in the local
block. In order to update one 7⇥ 7⇥ 7 block, one needs
7 ⇥ 7 ⇥ 4 ⇥ 3 halo cells. The total local memory used
for the e↵ective block and halo cells in this simple case
is 16 ⇥ 7 ⇥ 7 ⇥ (7 + 12) ⇥ 4/1024 = 56 KB, which is
already exceed the maximum local memory provided by
the most advanced GPUs on the market (typical size of
local memory is 32 KB). A trade o↵ is to read halo cells
directly from global memory instead of storing them in
local memory, which will reduce the local memory usage
to 20 KB. On the other hand, concurrent reading from
global memory is only possible along one dimension, de-
pends on in which direction the data is stored continu-
ously. The data in one 3D array can only be stored con-
tinuously in one direction, which makes concurrent read-
ing impossible in the other 2 directions. For 3D stencil,
it is possible to store each block of data (7, 7, 7) continu-
ously in global memory, other than the common (x, y, z)
order for the whole (nx, ny, nz) array. It is also possible
to construct the halo cells for each block and store them
continuously in global memory for concurrent accessing.
One should keep in mind that constructing halo cells for
3D block is error-prone and asks for much more global
memory.

Figure 1. One strip of data that stored in the local memory
for 5-cell stencil in KT algorithm.

In the current version, the source terms are split into
3 directions. The 1D data along each direction is put in
the local memory as shown in 1. Like in x direction, total
local memory used for one workgroup isN⇥16⇥4/1024 =
31 KB for N = 512 lattices along the x direction. All the
working elements in one workgroup share the data in the
x direction and only 4 halo cells at the boundary of x-axis
are needed for each workgroup.

(Describe code structure) 1. Python with PyOpenCL

2. Initial condition 3. Ideal, Viscous, FreezeOut hyper-
surface, Particalization 4. Data analysis using numpy,
plotting using matplotlib

IV. COMPARISON WITH ANALYTICAL
SOLUTIONS AND OTHER’S CODE

One of the most important thing in developing a code
parallelized on GPU is to make sure that the program
reproduce correct physical results. For relativistic hydro-
dynamics, there are two di↵erent ways, one is to compare
the numerical results with analytical solutions of the hy-
drodynamic equations. The other is to cross check be-
tween independently developped programs.
For the first one, usually the analytical solutions are

based on very simple assumptions. Take the famous
Bjorken solution as one example, it assumes the energy
density distribution is uniform in (x, y, ⌘) coordinates.
Under this assumption, pressure gradient along x, y and
⌘ vanishes, fluid volocity v

x

= v
y

= v
⌘

= 0, all the exist-
ing terms that a↵ect the time evolution in hydrodynamic
equations come from nonzero Christo↵el symbols. Thus
this solution can be used to check whether the Christo↵el
symbols are correctly implemented and whether there is
big numerical error accumulated during many time steps.
On the other hand this solution can not be used to check
the accuracy of spatial derivatives.
The cross check between di↵erent programs on the

other hand work for arbatrary initial configurations.
However, with the same initial configurations, if the re-
sults are slightly di↵erent between each other, there is
no way to distinguish which is correct, or which program
has smaller numerical error. Below we will compare re-
sults from CLVisc with Bjorken solution, Gubser solution
for 2nd order viscous hydrodynamics and another viscous
hydrodynamic code VISH2+1 developed by OSU group.

A. Riemann solution

Riemann solution considers fluid expansion with a
step-like energy density distribution at initial state.

"(t = 0, z) =

⇢
"0, z  0
0, z � 0

(55)

v
z

(t = 0, z) =

⇢
0, z  0
1, z � 0

(56)

where the initial fluid velocity at z > 0 is set to 1. In rela-
tivistic hydrodynamics, Riemann solution describes how
does the QGP expands to vacuum. In non-relativistic
case, Riemann solution is used to study the dam break-
ing. The solution is a function of similarity variable
⇣ ⌘ z/t. Because of causality, nothing changes for |⇣| > 1
region. For �1 < ⇣ < 1, the solution is a simple rarefac-

• Using dimension splitting, put each strip of data to local 
memory. Only 4 hallo cells in each local memory. 

