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from STAR arXiv:1007.2613

The Bjorken formula

• Trajectory of a collision 
depends on the time evolution 
of energy density 
& net-baryon density.

• For Beam Energy Scan energies, 
trajectory is important 
for effects from critical point.

• We need to estimate/calculate 
the initial energy density, 
including its peak value 
and time dependence:
εmax,  ε(t)
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d(E) d(E) 1 2d
hy =N

dy dy 2 t

It follows that the central energy density e is
N d(E) 1

dy 2t (4)

In the case of real ion-ion collisions we must re-
place the number of incident nucleons per unit area
N/W by some effective elementary area dp,

(5)

gions. We shall sharpen this statement somewhat
later on.
Now let us look at the collision in the center-of-

mass frame. From the arguments of the previous
paragraph it is clear that at least the baryon content
of the colliding pancakes interpenetrate, so that a
short time (say -3 fm/c) after the collision we will
have two pancakes which recede from the collision
point at the speed of light (y »1) and which con-
tain the baryon number of the initial projectiles. Of
course, many of the other ultimate collision prod-
ucts wi11 be contained in those pancakes and will
only evolve into a distinguishable system at consid-
erably later times. We shall concentrate on the sys-
tem of quanta contained in the region between the
two pancakes. Let us temporarily replace one of the
projectiles by a single nucleon traveling at the same
y, and look at the central particle production. Ac-
cording to assumption (2) the isotropic portion of
the particle production is approximately the same as
in a nucleon-nucleon collision. At SPS collider ener-
gies, this means

dX,h' =3.
dy

Guessing (E)-400 MeV and N„,„„,i/N, h-0. 5,
we would find, per colliding nucleon,

d(E) -3)&0.4)&1.5=1.8 GeV . (2)
dy

If the projectile, instead of a single nucleon, is a di-
lute gas of nucleons separated in impact parameter
by mean distances ) 1 fm, the energy production
should be additive.
Let us now estimate for this case the initial energy

density existing between the outward-moving pan-
cakes. We concentrate on a thin slab, of thickness
2d, centered between the pancakes (Fig. 2). Ignoring
collisions between the produced hadrons, the energy
contained within that slab is

2d~e =2hy=-ct
region of
interest

quanta emerging~—from collision point
at speed of light

receding
nuclear
pancake
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ct
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ct

FIG. 2. Geometry for the initial state of centrally pro-
duced plasma in nucleus-nucleus collisions.

tr(1 ~ 1/3 fm)2 4 5 fm2 d 2

or

dp-0. 7 fm .
We shall consider reasonable a range of values of dp
from 0.3 to 1 fm,

0.3(dp(1.0 fm .
This leads to an estimate of

1 GeV
2tdp

For an initial time tp of -1 fm/c, this gives an ini-
tial energy density

ep -1—10 GeV/fm
It is not clear at this energy density what the pro-

duced quanta which carry this energy really are:
constituent quarks? current quarks? gluons? had-
rons? However, this uncertainty should not affect
the estimated energy density provided the elementa-
ry collision processes which operate in nucleon-
nucleon collisions are operative in nucleus-nucleus
collisions. The quanta contained in our thin slab
should collide; indeed, we may anticipate that local
thermal equilibrium will be established. With a
mean energy density as given above, and with a
mean energy per quantum of 400 MeV, this implies
an initial density of quanta pp of -2—20 fm
This in turn implies a collision mean free path A,p,

If, for uranium, we assumed full additivity over the
A nucleons we would get

10 mb X (0.05—0.5 fm) .
Oint

(10)
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The space-time evolution of the hadronic matter produced in the central rapidity region
in extreme relativistic nucleus-nucleus collisions is described. We find, in agreement with
previous studies, that quark-gluon plasma is produced at a temperature &200—300 MeV,
and that it should survive over a time scale & 5 fm/c. Our description relies on the existence
of a flat central plateau and on the applicability of hydrodynamics.

I. INTRODUCTION

Collisions of highly relativistic nuclei offer the
possibility of producing quasimacroscopic systems
of dense nucleonic and/or quark-gluon matter at re-
latively high temperature. In principle this seems to
be an interesting way to explore the question of
phase transitions between ordinary (confined) matter
and (unconfined) quark-gluon plasma. It is also of
interest to historians of the early universe. At some
early epoch, of order 10 sec after the big bang, the
conditions in the universe were probably rather simi-
lar.
On the other hand, interpretation of these com-

plex collisions poses a major problem. What are the
clean experimental signatures and how can one
deduce what is going on? Is there information
which unambiguously teaches us about the state of
the matter formed during and immediately after the
collision?
All these problems are under active investigation

nowadays. ' There seems to be a consensus that
enough initial kinetic energy is converted into heat
so that quark-gluon plasma is created. Less under-
stood is the question of how the system evolves.
Furthermore, most (but not all) of the work has con-
centrated on the system of leading particles which
carries the baryon number of the incident nucleus.
This system is especially interesting since it is essen-
tially compressed nuclear matter and carries with it
not only a heritage of nuclear physics but also of nu-
clear astrophysics, e.g., the question of neutron-star
composition. However, the remaining phase space,
the so-called central rapidity region, is of interest in
its own right. It may well be that this region of
phase space is easier to study experimentally.
It is our purpose in this paper to sketch out a pic-

ture of the space-time evolution3 of the collision
process in this "central" region of phase space. We

shall treat the problem in the context of the Landau
hydrodynamic model, but with a different initial
boundary condition. We shall assume that at suffi-
ciently high energy there is a "central-plateau"
structure for the particle production as a function of
the rapidity variable, be it in nucleon-nucleon,
nucleon-nucleus, or nucleus-nucleus collisions. The
essence of this assumption is the assertion that the
space-time evolution of the system looks essentially
the same in all center-of-mass-like frames, i.e., in all
frames where the emergent excited nuclei are, short-
ly after the collision, highly Lorentz-contracted pan-
cakes receding in opposite direction from the col-
lision point at the speed of light.
This assertion implies a symmetry property of the

