

Linear Boltzmann Transport for Jet Propagation in the Quark Gluon Plasma

Tan Luo

Central China Normal University Institute of Particle Physics

In collaboration with Shanshan Cao, Wei Chen, Yayun He, Longgang Pang, Xin-Nian Wang and Yan Zhu

Outline

• Introduction

• Linear Boltzmann Transport (LBT) model

• Jet modification in heavy-ion collisions

• Summary and Outlook

Introduction

Introduction

The jet shape and transverse momentum imbalance in Dijet events

A Linear Boltzmann Transport (LBT) Model *Jet-induced medium partons in LBT Model*

$$
p_1 \cdot \partial f_1(x_1, p_1) = E_1(C_{elastic} + C_{inelastic})
$$

Jet induced medium excitation ("Negative" parton for the back reaction) Linear Boltzmann jet Transport

Elastic collision + Induced gluon radiation.

Follow the propagation of recoiled parton.

Include recoiled parton in jet reconstruction.

Linear Approximation

It works when the jet induced medium excitation δf<<f.

Complete set of elastic processes

$$
i, j = g, u, d, s, \overline{u}, \overline{d}, \overline{s}
$$

Jussi Auvinen, Kari J. Eskola, Thorsten Renk **Phys.Rev. C82 024906**

 Γ

• Scattering rate for a process $ij \rightarrow kl$ in the local rest frame of
the fluid
 $\Gamma_{ij \rightarrow kl} = \frac{1}{2E_i} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} \times f_j(p_2 \cdot u, T)$ the fluid

the fluid
\n
$$
\Gamma_{ij \to kl} = \frac{1}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} \times f_j(p_2 \cdot u, T)
$$
\n
$$
\times |M|^2_{ij \to kl} (s, t, u) \times S_2(s, t, u) \times (2\pi)^4 \delta^4 (P_1 + P_2 - P_3 - P_4)
$$
\n
$$
S_2(s, t, u) = \theta(s \ge 2\mu_D^2) \theta(-s + \mu_D^2 \le t \le -\mu_D^2) \qquad \mu_D^2 = (\frac{3}{2}) 4\pi \alpha_s T^2
$$

• The mean free path

$$
\Gamma_i = \sum_{j,(kl)} \Gamma_{ij \to kl} = 1/\lambda_0 \qquad P(\Delta t) = 1 - e^{-\Gamma_i \Delta t} \qquad P(ij \to kl) = \frac{1_{ij \to kl}}{\Gamma_i}
$$

Energy distribution of the recoiled parton

 $\overline{\mathbf{2}}$

 -4 10

10

5

15

20

 $E[GeV]$

 26

10

5

15

20

 $E[GeV]$

25

5

10

15

20

 $E[GeV]$

29

5

10

15

Single scattering

Dominance of small angle scattering.

Switch of flavor and species of the leading parton.

20

 $E[GeV]$

25

Medium-induced gluon radiations ² 2 (1) / *^f Ex x k* $\begin{aligned} \mathcal{V} & \text{and} \ \mathcal{V} & \text{and} \ \mathcal{V}_{\text{range PRL 85 (2000) N}} & \text{where} \ \mathcal{V}_{\text{g}} & = 2 E x (1-x) & \text{where} \ \mathcal{N}_{\text{g}} & \text{and} \ \mathcal{N}_{\text{g}} & \text{and} \ \mathcal{V}_{\text{g}} & \text{and} \ \mathcal{V$

Radiated gluon distribution:

X. Guo, X. Wang PRL 85 (2000) Nucl.Phys. **A696** (2001)

Medium-induced g	
Radiated gluon distribution:	x.
$\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2C_A \alpha_s P(x) \hat{q}}{\pi k_{\perp}^4} \sin^2 \frac{t - t_i}{2\tau_f}$	
Multiple gluon emissions:	$P(N_g, \langle N_g \rangle) =$
induced radiations are accompanied by	
et medium Interaction:	Induced radiation
Edastic Colfision.	Induced radiation