• Easier to implement, no performance loss.
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where the source terms are,

S⌫

T

= (
1

⌧
T̃ ⌘⌘, 0, 0,

1

⌧
T̃ ⌧⌘)T , (31)

S
N

= 0, (32)

Sµ⌫

⇡

= � ⇡̃µ⌫ � ⌘
v

�̃µ⌫

⌧
⇡

� 1

3
⇡̃µ⌫ ✓̃

�g̃
↵�

(ũµ⇡̃⌫� + ũ⌫ ⇡̃µ�)D̃ũ↵ + ⇡̃µ⌫

ũ⌧

⌧

� 1

⌧
⇡

h
�1⇡̃

hµ
�

⇡̃⌫i� + �2⇡̃
hµ
�

⌦̃⌫i� + �3⌦̃
hµ
�

⌦̃⌫i�
i

+Iµ⌫ , (33)

S⇧ = �⇧� ⇣✓̃

⌧⇧
� 1

3
⇧✓̃, (34)

where ✓̃ = @̃
µ

ũµ+ ũ⌧/⌧ is the expansion rate, D̃ = ũ�r̃
�

the comoving derivatives. The Iµ⌫ are source terms from
Christo↵el symbols which are given in [25],

I⌧⌧ = 2ũ⌘⇡̃⌧⌘/⌧, I⌧x = ũ⌘⇡̃⌘x/⌧, (35)

I⌧y = ũ⌘⇡̃⌘y/⌧, I⌧⌘ = ũ⌘(⇡̃⌧⌧ + ⇡̃⌘⌘)/⌧, (36)

I⌘x = ũ⌘⇡̃⌧x/⌧, I⌘y = ũ⌘⇡̃⌧y/⌧, (37)

I⌘⌘ = 2ũ⌘⇡̃⌧⌘/⌧, Ixy = Ixy = Iyy = 0, (38)

III. IMPLEMENTATION DETAILS

The task of the numerical algorithm is to get the time
evolution of the energy density " and fluid four-velocity
uµ by solving partial di↵erential equations 27, 28, 29, 30.
These equations have the common form,

@
⌧

Q+ @
x

F x + @
y

F y + @
⌘

F ⌘ = S (39)

where Q is the conservative variable, F x,y,⌘ the flux along
x, y, ⌘ directions and S the source term. We use second-
order central scheme Kurganov-Tadmor (KT) algorithm
[] for the convective part @

⌧

Q+ @
i

F i = 0 in the Eq 39.

dQ̄

d⌧
= �

Hx

i+1/2,j,k �Hx

i�1/2,j,k

dx

�
Hy

i,j+1/2,k �Hy

i,j�1/2,k

dy

�
H⌘

i,j,k+1/2 �H⌘

i,j,k�1/2

⌧d⌘

⌘ S
kt

(40)

where S
kt

stands for source terms from flux in KT algo-
rithm. The KT algorithm is a finite volume algorithm
which has very clear physical meanings–the change of
conserved quantities in one finite volume equals to the
flux entering this volume minus the flux leaving this vol-
ume. Take the x direction as an example, the flux leaving
this volume is,

Hx

i+1/2 =
F x(Qr

i+1/2) + F x(Ql

i+1/2)

2
(41)

�c
i+1/2

Qr

i+1/2 �Ql

i+1/2

2
(42)

where

Qr

i+1/2 = Q̄
i+1 � (@

x

Q)
i+1

dx

2
(43)

Ql

i+1/2 = Q̄
i

+ (@
x

Q)
i

dx

2
(44)

and c
i+1/2 is the maximum propagating speed of the lo-

cal collective signal given in [26]. Notice that five nodes
(i�2, i�1, i, i+1, i+2) are needed to update the hydro-
dynamic cell at i for the one-dimensional case. In (3+1)D
hydrodynamics, another 4 nodes (j�2, j�1, j+1, j+2)
along the y and 4 nodes (k � 2, k � 1, k + 1, k + 2) along
the ⌘ direction are needed. Some higher order KT algo-
rithms require more nodes in the o↵-diagonal direction,
and give out higher precision. However, the simplicity
of the 2nd order central scheme makes it much easier to
parallelize on GPU. The equations are further simplified
by moving the KT source terms to the right hand side,

@̃
⌧

T̃ ⌧µ = Sµ

T,tot

(45)

@̃
⌧

Ñ⌧ = Sµ

N,tot

(46)

@̃
⌧

(ũ⌧ ⇡̃µ⌫) = Sµ⌫

⇡,tot

(47)

