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Approaches to Quarkonium Production

See EPJC (2016) 76:107 for a recent review

@ Nearly all approaches assume a factorisation between the production of the
heavy-quark pair, QQ, and its hadronisation into a meson

e Different approaches differ essentially in the treatment of the hadronisation

@ 3 fashionable models:
© CoLour EvAPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters
© CoLOUR SINGLET MODEL: hadronisation without gluon emission
each emission costs a;(mq) and occurs at short distances
© Corour OcTET MECHANISM (encapsulated in NRQCD): higher Fock states of
the mesons taken into account; QQ can be produced in octet states with
different quantum # as the meson
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R
CEM vs. CSM vs. COM

(2]

CoLOUR EVAPORATION MODEL
any QQ state contributes to a specific quarkonium state
colourless final state via a simple 1/8 factor
one non-pertubative parameter per meson, supposedly universal
COLOUR SINGLET MODEL
colourless final state via colour projection; quantum numbers enforced by spin
projection
one non-pertubative parameter per meson but equal to
the Schrodinger wave function at the origin
this parameter is fixed by the decay width or potential models and
by heavy-quark spin symmetry (HQSS)
CoLOUR OCTET MECHANISM
one non-perturbative parameter per Fock States
expansion in v?; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and
to a specific quarkonium polarisation
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Impact of QCD corrections to the C(S,E,O)M
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QCD corrections to the CSM for Y at colliders
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QCD corrections to the CSM for y/(2S) at colliders

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
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Analogy with the Py spectrum for the Z° boson
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Impact of QCD corrections to the CSM at mid and high Py
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Issues with polarisation
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QCD corrections to the COM and CEM
@ CoLoUR OCTET MECHANISM — NRQCD \

o AtLO, Py spectrum driven by the combination of 2 CO components :
3518 vs. 1511 & 3pLY _
v data: a little less

hard than the blue
curve
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o AtLO, Py spectrum driven by the combination of 2 CO components : K
3)51[8] Vvs. 15([)8] & 3P][8] v data: a little less
o At NLO, the soft component becomes harder (same effect as for CSM)  hard than the blue
° 3P][8] becomes as hard as 3S£8] and interferes with it; IS([)S] a little softer
o Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and *SI*) LDMEs
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QCD corrections to the COM and CEM

@ CoLoUR OCTET MECHANISM — NRQCD
o AtLO, Py spectrum driven by the combination of 2 CO components : K
3518 vs. 1511 & 3pLY —
At NLO, the soft component becomes harder (same effect as for CSM) Bard e e

] curve

a little softer

3 P][S] becomes as hard as ? S{g] and interferes with it; 1S([)8

Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 381[8] LDMEs

o Since the 3 associated LDME:s are fit, the combination at NLO overall still
describes the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs
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QCD corrections to the COM and CEM

@ CoLoUR OCTET MECHANISM — NRQCD
o AtLO, Py spectrum driven by the combination of 2 CO components : K
3518 vs. 1511 & 3pLY _
At NLO, the soft component becomes harder (same effect as for CSM) Bard e e

curve

? P][S] becomes as hard as * S{g] and interferes with it; IS([)S] a little softer

Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 381[8] LDMEs
o Since the 3 associated LDME:s are fit, the combination at NLO overall still
describes the data; hence an apparent stability of NRQCD x-section at NLO
e What significantly changes is the size of the LDMEs
© COLOUR EVAPORATION MODEL
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QCD corrections to the COM and CEM
@ CoLoUR OCTET MECHANISM — NRQCD

At LO, Py spectrum driven by the combination of 2 CO components : K
351[8] VS. 15([)8] & 3P][8] data: a little 1
At NLO, the soft component becomes harder (same effect as for CSM) hard than the biue

] curve

3 P][S] becomes as hard as ? S{g] and interferes with it; 1S([)8 a little softer

Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 381[8] LDMEs

Since the 3 associated LDME:s are fit, the combination at NLO overall still
describes the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs

@ CoLOUR EVAPORATION MODEL

All possible spin and colour combinations contribute
By definition, the hardest ones (gluon fragment. ~ 351[8]) dominant at large Pr
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@ CoLoUR OCTET MECHANISM — NRQCD