system. We will impose this symmetry as an initial
condition. However, the hydrodynamic equations
respect the symmetry as well. This leads to simple
solutions of the hydrodynamic equations. In par-
ticular, for central collisions of large nuclei, the
fluid expansion near the collision axis is longitudinal
and homogeneous. The fluid midway between the
receding pancakes remains at rest, while the fluid a
longitudinal distance z from that midpoint moves
with longitudinal velocity z/t, where t is the time
elapsed since the pancakes collided. This picture is
modified at large transverse distances, comparable
to the nuclear radii. In that region there will be a
rarefaction front moving inward at the velocity of
sound of the Auid. For transverse distances larger
than the rarefraction front, the fluid will expand ra-
dially outward, cooling more rapidly than the fluid
in the interior.
The initial energy density produced in the col-

lision is very roughly estimated to be -3 GeV/fm
with an uncertainty of at least a factor of 3 in either
direction. The estimate is based simply on the ener-
gy release per unit of rapidity in nucleon-nucleon
collisions. This energy density (and consequent en-
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A common model is
the Bjorken formula:
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duced plasma in nucleus-nucleus collisions.
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rons? However, this uncertainty should not affect
the estimated energy density provided the elementa-
ry collision processes which operate in nucleon-
nucleon collisions are operative in nucleus-nucleus
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should collide; indeed, we may anticipate that local
thermal equilibrium will be established. With a
mean energy density as given above, and with a
mean energy per quantum of 400 MeV, this implies
an initial density of quanta pp of -2—20 fm
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If, for uranium, we assumed full additivity over the
A nucleons we would get

10 mb X (0.05—0.5 fm) .
Oint

(10)

At high energies, initial massless particles 
are produced from a pancake (at z=0) at t=0.

For partons in a thin slab of thickness -d<z<d 
in the middle (y~0) at time t :

|tanh 𝑦 | ≈ 𝑦 <
𝑑
𝑡

X

X

𝜖 𝜏 =
1

𝜏	𝐴1
𝑑𝐸1(𝜏)
𝑑𝑦

Energy within the slab is

z0

X
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• Although evolves with time, 

one often uses the known final experimental value as an estimate.

• The Bjorken formula then diverges as ,
so we can assume a finite formation time       for the initial particles, 
the Bjorken formula then becomes

The Bjorken formula

𝑑𝐸1(𝜏)
𝑑𝑦

𝜏 → 0
τ7

𝜖89 τ7 =
1

τ7	𝐴1
𝑑𝐸1
𝑑𝑦

A common model is
the Bjorken formula:

𝜖 𝜏 =
1

𝜏	𝐴1
𝑑𝐸1(𝜏)
𝑑𝑦
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tropy or particle density} is sufficiently high to
make it very likely that the system rapidly comes
into local thermal equilibrium. It is also, as we al-
ready mentioned, sufficiently high to make it likely
that the plasma is in the deconfined quark-gluon
phase. However, the initial temperature is not ex-
pected to be high; we estimate -200—300 MeV.
During the expansion the energy density drops (in

4its local rest frame) as t "with 1 & y & —,, while the
temperature drops as t~ . The entropy density
falls as t '. This implies that the entropy per unit
rapidity is eonserued, a result which depends only
upon the boost symmetry of our boundary condi-
tions and not upon details of the equation of state.
This result implies that the particle production per
unit rapidity (which is proportional to the entropy)
in turn does not depend on the details of the hydro-
dynamic evolution, but only on the initial energy
(hence, entropy) deposition in the early stage of the
collision itself.
As the system evolves, the amount of fluid under-

going homogeneous longitudinal expansion de-
creases. When the separation of the outgoing pan-
cakes exceeds their diameter, the fluid enclosed be-
tween them will undergo three-dimensional radial
expansion and should rapidly cool. Already at the
onset of this part of the evolution, we estimate that
any phase transition will have been traversed, and
that the system is one of dense hadronic matter,
with temperature -150—200 MeV,
In the next section we discuss our proposed

space-time picture of the collision. In Sec. IV, we
briefly consider the question of equation of state,
and whether it has an effect on the picture. Section
IV is devoted to miscellaneous comments and con-
clusions.

II. SPACE-TIME EVOLUTION
In order to motivate our starting point for ion-ion

collisions, we begin by describing the assumption we
shall make for the simpler cases of hadron-hadron
and hadron-nucleus collisions.
In the case of hadron-hadron collisions we shall

assume (1) there exists a "central-plateau" structure
in the inclusive particle productions as function of
the rapidity variable. This is reasonably well borne
out by CERN SPS collider data. It is true that the
plateau height is energy-dependent, but that will not
affect our considerations very much. The existence
of the plateau implies that the particle distribution
at large angles, as seen in a typical center-of-mass
frame, does not depend upon the particular frame
which is chosen. For example, at SPS energies the
90' particle production in a 2SO+2SO GeV pp col-
lision appears to be not dissimilar to the 90' particle

production in a 10 GeV+6 TeV pp collision. This
apparent symmetry will be a central theme in the
discussion to follow.
Our second assumption is similar: (2) For

nucleon-nucleus collisions, there also exists a
"central-plateau" structure in the inclusive. particle
production as a function of the rapidity variable,
with plateau height about the same as for a
nucleon-nucleon collision. p-u collisions at the
CERN ISR (Ref. 7) lend some support for this
behavior, although it would be reassuring to have
better data on nucleon collisions with heavier nuclei.
The final assumption is the following. (3) There

exists a "leading-baryon" effect. That is, the net
baryon number of a projectile is found in fragments
of comparable momentum {more precisely of rapidi-
ty within -2—3 units of the rapidity of the source}.
Likewise the net baryon number from a target
baryon originally at rest is found in those produced
hadrons of relatively low momentum. This assump-
tion is again consistent with what is seen in pp, pa,
and aa collisions at the CERN ISR.
Given these hypotheses, we may now consider the