@̃
⌧

(ũ⌧ ⇧̃) = S⇧,tot

(48)

where S⇤,tot = S⇤+Skt. The upper index µ in the vector
and µ, ⌫ in the tensor are neglected in the pseudo code
for simplicity.

u⇤n+1⇡
0
n+1 = un⇡n + hS

⇡,tot

("n, un, u⇤n+1,⇡n) (49)

T
0
n+1 = Tn + hS

T,tot

("n, un,⇡n) (50)

T
0
n+1

ideal = T
0
n+1 � ⇡

0
n+1 ! "

0
n+1, u

0
n+1 (51)

u
0
n+1⇡n+1 = un⇡n +

h

2

⇥
S
⇡,tot

("n, un, u⇤n+1,⇡n)

+S
⇡,tot

("
0
n+1, u

0
n+1, un,⇡

0
n+1) ] (52)

Tn+1 = Tn +
h

2
[S

T,tot

("n, un,⇡n)
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Tn+1
ideal = Tn+1 � ⇡n+1 ! "n+1, un+1 (54)

where h is the time spacing. From the upper flow chart
one sees the di�culty in solving the 2nd order viscous
hydrodynamics. In order to update ⇡µ⌫ to time step
n + 1, one needs decent information of fluid velocity
un+1. However, un+1 can only be determined through
Tµ⌫

ideal

= Tµ⌫

visc

�⇡µ⌫ , assuming that ⇡µ⌫ at time step n+1
are already known. Implicitly solving Tµ⌫ , ⇡µ⌫ together
with rootfinding is a possible solution, however, the com-
plexity prevents one to do so. Two step RungeKutta
method is good at solving this problem, since the first
step is a prediction step, it does not ask for exact solu-
tion. We first predict ⇡

0
n+1, by extrapolating the fluid

velocity to n + 1 step using u⇤n+1 = 2un � un�1. Then
get some prediction values for " and uµ. Afterwards, we
update ⇡n+1,⇧n+1, Nn+1 and Tn+1 using the averaging
source terms in 2 steps. For the first time step where
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Figure 4. The comparison between CLVisc and Bjorken solu-
tion for viscous hydrodynamics
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Figure 5. (color online) The time evolution of energy density
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for 2nd order viscous hydrodynamics.

Figure 6. (color online) The time evolution of transverse fluid
velocity from CLVisc numerical results and Gubser analytical
solution for 2nd order viscous hydrodynamics.

uniform in the transverse plane of (⌧, x, y, ⌘) coordinates,
the spatial gradients along x and y are nontrival. This
solution is very good at verify the numerical capability
of 2nd orde viscous hydrodynamics.
The parameters we used for the comparison are L = 2,
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Figure 7. (color online) The time evolution of ⇡xx from
CLVisc numerical results and Gubser analytical solution for
2nd order viscous hydrodynamics.
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dynamic equations recover the ideal fluid solution. It is
shown in Fig. 5, with �̂1 = �10, CLVisc produce very
accurate energy density as compared to the Gubser so-
lution. Another interesting property of this 2nd order
Gubser solution is that the fluid velocity is the same as
that for ideal hydrodynamics, since it is fixed by confor-
mal transformation.

In principle �̂1 can be either positive or negative. In
heavy ion collisions, one gets negative ⇡⌘⌘ in Bjorken
scaling, we are inspired to choose a negative �̂1 for positve
⇡xx,⇡yy and negative ⇡⌘⌘. As a result, the �⌧2⇡⌘⌘ is
roughly two times ⇡xx and ⇡yy, which preserve the trace-

Figure 9. (color online) Comparison between CLVisc and
VISH2+1 for elliptic flow of direct ⇡+.

Figure 10. (color online) Comparison between CLVisc and
VISH2+1 for mean transverse momentum << v

r

>>.

less property together with a small but nonzero ⇡⌧⌧ in
this solution.

D. Comparison with Vish2+1

V. FREEZE OUT AND PARTICALIZATION

We use Cooper-Frye formula to calculate the momen-
tum distribution of particle i on the freeze out hypersur-
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Figure 18. The invariant yield of proton for Au+Au
p
s
NN

=
200 GeV collisions at centrality range 0 � 5%, 10 � 15%,
20� 30% and 30� 40%, from CLVisc (solid-lines) and RHIC
experimental data by PHENIX collaboration.