At LO, Py spectrum driven by the combination of 2 CO components : K
351[8] VS. 15([)8] & 3P][8] data: a little 1
At NLO, the soft component becomes harder (same effect as for CSM) hard than the biue

] curve

3 P][S] becomes as hard as ? S{S] and interferes with it; 1S([)8 a little softer

Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 351[8] LDMEs

Since the 3 associated LDME:s are fit, the combination at NLO overall still
describes the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs

@ CoLOUR EVAPORATION MODEL

All possible spin and colour combinations contribute

By definition, the hardest ones (gluon fragment. ~ 351[8]) dominant at large Pr

No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Pr spectrum

Confirmed by the first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 10/ 32



QCD corrections to the COM and CEM
@ CoLoUR OCTET MECHANISM — NRQCD

At LO, Py spectrum driven by the combination of 2 CO components : K
351[8] Vvs. 15([)8] & 3P][8] data: a little I
At NLO, the soft component becomes harder (same effect as for CSM) g:;g;ﬁa“ the blue
]

3 P][S] becomes as hard as ? S{S] and interferes with it; 1S([)8 a little softer

Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 351[8] LDMEs
Since the 3 associated LDME:s are fit, the combination at NLO overall still

describes the data; hence an apparent stability of NRQCD x-section at NLO
What significantly changes is the size of the LDMEs

@ CoLOUR EVAPORATION MODEL

All possible spin and colour combinations contribute
By definition, the hardest ones (gluon fragment. ~ 351[8]) dominant at large Pr
No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Pr spectrum
Confirmed by the first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
Tend to overshoot the y data at large Pr
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o Due to this interference, it is possible to make the softer IS([)s] dominant yet with
nonzero 3P][8] and 351[8] LDMEs

o Since the 3 associated LDME:s are fit, the combination at NLO overall still
describes the data; hence an apparent stability of NRQCD x-section at NLO

e What significantly changes is the size of the LDMEs

© CoLOUR EVAPORATION MODEL

o All possible spin and colour combinations contribute

o By definition, the hardest ones (gluon fragment. ~ 351[8]) dominant at large Pr

e No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Pr spectrum

Confirmed by the first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
o Tend to overshoot the y data at large Pr

o The (LO) ICEM not significantly better at large P;  “'v.Q. Ma, R. Vogt PRD 94 (2016) 114029
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@ Colour-Singlet Model (CSM) back in the game
[large NLO and NNLO correction to the Pr spectrum ; but not perfect — need a full NNLO]
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@ Colour-Singlet Model (CSM) back in the game
[large NLO and NNLO correction to the Pr spectrum ; but not perfect — need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

@ CSM was always in the game for the Pr integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.]. C75 (2015) 313

Colour-Octet Mechanism (COM) helps in describing the Py spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)

All approaches have troubles in describing the polarisation, here or there

New observables which can be more discriminant for specific effects
may help [e.g. associated production]
— Especially keeping in mind a couple of lessons from past quarkonium studies
@ Obviously, no consensus on the quarkonium production mechanism, at
high, mid and low Pr
The big question: how to treat quarkonium production in pA and AA collisions ?

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 12/ 32



Part II1

5 lessons from the past
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e.g. HLEPJC 25, 2,2002; ZEUS, EPJC 27,173, 2003

LO CSM also fails in photoproduction at HERA
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color-singlet production alone does not describe all fea-
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P. Artoisenet et al. PRL 102 (2009) 142001

Taking into account the ay corrections,
color-singlet production alone does not describe all fea-
tures of the data collected at HERA. With a natural choice
for the renormalization scale, the predicted rate is smaller

M. Butenschoen ef al. PRL 104 (2010) 072001 than data,
Despite the caveat concerning our limited knowledge of
the CO LDMEs at NLO, we conclude that the HI data
[19,20] show clear evidence of the existence of CO pro-
cesses in nature, as predicted by NRQCD,
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As we say in French: "Tout ¢a pour ¢a ..”
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Photon-fusion production: from an evidence to a puzzle