case of ion-ion collisions. First, let us consider the
collision in the rest frame of one of the nuclei. As
the highly Lorentz-contracted pancake passes
through this nucleus, it is reasonable that each nu-
cleon in the nucleus is struck. It is also
reasonable —and we shall assume its correctness—
that the secondary nucleon from each collision
possesses a momentum distribution similar to what
it would possess were it in isolation and not bound
in nuclear matter. This means it recoils semirela-
tivistically, with a typical momentum of several
hundred MeV. The result, as very thoroughly and
well described by Anishetty, Koehler, and McLer-
ran, is that the nuclear matter in the target nucleus
is found (in its original rest frame) in a distinct ellip-
soidal region (Fig. 1}moving with a y-2, and lag-
ging behind the highly contracted projectile pan-
cake.
The fact that the y of this system of baryons is

expected to be finite and not too large implies that
in ion-ion collisions the baryon number should be
found in (or near) the projectile fragmentation re-

FIG. 1. Schematic of the evolution of a compressed
"baryon fireball" in nucleus-nucleus collisions, according
to the mechanism of Anishetty, Koehler, and McLerran
{Ref.8).

Bjorken, PRD 27 (1983) 
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Fig. 5. Figure from Bjorken [74] illustrating the geometry of initially produced particles at a time t after the
overlap of the incoming nuclei in some frame. The picture is valid in any frame in which the incoming nuclei
have very high energies and so are highly Lorentz contracted.

(dz/τForm) dN
dy , where y is longitudinal rapidity, since dy = dβ∥ at y = β∥ = 0. If these

particles have an average total energy ⟨mT ⟩ in this frame (E = mT for particles with no
longitudinal velocity), then the total energy divided by the total volume of the slab at t =
τForm is just

〈
ε(τForm)

〉
= dN⟨mT ⟩

dzA
= dN(τForm)

dy

⟨mT ⟩
τFormA

= 1
τFormA

dET (τForm)

dy
, (5)

where we have equated dET
dy = ⟨mT ⟩ dN

dy and emphasized that Eq. (5) is true for the trans-
verse energy density present at time t = τForm.
Eq. (5) here is essentially identical5 to Eq. (4) of Bjorken’s result [74], and so is usually

referred to as the Bjorken energy density εBj. It should be valid as a measure of peak
energy density in created particles, on very general grounds and in all frames, as long as
two conditions are satisfied: (1) A finite formation time τForm can meaningfully be defined
for the created secondaries; and (2) The thickness/“crossing time” of the source disk is
small compared to τForm, that is, τForm ≫ 2R/γ . In particular, the validity of Eq. (5) is
completely independent of the shape of the dET (τForm)/dy distribution to the extent that

5 A (well-known) factor of 2 error appears in the original.

From PHENIX NPA757 (2005):

In spite of Fig.1,
the Bjorken formula neglects 
finite thickness of (boosted) nuclei
→ it is only valid at high energies 
where       crossing time <<  τF
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Considering central A+A collisions 
in the center-of-mass frame
& using the hard sphere model for nucleus:

crossing time
(or duration time of the initial energy 
production) is

𝑑: =
2𝑅=

sinh 𝑦@A
=
2𝑅=
γ	𝛽

So the initial energy production 
goes on throughout time [0, dt]
with a certain time profile

t = 0

z0

t = dt /2

t = dt
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t = 0

z0

t = dt /2

t = dt

Using the hard sphere model for nucleus:
𝑅= = 1.12𝐴E/G	𝑓𝑚

5 11.5 27 50 200
5.3 2.2 0.91 0.49 0.12

𝑠KK� 	(𝐺𝑒𝑉)
𝑑:	(𝑓𝑚/𝑐)

For central Au+Au collisions:

crossing time <<  τF
→ the Bjorken formula is only valid for

for τF = 0.5 fm/c𝑠KK� ≫ 50𝐺𝑒𝑉

crossing time dt is

𝑑: =
2𝑅=

sinh 𝑦@A
=
2𝑅=
γ	𝛽
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z

t

time

0
d-d

x

dt

My goal here is fix this problem
& have a Bjorken-type formula that’s 
also valid at low energies.

Initial massless particles 
are produced from a pancake (at z=0) 
during production time .

|tanh 𝑦 | ≈ 𝑦 <
𝑑

𝑡 − 𝒙

→ average energy density within the slab at time t is

𝑥 ∈ [0, 𝑑:]

Write the production rate of initial dET/dy(y~0)
at production time x as 𝑑[𝐸1

𝑑𝑦	𝑑𝑥

\
[]	=^

= E
=^
∫ 	]

`\^
]a	]b

]c
d 	 ]b

:eb

Particles around 0 rapidity could be 
produced at any time x within [0,dt] 
and propagate to observation time t. 

For partons in a thin slab of thickness -d<z<d 
in the middle (y~0), at observation time t >𝑑::
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z

t

time

0
d-d

x

dt

Extension of the Bjorken formula

Average energy density within the slab at time t is

𝑑[𝐸1
𝑑𝑦	𝑑𝑥

This usually diverges as ,
like the Bjorken formula.

So we assume a finite formation time τF
for initial particles, then at any time t ≥ τF

𝑡 → 0

𝜀(𝑡) = E
=^
∫ 	]

`\^
]a	]b

:egh
d 	 ]b

:eb

this applies to any time (even during the crossing time).

To proceed, we will take specific form for the time profile

\
[]	=^

= E
=^
∫ 	]

`\^
]a	]b

]c
d 	 ]b

:eb

t
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z

t

time

0
d-d

x

dt

Extension of the Bjorken formula

These dynamics can be numerically modeled by transport models 
like string melting AMPT after including finite thickness
or by hydrodynamical models Shen & Heinz, PRC 85 (2012); 86 (2012) (E);

Oliinychenko et al., PRC 91 (2015).