Figure 19. The multiplicity distribution for charged hadrons
for Pb+Pb

p
s
NN

= 2.76 TeV collisions at centrality range
0� 5%, 5� 10%, 10� 20% and 20� 30%, from CLVisc (solid-
lines) and LHC experimental data by ALICE collaboration
[29].

pure hydrodynamics, which suggest new physical mod-
ule. There are always more low p

T

pions from experi-
mental data at LHC than that from hydrodynamic sim-
ulations. This problem is not solved but partially ex-
plained by the missing finite widths of resonances [31] in
the current haronization modules.

As has been studied by many other groups that the
p
T

di↵erential elliptic flow of protons are boosted to
higher p

T

in hydro-transport hybrid models by hadronic
rescattering. However, the pion v2(pT ) is not sensitive to
hadronic afterburner and serve as a good measure of the

Figure 20. The p
T

spectra of charged pions for Pb+Pbp
s
NN

= 2.76 TeV collisions at centrality range 0 � 5%,
5 � 10%, 10 � 20%, 20 � 40%, 40 � 60%, 60 � 80%, from
CLVisc (solid-lines) and LHC experimental data by ALICE
collaboration [30].

Figure 21. The p
T

spectra of charged kaons for Pb+Pbp
s
NN

= 2.76 TeV collisions at centrality range 0 � 5%,
5 � 10%, 10 � 20%, 20 � 40%, 40 � 60%, 60 � 80%, from
CLVisc (solid-lines) and LHC experimental data by ALICE
collaboration [30].

QGP expansion.

VIII. DEEP LEARNING IN HIGH ENERGY
HEAVY ION COLLISIONS

In high energy heavy ion collisions, thousands of low
p
T

particles are produced in each collision. In princi-
ple, there is huge amount of information hidden in these
particles. Besides the momentum distribution of single
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• With Trento (Duke Group) initial condition 

• Centrality ranges are the same as used in JETSCAPE.

Preliminary
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Fig. 1. (Color online) The spatial distribution of initial par-
tons (projection on reaction plane) from AMPT at τ0 = 0.2 fm,
for one semi-central Pb+Pb

√
sNN = 2.76 TeV collision. The

horizontal axis is the space-time rapidity ηs.

from soft interactions. The number of mini-jet partons per
binary nucleon-nucleon collision in hard and semi-hard
scatterings follow a Poisson distribution with the mean
value given by the jet cross-section. The number of ex-
cited strings is equal to the number of participant nucle-
ons in each event. The AMPT model uses a string-melting
mechanism to convert strings into partons that will follow
a parton cascade and eventually hadronize according to a
parton recombination model. We run AMPT in Cartesian
coordinates to the end and extract the initial condition
at a given initial invariant time τ0 for our hydrodynamic
simulations. The Monte Carlo Glauber model is used in
HIJING to determine the number of binary collisions and
the number of participants. Besides random fluctuations
from mini-jet partons, the parton density fluctuates along
longitudinal direction according to the length of strings.
There are basically three types of strings:

– strings associated with each wounded nucleon (be-
tween a valence quark and a diquark),

– single strings between q-q̄ pairs from quark annihila-
tion and gluon fusion processes,

– strings between one hard parton from parton scatter-
ings and valence quark or di-quark in wounded nucle-
ons.

The space-time distribution of initial partons is shown
in fig. 1 to demonstrate the longitudinal fluctuations em-
ployed in the hydrodynamic simulations.

K-means method (from sklearn library which is a ma-
chine learning package in Python), is used in fig. 1 to clus-
ter the partons according to their transverse coordinates.
The partons in the same cluster are plotted in the same
color and size. The initial partons from AMPT look like
many strings whose length and position fluctuates accord-
ing to the underlying physics from HIJING. The visual-
ization of the initial partons shows clearly the longitudi-
nal fluctuations employed in event-by-event (3+1)D hy-
drodynamic simulations. These fluctuations contain, but
are not limited to the forward-backward asymmetry, the

Fig. 2. (Color online) The longitudinal fluctuations for (left)
Pb+Pb 2.76 TeV collisions and (right) Au+Au 200 GeV colli-
sions for three typical events at centrality classes 0–1%, 20–30%
and 40–50%.

string length fluctuations, fluctuations from mini-jets pro-
duction and finite number of partons.

The asymmetry between forward- and backward-going
participants and the string length fluctuations are demon-
strated more clearly by replacing the partons in the same
cluster with line segments (strings) as shown in fig. 2.