VOLUME 89, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JuLy 2002

Evidence for the Color-Octet Mechanism from CERN LEP2 yy — J /¢ + X Data

Michael Klasen, Bernd A. Kniehl, Luminita N. Mihaila, and Matthias Steinhauser
11 Institut fiir Theoretische Physik, Universitit Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
(Received 19 December 2001; published 28 June 2002)

We present i ictions for the transvers: distribution of J /¢ mesons promptly
produced in y collisions within the f; ion formalism of stic quantum

ics, including the contributions from both direct and resolved photons, and we perform a conservative
error analysis. The fraction of J /¢ mesons from decays of bottom-flavored hadrons s estimated to be
negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions,
while they disfavor those obtained within the traditional color-singlet model

ansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 15/ 32



Photon-fusion production: from an evidence to a puzzle

NRQCD e'e” - e'e Iy X at LEP2
VOLUME 89, NUMBER 3 PHYSICAL REVIEW LETTERS 15duy 2002, BT R bR prelim
.
x,,:\v\ o —— MRSTYS fit
‘s‘i‘:“ [ -eeeeees CTEQS fit
Evidence for the Color-Octet Mechanism from CERN LEP2 yy — J/¢ + X Data V§=197Gev
< NRQCD “2<y,,<2
Michael Klasen, Bernd A. Kniehl, Luminita N. Mihaila, and Matthias Steinhauser g .
I Institut fiir Theoretische Physik, Universitit Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany T
(Received 19 December 2001; published 28 June 2002) g
We present i ictions for the t distribution of J /i mesons promptly
> o P . A, . 10
produced in y collisions within the formalism of quantum
ics, including the contributions from both direct and resolved photons, and we perform a conservative -
error analysis. The fraction of J /4 mesons from decays of bottom-flavored hadrons is estimated to be s,

negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions,
while they disfavor those obtained within the traditional color-singlet model.

R
3 (@ev?)

ansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 15/ 32



Photon-fusion production: from an evidence to a puzzle

VOLUME 89, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JuLy 2002

Evidence for the Color-Octet Mechanism from CERN LEP2 yy — J/¢ + X Data

Michael Klasen, Bernd A. Kniehl, Luminita N. Mihaila, and Matthias Steinhauser
11 Institut fiir Theoretische Physik, Universitit Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
(Received 19 December 2001; published 28 June 2002)

We present i ictions for the distribution of J /¢ mesons promptly
produced in y collisions within the factori formalism of ivistic quantum

ics, including the contributions from both direct and resolved photons, and we perform a conservative
error analysis. The fraction of J /¢ mesons from decays of bottom-flavored hadrons s estimated to be
negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions,
while they disfavor those obtained within the traditional color-singlet model.

However, when NLO COM comes, ...

NRQCD e’ > e'e Iy X at LEPR2

pio —— DELPHI prelim
spli —— MRSTS fit

i

CTEQS ft
VS =197 GeV
NRQCD  -2<y,, <2

dofdp} (pb/GeV?)

P05 06
3 (@ev?)

M. Butenschoen, B. Kniehl, PRD 84, 051501(R) (2011)

B ‘We have to bear in mind, however, that
the DELPHI measurement comprises only 16 events with
pr>1GeV and has not been confirmed by any of the
other three LEP II experiments.
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Usual lusi (similarly to the gluon fragmentation in the inclusive case)
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the CSM contribution is strongly suppressed even at rather low Pr

V. D. Barger, S. Fleming and R. J. N. Phillips, Phys. Lett. B 371, 111 (1996)
B. A. Kniehl, C. P. Palisoc and L. Zwirner, Phys. Rev. D 66, 114002 (2002).
G. Li, M. Song, R. -Y. Zhang and W. -G. Ma, Phys. Rev. D 83, 014001 (2011).
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@ The corresponding process suppressed in the CSM by a?

Usual lusi (similarly to the gluon fragmentation in the inclusive case)
sual conclusion:

the CSM contribution is strongly suppressed even at rather low Pr
V. D. Barger, S. Fleming and R. J. N. Phillips, Phys. Lett. B 371, 111 (1996)

B. A. Kniehl, C. P. Palisoc and L. Zwirner, Phys. Rev. D 66, 114002 (2002).
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W+ W offers a clean test of the colour octet contributions’

V. D. Barger, S. Fleming and R. J. N. Phillips, Phys. Lett. B 371, 111 (1996)

@ In the CSM, the W boson cannot be emitted by the charm quark loop replacing the
gluoniny+gasiny+yory+2Z

One needs a light-quark line to emit the W

In the COM, the light-quark line also radiates a gluon
which produces a 381[8] octet QQ

@ The corresponding process suppressed in the CSM by a?