$$
\tau_f = 2Ex(1-x)/k_\perp^2
$$

 $\begin{array}{l} {\cal U} \equiv \displaystyle \frac{2 C_A \alpha_s P(x) \hat{q}}{\pi k_\perp^4} \sin^2 \frac{t-t_i}{2 \tau_f} \ \end{array}$
 $\begin{array}{l} {\cal U} \equiv \displaystyle \frac{2 C_A \alpha_s P(x) \hat{q}}{\pi k_\perp^4} \sin^2 \frac{t-t_i}{2 \tau_f} \ \end{array}$
 $\begin{array}{l} {\cal U} \equiv \displaystyle \frac{1}{2} \pi k_\perp^4 \sin^2 \frac{t-i_i}{2 \tau_f} \sin^2 \frac{t-i_i}{2 \tau_f} \sin^2 \frac{t-i_i}{2 \tau_f} \sin^2 \$ *Medium-induce*
 g a diapon distribution:
 g $\frac{1}{z}$ *dt* $=\frac{2C_A\alpha_sP(x)\hat{q}}{\pi k^4_{\perp}}\sin^2\frac{t-t_i}{2\tau_f}$
 gluon emissions:
 P(N_g, \langle *Medium-induced*
 diated gluon distribution:
 $\frac{dN_g}{dR_{\perp}^2 dt} = \frac{2C_A\alpha_s P(x)\hat{q}}{\pi k_{\perp}^4} \sin^2\frac{t-t_i}{2\tau_f}$
 ditiple gluon emissions:
 P(N_s, \N_s)
 P(Ns) Cellium Interaction:
 Clarice Cellium Interaction: ! *g* $\begin{aligned} \textbf{gcd} \textbf{glu}(\textbf{x},\textbf{Guo},\textbf{Gvo})\ \textbf{g},\langle N_{g} \rangle)=&\frac{\langle N_{g} \rangle}{2} \end{aligned}$ N_g ! *Multiple gluon emissions:*

Induced radiations are accompanied by elastic collisions.

Energy distribution of the radiated gluon

Global energy-momentum conservation in 2->3 and 2->n processes

Jet induced medium excitation (Energy distribution in space)

Initial jet parton: gluon $E = 100$ GeV $T = 0.4$ GeV $\alpha_s = 0.3$ **c**

• Mach Cone like shock wave and the diffusion wake.

gluon: elastic only at $t=6$ fm/c

Elastic only Elastic + Radiation

gluon: elastic + radiation at $t=6$ fm/c

Jet induced medium excitation (Energy distribution at different time)

Initial jet parton: gluon $E = 100$ GeV $T = 0.4$ GeV $\alpha_s = 0.3$ **i**

• Depletion of the energy of the leading parton.

Jet induced medium excitation (Angular distribution)

Inclusive jet in pp collisions

pT distribution in pp collison within Pythia8

Weighted sampling in triggered p_T bins to increase the efficiency of MC simulations

Initial geometry

Averaged over 200 event-by-event hydro profiles

Recoiled effect in the reconstructed jets

- The inclusion of the recoiled parton in the reconstructed jets will reduce the jet energy loss.
- The recoiled effect is more significant in the evolving medium.

Nuclear modification factor

- The only parameter strong coupling constant α_{s} is fixed.
- We first calculate the single jet R_{AA} to extract the value of α_s . (fix the strength of jet-medium interaction)

Data ref.: ATLAS Collaboration, Phys. Rev. Lett. 114 (2015) 072302 17

Nuclear modification factor

- The inclusion of back reaction (negative parton) will lead to suppression. (on the whole pT range)
- The Underlying Event Subtraction will lead to suppression. (on the low and intermediate pT range)

Data ref.: ATLAS Collaboration, Phys. Rev. Lett. 114 (2015) 072302 18

Jet azimuthal distribution with different centralities

Anisotropy shows up

Jet v2 with different centralities

Asymmetry distribution of gamma-jet in heavy-ion collisions

• fix the parameter α_s via the comparison with the γ -jet asymmetry

Azimuthal distribution of gamma-jet in heavy-ion collisions

• Dominance of the initial state radiation in angular correlation

L Chen, GY Qin, SY Wei, BW Xiao, HZ Zhang **arXiv:1607.01932** A. H. Mueller, B Wu, BW Xiao, F Yuan **arXiv:1604.04250**

• Multiple jets in gamma-jet events

Azimuthal distribution of gamma-jet in heavy-ion collisions

• Dominance of the initial state radiation in angular correlation

L Chen, GY Qin, SY Wei, BW Xiao, HZ Zhang **arXiv:1607.01932** A. H. Mueller, B Wu, BW Xiao, F Yuan **arXiv:1604.04250**

• Multiple jets in gamma-jets events

pT distribution of gamma-jet in heavy-ion collisions

• Shift of the peak of the pt distribution

• Path length dependence of the energy loss

Modification of gamma-jet structure

Jet shape of gamma-jets in heavy-ion collisions

• Energy lost by the hard parton is transport out of the jet cone by the soft parton.