ZWL, in progress

For analytical results of 
the initial energy production, 

we make minimal extensions 
to the Bjorken formula framework: 
• assume massless particles 
• neglect secondary interactions 
• neglect transverse expansion
• neglect finite width in z

for productions of initial particles
at mid-rapidity

except for numerical results from AMPT.
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Extension of the Bjorken formula: 1) the uniform profile

2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y|  d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z
dt

0

d

2
ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z
t�⌧

F

0

d

2
ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  d

t

+ ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d

2
ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2

(with t21 ⌘ t2 � t1):

d

2
ET

dy dx

=
1

t21

dET

dy

, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to d

t

for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy

ln

✓
t� t1

⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy

ln

✓
t� t1

t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏

max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏

max

uni = ✏uni(t2 + ⌧F) =
1

ATt21

dET

dy

ln

✓
1 +

t21

⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏

max

uni

✏Bj(⌧F)
=

⌧F

t21
ln

✓
1 +

t21

⌧F

◆
.

Therefore the ✏

max value above is always smaller than
the Bjorken initial energy density: ✏

max ⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏

max ⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏

max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(d

t

) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time d

t

/2). We thus expect
the time profile of the initial energy production to peak
around time d

t

/2 while diminish at time 0 and d

t

. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d

2
ET

dy dx

= a

n

[x(d
t

� x)]n
dET

dy

, if x 2 [0, d
t

].

In the above, power n does not need to be an integer, and
a

n

= 1/d2n+1
t

/B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F

d

t

,

t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t

⇤2F1


1, n+ 1, 2n+ 2,

d

t

t

�
,

if t � d

t

+ ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = d

t

.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R

2
A

, with R

A

= 1.12A1/3 fm,

z

t

time

0
d-d

x

dt

]`\^
]a	]b

at y~0

x

𝜀(𝑡) = E
=^
∫ 	]

`\^
]a	]b

:egh
d 	 ]b

:eb

Simplest profile:
initial energy (at y~0) is produced 
uniformly from time t1 to t2
(with t21 ≡ t2 − t1):

]`\^
]a	]b

= E
:`i

]\^
]a	

for 𝑥 ∈ [𝑡E, 𝑡[]

→ solution:
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time

eUniform

Extension of the Bjorken formula: 1) the uniform profile

2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y|  d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z
dt

0

d

2
ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z
t�⌧

F

0

d

2
ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  d

t

+ ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d

2
ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2

(with t21 ⌘ t2 � t1):

d

2
ET

dy dx

=
1

t21

dET

dy

, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to d

t

for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy

ln

✓
t� t1

⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy

ln

✓
t� t1

t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏

max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏

max

uni = ✏uni(t2 + ⌧F) =
1

ATt21

dET

dy

ln

✓
1 +

t21

⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏

max

uni

✏Bj(⌧F)
=

⌧F

t21
ln

✓
1 +

t21

⌧F

◆
.

Therefore the ✏

max value above is always smaller than
the Bjorken initial energy density: ✏

max ⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏

max ⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏

max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(d

t

) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time d

t

/2). We thus expect
the time profile of the initial energy production to peak
around time d

t

/2 while diminish at time 0 and d

t

. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d

2
ET

dy dx

= a

n

[x(d
t

� x)]n
dET

dy

, if x 2 [0, d
t

].

In the above, power n does not need to be an integer, and
a

n

= 1/d2n+1
t

/B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F

d

t

,

t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t

⇤2F1


1, n+ 1, 2n+ 2,

d

t

t

�
,

if t � d

t

+ ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = d

t

.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R

2
A

, with R

A

= 1.12A1/3 fm,

t1+τF t2+τF

Bjorken formula

Uniform formula

• For t1 = 0 & t2 /τF → 0
(thin nuclei/high energy):
𝜀jkl(𝑡) → 𝜀89(𝑡)

• When t >> (t2+τF):
𝜀jkl(𝑡) → 𝜀89(𝑡)

• For t !>> (t2+τF):
very different from Bjorken

Central Au+Au@11.5GeV

𝜀(𝑡)
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For t21 /τF >>1 (low energy):
ratio → 0;

Peak energy density: 
• << Bjorken value
• much less sensitive to τF
FWHM width in t >> Bjorken

𝜀jklmnb ∝ ln E
gh

,      not E
gh

time

eUniform

Extension of the Bjorken formula: 1) the uniform profile2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y|  d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z
dt

0

d

2
ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z
t�⌧

F

0

d

2
ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  d

t

+ ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d

2
ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2

(with t21 ⌘ t2 � t1):

d

2
ET

dy dx

=
1

t21

dET

dy

, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to d

t

for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy

ln

✓
t� t1

⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy

ln

✓
t� t1

t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏

max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏

max

uni = ✏uni(t2 + ⌧F) =
1

ATt21

dET

dy

ln

✓
1 +

t21

⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏

max

uni

✏Bj(⌧F)
=

⌧F

t21
ln

✓
1 +

t21

⌧F

◆
.

Therefore the ✏

max value above is always smaller than
the Bjorken initial energy density: ✏

max ⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏

max ⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏

max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(d

t

) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time d

t

/2). We thus expect
the time profile of the initial energy production to peak
around time d

t

/2 while diminish at time 0 and d

t

. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d

2
ET

dy dx

= a

n

[x(d
t

� x)]n
dET

dy

, if x 2 [0, d
t

].

In the above, power n does not need to be an integer, and
a

n

= 1/d2n+1
t

/B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F

d

t

,

t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t

⇤2F1


1, n+ 1, 2n+ 2,

d

t

t

�
,

if t � d

t

+ ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = d

t

.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R

2
A

, with R

A

= 1.12A1/3 fm,

τF t2+τF

Bjorken formula

Uniform formula

𝜀jklmnb

Let t1 = 0 for simplicity:

For t21 /τF → 0  (high energy):
ratio → 1  (→ Bjorken)

ratio over Bjorken: ≤ 1

2

z

t

time

0
d-d

x

dt

FIG. 1: Particles around zero rapidity could be produced at
any time x within [0, dt] and propagate to observation time t.

ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z
dt

0

d

2
ET

dy dx

dx

(t� x)
. (4)

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z
t�⌧

F

0

d

2
ET

dy dx

dx

(t� x)
. (5)

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  d

t

+ ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d

2
ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2

(with t21 ⌘ t2 � t1):

d

2
ET

dy dx

=
1

t21

dET

dy

, if x 2 [t1, t2]. (6)

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to d

t

for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (5)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy

ln

✓
t� t1

⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy

ln

✓
t� t1

t� t2

◆
, if t � t2 + ⌧F . (7)

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏

max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏

max

uni = ✏uni(t2 + ⌧F) =
1

ATt21

dET

dy

ln

✓
1 +

t21

⌧F

◆
. (8)

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏

max

uni

✏Bj(⌧F)
=

⌧F

t21
ln

✓
1 +

t21

⌧F

◆
. (9)

Therefore the ✏

max value above is always smaller than
the Bjorken initial energy density: ✏

max ⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏

max ⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏

max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(d

t

) is bigger. In addition, Eq.(7)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time d

t

/2). We thus expect
the time profile of the initial energy production to peak
around time d

t

/2 while diminish at time 0 and d

t

. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d

2
ET

dy dx

= a

n

[x(d
t

� x)]n
dET

dy

, if x 2 [0, d
t

]. (10)

Central Au+Au@11.5GeV

𝜀(𝑡)

Peak energy density 
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� �� �� ��
�

�/��

�/��

�/��

]`\^
]a	]b

at y~0

x

More realistic profile:
~0 energy is produced at x = 0 & dt , 
most energy is produced at x = dt /2 :
]`\^
]a	]b

= 𝑎k 𝑥(𝑑: − 𝑥) k ]\^
]a	

for 𝑥 ∈ [0, 𝑑:]
x = 0

z0

x = dt /2

x = dt
Circles: time profile of initial partons within mid-ηs
from string melting AMPT for central Au+Au @11.5 GeV. 

n=1

n=5

n=0: reduces to a uniform profile
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2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y|  d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z
dt

0

d

2
ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z
t�⌧

F

0

d

2
ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  d

t

+ ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d

2
ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2

(with t21 ⌘ t2 � t1):

d

2
ET

dy dx

=
1

t21

dET

dy

, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to d

t

for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy

ln

✓
t� t1

⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy

ln

✓
t� t1

t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏

max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏

max

uni = ✏uni(t2 + ⌧F) =
1

ATt21

dET

dy

ln

✓
1 +

t21

⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏

max

uni

✏Bj(⌧F)
=

⌧F

t21
ln

✓
1 +

t21

⌧F

◆
.

Therefore the ✏

max value above is always smaller than
the Bjorken initial energy density: ✏

max ⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏

max ⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏

max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(d

t

) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time d

t

/2). We thus expect
the time profile of the initial energy production to peak
around time d

t

/2 while diminish at time 0 and d

t

. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d

2
ET

dy dx

= a

n

[x(d
t

� x)]n
dET

dy

, if x 2 [0, d
t

].

In the above, power n does not need to be an integer, and
a

n

= 1/d2n+1
t

/B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F

d

t

,

t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t

⇤2F1


1, n+ 1, 2n+ 2,

d

t

t

�
,

if t � d

t

+ ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = d

t

.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R

2
A

, with R

A

= 1.12A1/3 fm,

� �� �� ��
�

�/��

�/��

�/��

]`\^
]a	]b

at y~0

x

B: the Beta function,
F1: Appell hypergeometric function of 2 variables, 
2F1: the Gaussian hypergeometric function.

Next we take n=4, since it 
well describes the AMPT time profile.

→ solution:
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The uniform time profile (with t1 = 0 & t2 = dt ), 
the beta time profile for n = 4 & the Bjorken formula:

• << Bjorken value;
• is much less sensitive to τF :

𝜀mnb

factor of 2.1 or 2.5 change (not factor of 9)
when τF changes from 0.1 to 0.9 fm/c

At high energy,
solution ~ Bjorken

At low energy:
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FIG. 13. Left panel: dET /dη divided by the number of Np pairs measured in the most central bin (value given in brackets) as a function of
incident nucleon energy. The line is a logarithmic fit. The band corresponds to a 1σ statistical deviation of the fit parameters. Right panel: the
same for dNch/dη . The values of Nch are the average values corresponding to Np = 350. The single point at

√
sNN = 56 GeV is explained in

Appendix A 10.

the ET /Nch ratio with
√

sNN . In this region the increase in
the incident energy causes an increase in the ⟨mT ⟩ of the
produced particles. The second region starts from the SPS
energies and continues above. In this region, the ET /Nch ratio
is very weakly dependent on

√
sNN . The incident energy is

converted into particle production at midrapidity rather than
into increasing the particle ⟨mT ⟩.

The shape of the ET /Nch curve in the first region is
governed by the difference in the

√
s0

NN parameter between
ET and Nch. In the second region it is dominated by the ratio
of the A parameters in the fits. This ratio is close to 1 GeV.
Extrapolating to LHC energies one gets a ET /Nch value of
(0.92 ± 0.06) GeV.

2. Centrality shape

Another interesting question is how the shapes of the
centrality curves of ET and Nch change with

√
sNN .

One approach previously used in a number of papers is to
describe the shape of the centrality dependence as a sum of
“soft” and “hard” contributions such that the soft component
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FIG. 14. Ratio of ET over Nch for the most central events as a
function of

√
sNN recalculated into c.m.s. The line is the ratio of two

fits shown in Fig. 13. The band corresponds to one standard deviation
of the combined error.

is proportional to Np and the hard component to the the
number of binary collisions Nc, that is, A × Np + B × Nc. A
disadvantage of this approach is that the contributions called
soft and hard do not necessarily correspond to the physical
processes associated with these notations. Another approach
is to assume that the production of ET or Nch is proportional
to Nα

p , although the parameter α has no physical meaning.
The results of B/A and α obtained from the fits to the

data at different
√

sNN are summarized in Table II. Although
the numbers tend to increase with beam energy, the values
presented in Table II are consistent with each other within the
systematic errors.