. (similarly to the gluon fragmentation in the inclusive case)

Usual conclusion:
the CSM contribution is strongly suppressed even at rather low Pr

V. D. Barger, S. Fleming and R. J. N. Phillips, Phys. Lett. B 371, 111 (1996)

B. A. Kniehl, C. P. Palisoc and L. Zwirner, Phys. Rev. D 66, 114002 (2002).
G. Li, M. Song, R. -Y. Zhang and W. -G. Ma, Phys. Rev. D 83, 014001 (2011).

@ Yet the first CSM study shows that the COM and CSM yields are of similar sizes !!
a simple a; counting is not enough J.P. Lansberg, C. Lorcé, PLB 7 26 (2013) 218

@ y+ Wisnota clean test of CO contributions
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”The” Smoking Gun: Polarisation

Quarkonium Working Group CERN Yellow Report, Dec. 2004, CERN-2005-005

Despite these various diluting effects, a substantial polarization is expected at

large pr , and its detection would be a “smoking gun” for the presence of the
colour-octet production mechanism.

[..], it is is difficult to see how there could not be substantial polarization in
J/w or w(2S) production for pr > 4m_.”
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Despite these various diluting effects, a substantial polarization is expected at
large pr , and its detection would be a “smoking gun” for the presence of the
colour-octet production mechanism.

[..], it is is difficult to see how there could not be substantial polarization in
J/w or w(2S) production for pr > 4m_.”

@ What was completely overlooked is that, as for the CSM, some CO channels are
significantly enhanced at NLO which can dominantly alter the yield polarisation.

@ The resulting polarisation depends on the value of the NRQCD LDMEs and thus on
the fit procedure (data samples used, Pr cuts).

@ In some analysis, the polarisation data have been included in the fit

@ In about ten years, with the advent of NLO analyses, polarisation evolved from a
NRQCD smoking gun to a puzzle or a mere constraint ...

@ and this was not anticipated even after the NLO CSM corrections for yp and pp
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Part IV

A last lesson from the (close) past:
1.: how not-so-precise data can matter much
or
The completely unexpected probe
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@ 7. x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
@ Any CO contribution would create a surplus

@ Even neglecting the dominant CS, this induces constraints on J/y LDMEs via HQSS :
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75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)

7 x-section measured by LHCD very well described by the CS contribution (Solid Black Curve)
Any CO contribution would create a surplus

Even neglecting the dominant CS, this induces constraints on J/y LDMEs via HQSS :

(lr i) = (1 (Csl)) < 1.46 x 1072 GeV?
Rules out the fits yielding the IS(EXJ dominance to get unpolarised yields
Even the PKU fit has now troubles to describe CDF polarisation data

Nobody foresaw the impact of measuring #. yields: 3 PRL published right after the LCHb data

came Out (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.E. Zhang et al. 114 (2015) 092006

[Additional relations: (< ('SL*1)) = (/v (3sl1y) /3 and (e (1PLH)) = 3 x (v (3PI))
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Part V

Automating the computation of nuclear PDF
effects
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An automated code to evaluate the impact of nuclear PDF
on hard probes I

JPL, H.S. Shao Eur.Phys.J. C77 (2017) 1
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An automated code to evaluate the impact of nuclear PDF
on hard probes I
JPL, H.S. Shao Eur.Phys.]. C77 (2017) 1
e Partonic scattering cross section fit from pp data with a Crystal Ball
function parametrising | Agg7¢x|* C.H. Kom, A. Kulesza, WJ. Stirling PRL 107 (2011 032002

@ A way to evade the quarkonium-production-mechanism controversy ?
To some extent, I would say "yes”

Applied to /v, Y, D and B: it can be extended to all the probes produced
in 2 — 2 partonic processes with a single partonic contribution

The key point to compute nPDF effect is to have a partonic cross section
Any nPDF set available in LHAPDFS5 or 6 can be used
Currently limited to processes dominated by a single partonic channel

(gg or qg, ...)