The number of wounded nucleons for centrality classes
0–1%, 20–30% and 40–50% are 400, 189 and 70 for Pb+Pb
2.76TeV, and 380, 170 and 65 for Au+Au 200GeV col-
lisions, respectively. The longitudinal fluctuations at the
initial state strongly depend on beam energy and col-
lision geometry. The asymmetry between forward- and
backward-going participants is much stronger for periph-
eral collisions than for most central collisions. The average
length of the strings at LHC energy is much larger than at
RHIC energy, which indicates much stronger longitudinal
fluctuations for lower beam energies. The length of the
strings are determined by their excited mass M1 or M2

which are sensitive to the beam energy square s as shown
in eq. (5),

M2
1 = x−(1 − x+)s − p2

T , M2
2 = x+(1 − x−)s − p2

T , (5)

where x− and x+ are the light cone momentum exchange
and pT is the transverse momentum exchange.

Fluid expansion of the tube-like energy density from
these strings results in long-range correlations in η (ridge)
in the final state. Fluctuations of string lengths to-
gether with the asymmetric distribution between forward-
backward participants provide large fluctuations along the
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Fig. 6. (Color online) The factorization ratio r2 as a function of ηa for 3.0 < ηb < 4.0 and 4.4 < ηb < 5.0, in Pb+Pb
collisions at

√
sNN = 2.76 TeV (open and solid diamonds), and for 2.5 < ηb < 3.0 and 3.0 < ηb < 4.0 in Au+Au collisions at√

sNN = 200 GeV (open and solid circles) from event-by-event 3 + 1D ideal hydrodynamic simulations as compared with CMS
experimental data [47] for Pb+Pb collisions at

√
sNN = 2.76 TeV/n (empty and solid squares) in 6 different centralities.

3 Results on factorization ratios

The factorization ratios r2 and r3 as a function of ηa in 6
centralities from 0–5% to 40–50% collisions are shown in
figs. 6 and 7, for Pb+Pb collisions at

√
sNN = 2.76TeV

and Au+Au collisions at
√

sNN = 200 GeV from our
event-by-event (3+1)D hydrodynamic simulations, and
compared with CMS measurements for Pb+Pb collisions
at

√
sNN = 2.76TeV [47]. The factorization ratio for the

second anisotropic flow r2(ηa, ηb) with the reference ra-
pidity window 4.4 < ηb < 5.0 from event-by-event hydro-
dynamic simulations show a rather nice agreement with
CMS measurements for all centralities except 0–5% cen-
tral collisions. The r2 calculated from the reference ra-
pidity window 3.0 < ηb < 4.0 is smaller than that from
4.4 < ηb < 5.0 at CMS, since the denominator of eq. (3) in-
creases due to short-range correlations. A rather small dif-
ference (splitting) of r2 between these two reference rapid-
ity windows from hydrodynamic calculations suggests that
the current definition of the factorization ratio is insensi-
tive to short-range correlations from the hydrodynamic ex-
pansion of hot spots and resonance decay. Both results fit
better the CMS measurements with the reference rapidity
window 4.4 < ηb < 5.0, where short-range jet-like correla-
tions are strongly suppressed. For 0–5% central collisions,
the decorrelation from event-by-event hydrodynamic sim-
ulations is more linear than CMS measurements. Hydro-
dynamic predictions for RHIC energy have a quite similar
centrality dependence, with much stronger decorrelation
along pseudorapidty than LHC energy. This is reasonable
since fluctuations at RHIC energy are much bigger than

LHC energy. The prediction is consistent with anisotropic
flow measurements at RHIC and LHC, where the variation
of v2 in |η| < 2.5 is much bigger for RHIC than LHC [55].

It is interesting that the decorrelation in the factor-
ization ratio as a function of ηa at both RHIC and LHC
energy have a linear behavior, which can be parameterized
with

rn(ηa, ηb) ≈ e−2F η
n ηa

, (6)

where the factor F η
n can be considered as a measure of the

factorization breakdown. The decorrelation in the longi-
tudinal direction can be caused by a systematic twist and
additional random fluctuations. The twist of event planes
originates from the forward-backward asymmetry for the
transverse distribution of participant projectile and target
nucleons. It is not expected to have a strong dependence
on the beam energy. The stronger decorrelation we ob-
serve in figs. 6 and 7 at RHIC as compared to that at
LHC is caused mainly by larger fluctuations due to the
smaller number of initial partons and shorter length of soft
strings at RHIC energy relative to LHC. For lower beam
energies at RHIC, fluctuations of the string length in the
initial state are the main mechanism for decorrelation in
the longitudinal direction. This also explains the strong
decorrelation observed in the most central collisions. The
experimental observation of such a stronger decorrelation
in pseudorapidity at RHIC will provide another confirma-
tion about the string picture of initial parton production.
This picture captures most of the longitudinal fluctuations
and correlations in coordinate space, which are converted

• With string length fluctuations, 
CLVisc+AMPT initial condition 
describes rapidity de-
correlation of anisotropic flows.