The availability of higher quality data would make it
possible to derive a more conclusive statement about the shape
of the curves plotted in Figs. 9 and 12. With the present set
of data usually limited to Np above 50, a large part of the

TABLE II. B/A ratio and parameter α from the fit to the data.
Errors are calculated assuming a change in the slope of the centrality
curves within the limits of the bending errors for PHENIX and full
errors for the averaged data (Table XVII).

dET /dη dNch/dη dNch/dη√
sNN PHENIX PHENIX Average

(GeV) B/A

200 0.49+.69
−.22 0.41+.57

−.21 0.28+.18
−.15

130 0.41+.52
−.23 0.41+.45

−.23 0.26+.18
−.11

19.6 0.37+.48
−.22 0.21+.30

−.15 0.23+.73
−.23

17.2 0.31+.46
−.24

8.7 0.12+.64
−.20

Parameter α

200 1.20 ± 0.07 1.18 ± 0.08 1.16 ± 0.06
130 1.14 ± 0.08 1.17 ± 0.08 1.14 ± 0.05

19.6 1.13 ± 0.07 1.09 ± 0.06 1.10 ± 0.11
17.2 1.11 ± 0.08
8.7 1.06 ± 0.13
4.8 1.20 ± 0.24
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function is phenomenological and is suggested by the trend
of the data in the range of available measurements. The
agreement of the fits with the data in both panels is very good,
especially in the right panel where the averaged values are
used for Np = 350. The single point of NA49 [31] is excluded
from the ET fit (see Appendix A 3). The results of the fit
dX/dη = (0.5Np · A)ln(

√
sNN/

√
s0

NN) are

for ET ,
√

s0
NN = 2.35 ± 0.2 GeV and A = 0.73 ± 0.03 GeV,

for Nch,
√

s0
NN = 1.48 ± 0.02 GeV and A = 0.74 ± 0.01.

The parameter
√

s0
NN = 2.35 GeV obtained from the ET fit

is slightly above although within 3σ from the minimum possi-
ble value of

√
sNN = 2 × amu = 1.86 GeV. The measurement

closest to it at
√

sNN = 2.05 GeV done by the FOPI experiment
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FIG. 12. dNch/dη divided by the number of Np pairs measured by
AGS and SPS experiments and the average taken at different energies
recalculated in the c.m.s.

allows one to estimate the amount of dET /dη produced to
be 5.0 GeV in the most central collisions corresponding to
Np = 359. Appendix A 9 gives details of the estimate. This
does not disagree with the extrapolation of the fit but does
indicate that the logarithmic parametrization requires higher
order terms to describe how the ET production starts at very
low

√
sNN .

The right panel of Fig. 13 shows the logarithmic fit to the
Nch data. It agrees well with all dNch/dη results plotted for
Np = 350. Unlike that for ET , the fit parameter

√
s0

NN for Nch
is 1.48 ± 0.02 GeV which is lower than the minimum allowed√

sNN . This suggests that above 2 × amu the Nch production
as a function of

√
sNN should undergo threshold-like behavior,

unlike the ET production which must approach zero smoothly
because of energy conservation.

The FOPI measurements at
√

sNN = 1.94 and 2.05 GeV
agree with the extrapolation of the fit at energy very close to
2 × amu. It is an interesting result that colliding nuclei with
kinetic energies of 0.037 and 0.095 GeV per nucleon in the
c.m.s. follow the same particle production trend as seen at
AGS, SPS, and RHIC energies.

A fit to the charged particle multiplicity shows a factor of
2.2 increase in dNch/dη per participant in the most central
events from the highest energy at the AGS (

√
sNN = 4.8 GeV)

to the highest energy at the SPS (17.2 GeV) and a factor of
2.0 from the highest SPS energy to the highest RHIC energy
(200 GeV). Assuming the same behavior extends to the Large
Hadron Collider (LHC) highest energy (5500 GeV) one would
expect dNch/dη = (6.1 ± 0.13) · (0.5Np) and the increase in
particle production from the highest RHIC energy to be ∼60%
for the most central events. With the greater energy, the rapidity
width should increase by ∼60%, i.e., the total charged particle
multiplicity at LHC would increase by a factor of ∼2.6 from
the top RHIC energy.

The ratio of ET /Nch for the most central bin as a function
of

√
sNN is shown in Fig. 14. Note that the line shown in the

figure is not the fit to the data points. Rather, it is calculated
from the fits shown in Fig. 13. The calculation agrees well
with the data. There are two regions in the plot which can
be clearly separated. The region from the lowest allowed√

sNN to SPS energy is characterized by a steep increase of
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𝜋𝑅=[, 𝑅= = 1.12𝐴E/G	𝑓𝑚We use the hard sphere model for nucleus:
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function is phenomenological and is suggested by the trend
of the data in the range of available measurements. The
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especially in the right panel where the averaged values are
used for Np = 350. The single point of NA49 [31] is excluded
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allows one to estimate the amount of dET /dη produced to
be 5.0 GeV in the most central collisions corresponding to
Np = 359. Appendix A 9 gives details of the estimate. This
does not disagree with the extrapolation of the fit but does
indicate that the logarithmic parametrization requires higher
order terms to describe how the ET production starts at very
low

√
sNN .

The right panel of Fig. 13 shows the logarithmic fit to the
Nch data. It agrees well with all dNch/dη results plotted for
Np = 350. Unlike that for ET , the fit parameter

√
s0

NN for Nch
is 1.48 ± 0.02 GeV which is lower than the minimum allowed√

sNN . This suggests that above 2 × amu the Nch production
as a function of

√
sNN should undergo threshold-like behavior,

unlike the ET production which must approach zero smoothly
because of energy conservation.