Not yet interfaced to a Glauber model
[no centrality and no combinaison with other nuclear effects]
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An automated code to evaluate the impact of nuclear PDF
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JPL, H.S. Shao Eur.Phys.]. C77 (2017) 1
e Extensive comparisons directly with data, which make sense if nPDF are
the only nuclear effect
e Conversely, one can test this hypothesis by comparing our curves with data
[global agreement A only nPDFs matter]

@ Bonus: since the pp yields are fit, the procedure sometimes hints at
normalisation issues (absent in Rgg) which could otherwise be
misinterpreted as nuclear suppressions/enhancements

@ Last but not least: the automation of the evaluation allows one to study
different nPDF sets AND the scale uncertainties: better control of the
theory uncertainties
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Fitting the J/w pp data

JPL, H.S. Shao Eur.Phys.J. C77 (2017) 1
Prompt J/y production at vs=8 TeV LHC

e Extremely good fit of the LHCb data *
(except maybe for the Ist bin)
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Some J/y comparisons (new plots with EPPS16)
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Some recent comparisons [shown at QM2017]
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Uncertainties due to the factorisation scale
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Uncertainties due to the factorisation scale
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Uncertainties due to the factorisation scale

o The strength of the shadowing

o The uncertainty due to yr not negligible
compared to the nPDF one [nCTEQ shown]
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Fit step toward the inclusion of heavy-flavour data in a fit: reweighting

REWEIGHTING FOR HESSIAN PDFS

Giele, Keller '98; Ball et al.’| I; Sato, Owens, Prosper ’14; Paukkunen, Zurita ’ 14,

. Convert Hessian error PDFs into replicas
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Fit step toward the inclusion of heavy-flavour data in a fit: reweighting

REWEIGHTING FOR NCTEQ15 @

Thanks to Kusina, Lansberg, Schienbein, Paukkunen etc

* We used only .J/v) production data from pPb collisions at the LHC

* Only the ratio Rppy has been used here.

« LHCb arXiv:1308.6729

* ALICE arXiv:1503.07179, arXiv:1308.6726

* The global uncertainty has been taken into account.

Prompt J/yy production at Vsy,=5.02 TeV LHC
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* Replicas reproduce the Hessian PDF

* Data help to reduce the gluon
density uncertainty
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REWEIGHTING FOR NCTEQ15 @

Thanks to Kusina, Lansberg, Schienbein, Paukkunen etc
* We used only .J/v) production data from pPb collisions at the LHC

* Only the ratio Rppy has been used here.
* LHCb arXiv:1308.6729
» ALICE arXiv:1503.07179,arXiv:1308.6726
* The global uncertainty has been taken into account.

Prompt J/y production at V=502 TeV LHC

* Replicas reproduce the Hessian PDF

nCTEQ1S

nCTEQ15 MC10000
nCTEQ1S wgt £
Pr<t5 vo

14 LHCD data

* Data help to reduce the gluon
density uncertainty

- - I— ,ﬁt{ — '
s ﬁ\*A\HP _* Reduction is more striking when
3 % including the yield data as well.

Ropn

Yems( V)

LHCP2017, SHANGHAI 5 HUA-SHENG SHAO

Tuesday, May 30, 17

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 31/32



Some conclusions

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 32/32



Some conclusions

@ Quarkonium production mechanisms in proton-proton collisions not yet the
object of consensus

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 32/32



Some conclusions

@ Quarkonium production mechanisms in proton-proton collisions not yet the
object of consensus

@ Very rich field of theoretical and experimental investigations, just started to
be harvested for pseudoscalar (#.) production (40 years after /y’s discovery]

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 32/32



Some conclusions

@ Quarkonium production mechanisms in proton-proton collisions not yet the
object of consensus

@ Very rich field of theoretical and experimental investigations, just started to
be harvested for pseudoscalar (#.) production (40 years after /y’s discovery]

@ QCD corrections via new NLO, and perhaps NNLO topologies, matter
much for some mechanisms and some observables