Energy flow in gamma-jets events

Energy flow in dijet events

Jet shape of leading jet in heavy-ion collisions

Jet shape of leading jet in heavy-ion collisions

Summary

We present a computation of jets modification in QGP within the Linear Boltzmann Transport model in which both the elastic and inelastic processes are included.

Outlook

• *Hadron jet and Heavy quark jet*

(with the recombination model developed by Texas A&M group)

Rainer's talk

Jet reconstruction with recombination model

Beyond LBT model (modified medium background)

- Linear approximation : jet induced medium excitation δf<<f .
- Jet-Medium interaction : Where is the modification of the thermal background ?

Energy and momentum deposited from the jets as source terms into hydro

CoLBT-Hydro model (A coupled LBT Hydro (3+1D) Model)

Wei Chen's talk $\overline{}$ 34

Thanks

Backup

Positive particles : Medium Excitation

recoiled parton-----thermal parton scattering

Linearized Boltzmann jet transport

neglect scatterings between recoiled medium partons.

It's a good approximation when the jet induced medium excitation δf<<f.

Backup

Negative particles : the particle hole

One has to subtract the 4-momentum of negative particle when combine it to jet

Negative particles : how do we deal with them?

thermal parton-----thermal parton scattering

the negative particle is also traveling in the medium

One has to subtract the 4-momentum of negative particle when combine it to jet

Underlying Event Subtraction (UES)

UE: collisions of beam remnant, fluctuation of the background, nonperturbative effects. Subtraction is needed to exclude the soft particles.

Seed jet: $E_T > 3 \,\text{GeV}$ for at least one parton,and

$$
E_T^{max}/E_T^{ave} > 4\,
$$

ATLAS Collaboration, Phys. Lett. B 719, 220 (2013).

$$
E_T^{UES} = E_T^{seed jet} - A^{seed jet} \rho (1 + 2v_2 \cos[2(\phi_{jet} - \Psi_2)])
$$

We only subtract the energy of seed jets, and count all the final jets!

Nuclear modification factor

We use the best χ^2 fit to extract the fixed value α_s in the LBT model

Data ref.: ATLAS Collaboration, Phys. Rev. Lett. 114 (2015) 072302 40

Nuclear modification factor

We use the best χ^2 fit to extract the fixed value α_s in the LBT model

Data ref.: ATLAS Collaboration, Phys. Rev. Lett. 114 (2015) 072302 41

v_2 of soft particles from hydro profiles

Jets in a 3+1D hydro

- 3+1D Ideal hydro **Longgang Pang, Qun Wang, Xin-Nian Wang Phys.Rev. C86 (2012) 024911**
- Location of gamma-jet is decided according probability of binary collision.

Recoiled effect in the reconstructed jets

Recoiled effect in the reconstructed jets

Azimuthal distribution of gamma-jets in heavy-ion collisions

5.02TeV

Deltaphijgamma>7/8pi *pT distribution of gamma-jets in heavy-ion collisions* **Sions**
 $P_T \gamma > 80 GeV$
 Σ MS data
 $\sum_{\text{CMS data}}$ **0-30%**
 2.76TeV

0-30%

2.76TeV

• Path length dependence of the energy loss

5.02TeV

Gamma-jets in a 3+1D hydro

• 3+1D Ideal hydro **Longgang Pang, Qun Wang, Xin-Nian Wang Phys.Rev. C86 (2012) 024911**

- Location of gamma-jet is decided according probability of binary collision.
- Small difference between parton-jet and hadron-jet.

Energy distribution of the radiated gluon

Global energy-momentum conservation in 2->3 and 2->n processes

$$
P_{q \to qg}(x) = C_A \frac{(1-x)(1+(1-x)^2)}{x}
$$

$$
P_{g \to gg}(x) = 2N_c \frac{(1 - x + x^2)^3}{x(1 - x)}
$$

Jet shape of gamma-jets in heavy-ion collisions

• Energy lost by the hard parton is transport out of the jet cone by the soft parton.

Nontrivial path length dependence on parton energy loss

Leading parton energy loss

Propagation of a single initial jet parton in a uniform medium

 $= 0.3$ $E = 100$ GeV T = 0.4 GeV α _s = 0.3

Path length dependence on parton energy loss

Leading jet energy loss

• Leading jet recover some of the energy lost by the leading parton.