The FOPI measurements at
√

sNN = 1.94 and 2.05 GeV
agree with the extrapolation of the fit at energy very close to
2 × amu. It is an interesting result that colliding nuclei with
kinetic energies of 0.037 and 0.095 GeV per nucleon in the
c.m.s. follow the same particle production trend as seen at
AGS, SPS, and RHIC energies.

A fit to the charged particle multiplicity shows a factor of
2.2 increase in dNch/dη per participant in the most central
events from the highest energy at the AGS (

√
sNN = 4.8 GeV)

to the highest energy at the SPS (17.2 GeV) and a factor of
2.0 from the highest SPS energy to the highest RHIC energy
(200 GeV). Assuming the same behavior extends to the Large
Hadron Collider (LHC) highest energy (5500 GeV) one would
expect dNch/dη = (6.1 ± 0.13) · (0.5Np) and the increase in
particle production from the highest RHIC energy to be ∼60%
for the most central events. With the greater energy, the rapidity
width should increase by ∼60%, i.e., the total charged particle
multiplicity at LHC would increase by a factor of ∼2.6 from
the top RHIC energy.

The ratio of ET /Nch for the most central bin as a function
of

√
sNN is shown in Fig. 14. Note that the line shown in the

figure is not the fit to the data points. Rather, it is calculated
from the fits shown in Fig. 13. The calculation agrees well
with the data. There are two regions in the plot which can
be clearly separated. The region from the lowest allowed√

sNN to SPS energy is characterized by a steep increase of
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εuni(t) ~ εbeta(t), 
since we set t1 & t2 of the uniform profile so that 
it has the same mean & standard deviation as the beta profile. 

Overall:
• AMPT with F.T.
~ our model;

• AMPT w/o F.T.
~ Bjorken formula.

• Small effect 
of  F.T. at 200 GeV

F.T.=finite thickness

String melting AMPT is improved by including finite thickness. ZWL, in progress



21Extension of the Bjorken formula: 3) the triangular time profile
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and then decreases smoothly with time:
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Figures 4(b)&(c) show that results from the beta and
triangular profiles are almost identical in shape and close
in magnitudes, after we set t1 = 0.20d

t

& t2 = 0.80d
t

for the triangular time profile to have the same mean
and standard deviation as the beta profile for n = 4.
An advantage of the triangular profile is that we have
analytical expressions for its ✏max and the corresponding
time.

We have only addressed the energy density averaged
over the full transverse overlap area AT . Note that the
transverse overlap area at time before d

t

/2 is smaller due
to the partial overlap of the two nuclei. To average over
this partial overlap area, one may replace AT in our so-
lutions by AT [1 � (1 � 2t/d

t

)2] for t  d

t

/2. This will
enhance the energy density somewhat at early times.

Our analytical method includes the finite time dura-
tion but neglects the possible finite width in z for the
initial energy production. Results from the AMPT model
[11] indicate a finite width in z, which e↵ect is already
included in the AMPT results here; further work may
be warranted to include this e↵ect analytically. We also
note that the finite duration of proper time in the initial

energy production has been considered in hydrodynami-
cal models [13, 14], where an energy source term with a
finite time duration can be introduced and our method
can be applied to help describe the initial stage.

V. Conclusions. We have extended the Bjorken for-
mula by including a time profile for the initial energy
production due to the finite nuclear thickness. We have
considered a simple uniform as well as more realistic time
profiles, and analytical solutions of the formed energy
density have been obtained that are also valid at low en-
ergies where the Bjorken formula breaks down. At late
times, the solution of the energy density approaches the
Bjorken formula. We then apply the solutions to central
Au+Au collisions in the energy range

p
sNN 2 [4.84, 200]

GeV. After taking into account the finite crossing time,
the maximum energy density achieved is much less sensi-
tive to the uncertainty of ⌧F , especially at lower energies
where the crossing time is bigger. At low energies, the en-
ergy density reaches a much lower maximum value than
the Bjorken energy density for the same formation time
⌧F , but the width of the time evolution of energy density
is much bigger. In addition, comparisons with the re-
sults from the string melting AMPT model confirm the
key features of the analytical solutions. Therefore this
extension provides a convenient tool to model the ini-
tial energy production in relativistic heavy ion collisions,
especially at low energies

p
sNN <⇠ 50 GeV.

We thank Miklos Gyulassy for careful reading of the
manuscript and helpful comments. This work is sup-
ported in part by National Natural Science Foundation
of China grant No. 11628508.
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where A = 197. We take the mid-rapidity dET/dy as the
following data-based parameterization [8]:

dET

dy

= 1.25
dET

d⌘

= 0.913Npart ln

✓p
sNN

2.35

◆
,

where
p
sNN must be greater than 2.35 in the unit of GeV.

Also, we take Npart = A for central collisions.

FIG. 3: Average formed energy densities at mid-rapidity as
functions of time for central Au+Au collisions at (a) 4.84 GeV
and (b) 200 GeV from the uniform time profile with the naive
choice of t1 = 0 & t2 = dt (dashed), the beta time profile for
n = 4 (solid), and the Bjorken formula (dotted). Three sets
of curves of each type correspond to ⌧F = 0.1, 0.3 & 0.9 fm/c.