J.P. Lansberg (IPNO) Onium production in pp and pA collisions May 31, 2017 32/32



Some conclusions

Quarkonium production mechanisms in proton-proton collisions not yet the
object of consensus

Very rich field of theoretical and experimental investigations, just started to
be harvested for pseudoscalar (#.) production (40 years after /y’s discovery]

QCD corrections via new NLO, and perhaps NNLO topologies, matter
much for some mechanisms and some observables

Yet, this may not impact too much the kinematics of single quarkonium
production such that J/y and Y (+ open HF) data might be of help to
constrain nPDF
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Backup
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Part VIII

The production mechanism(s) at low Py in
proton-proton collisions
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Motivations

Why is it important to know how low-Pr quarkonia are produced

If color is bleaching at short distances (Color Singlet Model), low-Pr
quarkonia can be used to extract the distribution of linearly polarised
gluon in unpolarised protons, ;¢ (x, kr, ) D. Boer, . Pisano. PRD 86 (2012) 094007

o Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

Saturation effects depend on the colour state of the propagating pair

D. Kharzeev, et al. PRL 102 (2009) 152301; E. Dominguez, ef al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

Most of the proton-nucleus and nucleus-nucleus collision data lie at
PT S mo

In the QGP, do quarkonia behave more like colorful gluons
or colorless photons ?

If regeneration is at work, how does it happen ? statistically ? according to
the charm-quark distribution in the charmonium (wave-function) ?

@ etc...
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Why is it important to know how low-Pr quarkonia are produced

Also because, some very high Pr quarkonia which we study can be as rare as a
few millionth of the produced quarkonia
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Most probably the production of a Y with Pr = 90 GeV, even also 20 GeV,
has very few things to do with the bulk of Y
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Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT }}}\ Q
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P (GeV) CDF, PRL 88:161802,2002

J.P. Lansberg (IPNO) Onium production in pp and pA collisions

May 31, 2017 37/32



Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);
= Perturbative creation of 2 quarks Q and Q BUT Q
= on-shell (x) }3}\ ‘" LO
= in a colour singlet state 432mQ)
= with a vanishing relative momentum Sy
w in a S, state (for J/y, v/ and Y) )9}’

|

= Non-perturbative binding of quarks — Schrodinger wave function

100 T r T - ——
'+ 1»” Y(1S) prompt data x F9"e"
10 Ft o

1L

0.1¢
0.01 +
0.001 ¢

do/dPy]yyj<.4 X Br (pb/GeV)

le-04

0 5 10 15 20 25 30 35 40
P; (GeV)

= Large QCD corrections from new topologies reduce the gap with data at mid and

lar ge P T P.Artoisenet, J.Campbell, JPL, F:Maltoni; F. Tramontano, PRL 101, 152001 (2008
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The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y
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— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHc j/y points to be updated, sorry]
(multiplied by a constant F%"*‘*, considered to be constant)
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The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHc j/y points to be updated, sorry]
(multiplied by a constant F%"*!, considered to be constant)

1000

o 1000 Fieclo 59410 %
[ —
= Qo
j =
o -
> 100 o
< x
Il
= g 10 ‘
) Feo'= 59410 % o LO gg CSM
5 10 9 Prelim. ALICE +——#—
o =2 Prelim. ATLAS +——6—
R LOgg CSM s 5’ Prelim. LHC-b
3 ] PHENIX / CDF /ALICE data —=— o CMS
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The LO CSM accounts for the Pr-integrated yield
S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470
— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F¥"*°*, considered to be constant)

LO gg CSM e
CMS +-
LHCb —v—

n
4

N

FieSl= 7045 %

5}

doSiivel /dy x Br (nb)

o
o

0 2 4 6

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025
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The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F¥"*°*, considered to be constant)

o5 " LOggCSM mmmm
: CMS =
— LHCb —v—
fe)
s 2
]
x 15 FieSl= 7045 %
>
°
82 1
5
T 05