EPJA52 (2016) no.4, 97, Long-Gang Pang, H.Petersen, G.Y.Qin, V.Roy, XN Wang 
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• Vortex pair in 2D  

• Vortex ring in 3D = Toroidal 
(smoke ring) vortical fluid 

• Azimuthal angle dependence. 

• Rapidity dependence

LG.Pang, H.Petersen, Q.Wang & XNW PRL 117 (2016) 

no.19, 192301 

• Vortex pairs in transverse plane to 
conserve angular momentum.

• Signal can be found using spin-
correlation by Lucas V. Barbosa 

from WiKi Pedia

beam direction
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Carlo sampling method agrees with the smooth particle
spectra.

VI. PROFILING FOR CLVISC

In order to solve 3D partial di↵erential equation, we
need to update the values of N

cells

= NX ⇥ NY ⇥ NZ
cells at each time step. Without parallel computing,
there is only one computing element that updates these
cells one after another. The modern GPUs have more
than N

workers

= 2500 computing elements such that
more than 2500 cells can be updated simultaneously. In
practice, the performance boost can not approach 2500
for several reasons, (1) the computing power of each com-
puting element on GPU is not as strong as CPU (2)
reading data from global memory of GPU to the private
memory of one computing element has big latency. The
easiest optimization on GPU is to put the data shared
by a block of computing elements on local memory to re-
duce the global accessing latency. In the 5-stencil central
scheme KT algorithm, the site information on each cell
is shared 5, 9 and 13 times by its neighbors in 1-D, 2-D
and 3-D respectively.

block size 8 16 32 64 128

Ideal(s)-GPU 0.37 0.218 0.178 0.155 0.157

Visc(s)-GPU 3.12 1.65 1.17 1.01 1.17

Visc(s)-CPU 6.64 6.45 6.63 7.0 7.58

Table I. Computing time for one time step on various com-
puting devices for several di↵erent block sizes.

The optimal block size – denotes the number of com-
puting elements assigned to process one workgroup of
cells, vary between di↵erent computing devices. As
shown in Table. II, we run (3+1)D viscous hydrodynam-
ics with number of cells N

cell

= 385⇥ 385⇥ 115 for 1600
time steps. Shown in the table are the mean time for
one-step update on GPU AMD S9150 (2496 computing
elements) and server CPU Intel Xeon 2650v2 (10 cores,
20 threads). The computing time for one-step update
changes for di↵erent block sizes. For GPU AMD S9150,
the optimal block size for this task is 64 while for the CPU
Intel Xeon 2650v2, the optimal block size is 16. Running
on GPU is about 6 times faster than running on a 10 cores
CPU with the same program. The (3+1)D ideal hydro-
dynamics with the same parallelization is about 6.5 times
faster than the viscous version.

The performence can be further improved using deeper
optimizaions. In the 1D-KT algorithm together with di-
mension splitting, each lattice point needs to be loaded
3 times. This is a tradeo↵ between implementation di�-
culty and e�ciency. However, it is already much better
than independent fetching from global memory where the
data on each lattice point are reloaded 13 times.

Concurrent reading from global memory

It is shown that the 1D KT algorithm is much faster
along ⌘

s

direction than along x and y direction for Nx =
Ny = N

⌘

= 256 grids. The ratio of computing time
along these three axis is t

x

: t
y

: t
⌘

= 38 : 28 : 1. There
is the socalled concurrent reading problem since the data
is only stored continuously in one direction. Transposing
the matrix at each time step is suggested by [? ] to
increase the concurrent reading. Another way is to use
the native 3D image bu↵er, which provides a di↵erent
storing order and constant extrapolation for boundary
cells. We did not choose image bu↵er because it is read
only or write only in one kernel in OpenCL version earlier
than 2.0, and it does not support double precision.