Our results for central Au+Au collisions at
p
sNN =

4.84 GeV and 200 GeV are shown in Fig. 3 for di↵er-
ent formation times ⌧F = 0.1, 0.3 & 0.9 fm/c. Also
shown are the results implied by the Bjorken formula:
✏Bj(t) = 1/(ATt)dET/dy for t � ⌧F (and = 0 for t < ⌧F).
We have taken n = 4 for the beta profile according to
Fig. 2, and we take the naive choice of t1 = 0 and t2 = d

t

for the uniform profile in Fig. 3. At 4.84 GeV, we see
that the time evolution of the energy density in either
time profile has a much bigger width (e.g. full width
at half maximum) than the Bjorken results, while the
maximum energy density is much lower than the corre-
sponding Bjorken value for the same ⌧F . As expected, our
maximum initial energy density ✏

max changes by a much
smaller factor of 2.1 (uniform profile) or 2.5 (beta profile)
when ⌧F changes from 0.1 to 0.9 fm/c; while the Bjorken
initial energy density changes by a factor of 9. On the
other hand, our results at 200 GeV are much closer to
(although still di↵erent from) the Bjorken results; this is
expected since the crossing time there (d

t

⇡ 0.12 fm/c)
is very small. For both energies, our results approach the
Bjorken results at late times.

Both the Bjorken formula and our method have ne-
glected secondary particle interactions and the transverse
expansion, which could a↵ect the time evolution of the
energy density. These dynamics can be described by
transport models such as AMPT [7] or hydrodynamical
models [9, 10]. Now we compare our analytical solu-
tions with results from the string melting AMPT model,
which includes a conversion of excited strings into a par-
ton matter, partonic scatterings, a quark coalescence for
hadronization, and hadronic scatterings. For this study,
the string melting AMPT model [7] has been improved
by including the finite thickness of nuclei [11], then we
calculate the average local energy density (over the hard-
sphere transverse area AT) for partons at mid-spacetime-
rapidity following the method of an earlier study [12].
Circles in Fig. 2 represent the distribution of produc-
tion time of partons within mid-spacetime-rapidity from
AMPT for central (b = 0 fm) Au+Au collisions atp
sNN = 11.5 GeV [11]. We thus take n = 4 for the

beta time profile, since this can reasonably describe the

AMPT time profile. To get the same mean and stan-
dard deviation as the beta profile, we set t1 = 0.29d

t

&
t2 = 0.71d

t

for the uniform profile.

Figure 4 shows our results from di↵erent time profiles
together with the Bjorken results at di↵erent energies.
We see from Figs. 4(a)&(d) that, unlike Figs. 3, results
from the uniform and beta profiles here are quite close
to each other once the uniform profile is set to the same
mean and standard deviation as the beta profile. Curves
with filled and open circles are respectively the AMPT
results with and without the finite nuclear thickness (af-
ter small shifts in time that help account for the dif-
ference between the Woods-Saxon distribution and the
hard-sphere model of the nucleus). Note that the AMPT
results are generally wider in time; partly because the
parton formation time in AMPT is not set as a constant
but is inversely proportional to the parent hadron trans-
verse mass [7]; we find that the parton formation time
distribution at mid-spacetime-rapidity has a mean value
of ⇠ 0.3 fm/c but has a long tail. Secondary parton scat-
terings and the transverse expansion in AMPT can also
cause di↵erences from the analytical results. Overall, we
see that the AMPT results without considering the fi-
nite nuclear thickness are similar to the Bjorken results,
while the AMPT results including the finite thickness are
similar to our analytical results.

FIG. 4: Results for the uniform (dashed curves), beta (solid
curves), triangular (dot-dashed curves) time profiles and the
Bjorken formula (dotted curves) for ⌧F = 0.1 & 0.3 fm/c, in
comparison with the corresponding AMPT results (circles),
for central Au+Au collisions at (a) 4.84 GeV, (b) 11.5 GeV,
(c) 27 GeV, and (d) 200 GeV.

IV. Discussions. We can also take a triangular time
profile, as illustrated by the dot-dashed curve in Fig. 2,
from time t1 to t2 with the peak at t

mid

⌘ (t1 + t2)/2:
d

2
ET/dy/dx / (x� t1) for t 2 [t1, tmid

] while / (t2 � x)
for t 2 [t

mid

, t2]. We then obtain the following solution:

✏tri(t) =
4

ATt
2
21

dET

dy


�t+ t1 + ⌧F + (t� t1) ln

✓
t� t1

⌧F

◆�
,

if t 2 [t1 + ⌧F , tmid

+ ⌧F ];

=
4

ATt
2
21

dET

dy


t� t2 � ⌧F + (t� t1) ln

✓
t� t1

t� t

mid

◆

+(t2 � t) ln

✓
t� t

mid

⌧F

◆�
, if t 2 [t

mid

+⌧F , t2+⌧F ];

=
4

ATt
2
21

dET

dy


(t� t1) ln

✓
t� t1

t� t

mid

◆

+(t2 � t) ln

✓
t� t

mid

t� t2

◆�
, if t � t2 + ⌧F .

This energy density increases smoothly to the following
maximum value ✏max at a time within (t

mid

+⌧F , t2+⌧F)

� �� �� ��
�

�/��

�/��

�/��

𝒅𝟐𝑬𝑻
𝒅𝒚	𝒅𝒙

at y~0

x

Advantage: 
convenient analytical solution of 

and the corresponding time:𝜀mnb

We can also use
a symmetric triangular profile
for 𝑥 ∈ [𝑡E, 𝑡[]. → solution:
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εtri(t) ~ εbeta(t)
after setting t1& t2
for the same mean 
& standard deviation.

Note: AMPT has
variable τF ,
Woods-Saxon,
secondary scatterings,
transverse expansion,
finite width in z.

Comparisons with results from transport model AMPT
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The Bjorken formula is only valid 
when τF is much bigger than the finite crossing time:

for central Au+Au collisions.

We have analytically extended the Bjorken formula:
• also valid at low energies
• approaches the Bjorken formula at high energies or late times.
• comparisons with AMPT confirm key features of the solutions. 

At low energies (compared to the Bjorken formula):
• solution is much less sensitive to the formation time τF ;
• the maximum energy density is much lower;
• the width of the energy density time evolution is much bigger.

This provides a general model for the initial energy production 
of relativistic heavy ion collisions, especially at low energies. 

Summary

𝑠KK� ≫ ~50𝐺𝑒𝑉
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