Warp divergence Threads in the same workgroup are
executed in warps of 32 or 64, with all the threads in
one warp execute the same instruction at the same time.
If there is if/else branching for two threads in the same
warp, all the thread in the same warp will execute the in-
struction under both of the two branches. This is called
warp divergence. The root finding algorithm on each lat-
tice cell needs di↵erent number of iterations to achieve
the required precision, which will bring serious warp di-
vergence. This should be keep in mind but currently
there is no way to tackle this problem.

Bank conflict On each computing unit there is one
piece of local memory whose size is around 32KB �
48KB. Each work group occupy one piece of local
memory, the data in this piece of local memory are
stored in 32 banks with each bank holds many 32 bits
data. For example if we have one floats (32 bits) ar-
ray A whose length is 500, the first bank will store
A[0], A[32], . . . , A[32 ⇤ n] and the second bank will bank
will store A[1], A[33], . . . , A[32⇤n+1]. If multiple threads
in the same warp read the same 32 bits data from one
bank, the data will be read only once and broadcast to
all the requested threads, there is no bank conflict in this
case. However, if n threads in the same warp read n dif-
ferent 32 bits data from the same bank, the operation is
serialized and the program is slowed down, this is called
n-way bank conflict. For double precision, each double
number uses 2 banks. Threads 16 � 31 read data from
bank 0 � 31 will conflict with the threads 0 � 15 in the
same warp who also read data from bank 0 � 31. The
bank conflict for double precision is called 2-way bank
conflict, for float3 numbers, there is no bank conflict,
for float4 numbers, there is 4-way bank conflict. The
bank conflict is not important if there are many threads
in one work group, there is warp switching when the data
is not available yet. In our simulations, each 32 threads
in one warp will read 5 closest float4 numbers, there is
4-way bank conflict. One can add padding to eliminate
the bank conflict.

• 385 * 385 * 115 grids, for Pb+Pb 2.76 TeV 

• block size=64 is best for GPU(AMD firepro s9150) 

• block size=16 is best for 10 core CPU(Intel Xeon E5-2650) 

• CLVisc on GPU is about 6.4 times faster than the same code on a 10 core 
server CPU. (both are parallelized and use SIMD) for each time step.

block size: how many working elements are assigned to the same working group 
sharing the same local memory. 

• AMD Firepro s9150 used in GSI GreenCube
• 2,816 stream processors (44 compute units) 
• 5.07 TFLOPS SP
• 16GB memory 
• 320GB/s memory bandwidth
• 235W maximum power consumption 
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Figure 3: Depiction of our computational lattice used in GPU-VH. The blue region indicats the
physical volume of the simulation. The red cells are ghost cells that are added to allow the in-
formation in the cells on the edge of the blue region to be evolved in time with the same set of
instructions (using the fluxes at the boundary) as for interior cells. The left plot shows the three-
dimensional lattice (with the ghost cells in the front plane removed for visualization purposes)
while the right plot shows a two-dimensional slice of the 3D data. White cells are never accessed
by the algorithm.

4.1. Lattice
In our program, the numbers of physical grid points in our 3D lattice are Nx,

Ny, and N
h

. The grid point triad (i, j,k) runs over i = 2, . . . ,Nx+1; j = 2, . . . ,Ny+
1; and k = 2, . . . ,N

h

+ 1. The fluxes calculated using the KT algorithm couple
each grid point to its nearest and next-to-nearest neighbors. In particular, the flux
in the x-direction at a given grid point (i, j,k) requires knowledge of the conserved
variables at (i±2, j,k) and (i±1, j,k). To close the discrete system at i = 2 and
i = Nx +1, we impose boundary conditions

q0, j,k ⌘ q1, j,k ⌘ q2, j,k , (75)
qNx+3, j,k ⌘ qNx+2, j,k ⌘ qNx+1, j,k , (76)

These boundary conditions could easily be implemented by branching using if-
else statements; this leads, however, to branch divergences which are known to
be slow on GPUs. This can be avoided by introducing the red ghost cells shown
in Fig. 3 and initializing these according to Eqs. (75) and (76); these equations
implement content in the red cells in Fig. 3 that is identical to the content of the
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The CUDA implementation GPU-VH by Ohio group
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Clock speeds (MHz) Memory Configuration Processing power (GFLOPS)
Model Processor

Cores
Core Memory Size

(GB)
Bandwidth
(GB/s)

Single
precision

Double
precision

GeForce
GTX
560M

192 775 2500 3.076 60 595.2 N/A

GeForce
GTX 980

Ti

2816 1000 7012 6.144 336 5632 176

Tesla
K20M

2496 706 2600 5.120 208 3524 1175

Table 2: General information on the three graphics cards used herein. The information reported is
based on the official Nvidia specifications.

Number of grid points C/CPU CUDA/GPU Speedup
(ms/step) (ms/step)

128 ⇥ 128 ⇥ 32 7145.978 63.261 112.960
128 ⇥ 128 ⇥ 64 13937.896 123.527 112.833
128 ⇥ 128 ⇥ 128 30717.367 244.450 125.659
256 ⇥ 256 ⇥ 32 25934.547 236.593 109.617
256 ⇥ 256 ⇥ 64 57387.141 472.391 121.482
256 ⇥ 256 ⇥ 128 129239.959 939.340 137.586
256 ⇥ 256 ⇥ 256 268448.459 1865.142 143.929

Table 3: Performance results of the C/CPU and CUDA/GPU versions of our (3+1)-dimensional
fluid dynamic codes CPU-VH and GPU-VH by measuring the computer time it takes to complete
one full RK step (described in Fig. 5), averaged over 100 time steps, at different spatial resolutions.
The GPU-VH code is run on the graphics card GeForce GTX 980 Ti and the CPU-VH code is run
on the host machine with a 2.6 GHz Intel Xeon CPU E5-2697 v3.

980 Ti relative to the CPU-VH code run on the host machine with a 2.6 GHz In-
tel Xeon CPU E5-2697 v3. Table 4 compares GPU-VH against CPU-VH run on
the graphics card Nvidia Tesla K20M and a 1.8 GHz Intel Xeon CPU E5-2630L
v3, respectively. In both cases we see O(100) times speed up of GPU-VH over
CPU-VH. In Fig. 18 we plot the time to complete one full time integration step
for three different graphics cards GTX 560M, Tesla K20M, and GTX 980 Ti.

It is difficult to say anything about how the scaling of the performance de-
pends on the number of cores because memory bandwidth and amount of FLOPS
also affect how fast a calculation can run. We can conclude, however, that for our
purposes high end gaming cards would benefit us more (i.e. the GTX 980 Ti) than
cards geared towards high-accuracy mathematical calculations where double pre-
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Number of grid points C/CPU CUDA/GPU Speedup
(ms/step) (ms/step)

128 ⇥ 128 ⇥ 32 7690.069 96.923 79.342
128 ⇥ 128 ⇥ 64 16315.976 192.751 84.648
128 ⇥ 128 ⇥ 128 38428.056 384.255 100.007
256 ⇥ 256 ⇥ 32 30401.898 378.178 80.390
256 ⇥ 256 ⇥ 64 72240.973 744.168 97.076
256 ⇥ 256 ⇥ 128 144744.290 1485.703 97.423
256 ⇥ 256 ⇥ 256 322536.875 2970.727 108.572

Table 4: Same as Table 3, but for the graphics card Nvidia Tesla K20M compared with a 1.8 GHz
Intel Xeon CPU E5-2630L v3.

Figure 18: Performance comparison of GPU-VH run on three different graphics cards [GTX 560M
(blue circles), Tesla K20M (red circles), and GTX 980 Ti (cyan circles)] by measuring the com-
puter time it takes to complete one full RK step (described in Fig. 5) averaged over 100 time steps
at different spatial resolutions. In the current version of our code, we were unable to get the data
point corresponding to the 256x256x256 grid size because it requires too much global memory for
the GTX 560M graphics card.

cision is needed (i.e. the Tesla K20M). The difference in single/double precision
FLOPS can be seen in Table 2. It should be mentioned that all results shown in
this paper were performed using single precision manipulations.
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Tesla K20M vs 1.8GHz Intel Xeon CPU E5-2630L v3.
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Summary
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• Big data analysis (Bayasian statistics and deep learning) for heavy 
ion collisions require fast (3+1)D viscous hydrodynamics

• Concurrently running jet shower propagation and hydrodynamic 
evolution needs fast hydro

• GPU is good at data parallelization

• We have OpenCL and CUDA backends for the final JETSCAPE 
hydrodynamic module.

• GPU parallelization brings 100 times performance boost (vs 
single core CPU).