0 2 4 6

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

@ Unfortunately, very large th. uncertainties: masses, scales (g, yr), gluon PDFs

atlow x and Q?, ...
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The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470
— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F¥"*°*, considered to be constant)

o5 " LOggCSM mmmm
: CMS =
— LHCb —v—
fe)
s 2
]
x 15 FieSl= 7045 %
>
°
82 1
5
T 05

0 2 4 6

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

@ Unfortunately, very large th. uncertainties: masses, scales (g, yr), gluon PDFs

atlow x and Q?, ...
@ Earlier claims that CSM contribution to do/dy was small were based on the
incorrect assumption that y. feed-down was dominant
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

]/1// 50 PHENIX (PRL 09 232002) ———
direct PHENIX (2009; Preiim) ~—@—
340 it 5910 %
=
530 }H i
x
S i }
i)
3 10 ii ii
0
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From LO to NLO

NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

_’ 50 (PRL 09 232002) =+
v 20 | edieat " PHEN X o iy —9—]
;é\ Fiiy = 59+10 % LO —r
530
><
5 20
o
T 10
0
4 ’
y
LO: gg — J/yg (see slide 5, nothing new !)
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

@
S

> ]/V/ PHENIX (PAL 05 252002)

pasnaas
PHENIX (2009; Prelim) @
40 [Fgrect. 59:10 9 e
2 v LO |
=30
[3]
=
%.20
©
T 10
0
4 3 2 4 0 1 2 3 4

NLO: gg — J/vgg, g9 — 1/ vgq, -

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

]/1// 50 PHENIX (PRL 09 232002) ———
di PHENIX (2009; Plehmz —
= 40 | FJiect= 59410 % NL
S NLO
E 30 (o Rm—
x
>20
3
s}
© 10
0

NLO™*: possible new contribution at LO ¢g — J/yc
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From LO to NLQO

NLO CSM at RHIC

Il .

IS
S

do/dy x Br (nb)

NLO™: possible new contribution

—_ Y* 70
560
£50
@ 40
x
> 30
z
S 20
=]

10

BN W
o o &

o

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

Fiecl= 59£10 %

PHENIX (PRL 09 232002) +————
PHENIX (2003, Preim) —@—4

NLO
LO -

<

at LO ¢g - J[yc

FiEg= 42410 %

PHENIX (Prelim) @~ 1
STAR (Prelim)
NLO —

LO - q

*Sorry: I should update these plots (updated data and fraction is about 60 %)
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From LO to NLO

NLO CSM at RHIC

-]y

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

50 PHENIX (PRL 09 232002) =+
direct, PHENIX (2009; P-ehm+) ——
= 40 TFi'= 59410 %
2 NLO
T30 LO —eeees
1]
x
>20
kS
s}
© 10

o

NLO™: possible new contrlbutlon at LO g J]we

—Y*

70 TPHENIX (Prelim) Vo ]
direct STAR (Prelim)

60 | F{(g= 4210 % o ]
250 - LO —mn ]
5 40 + 4
<
>30 - ]
k4
520 4
o

10 ]

0

-3

3
(c)

y
A priori, good convergence NLO w.r.t. LO ‘

[I will come back to that later]

*Sorry: I should update these plots (updated data and fraction is about 60 %)
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O to

NLO NRQCD up to RHIC

s o S——

Physcs Leters B 635 (2006) 202-208

wehevieccomlocsicphysleth

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni*, J. Spengler", M. Bargiotti*, A. Bertin, M. Bruschi, S. De Castro®, L. Fabbri®,

P. Faccioli<, B. Giacobbe*, F. Grimaldi<, I. Massa<, M. Piccinini <, N. Semprini-Cesari <, R. Spighi <,
M. Villa®, A. Vitale*. A. Zoccoli **
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NLO NRQCD up to RHIC

s o S——

FISEVIER Physcs Leters B 635 (2006) 202-208

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni*, J. Spengler", M. Bargiotti*, A. Bertin, M. Bruschi, S. De Castro®, L. Fabbri®,

P. Faccioli<, B. Giacobbe*, F. Grimaldi<, I <, M. Piccinini<, N. Semprini-Cesari, R. Spighi,
M. Villa®, A. Vitale*. A. Zoccoli **

@ Analysis based on the hard partonic cross sections computed at NLO in

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO NRQCD up to RHIC

s o S——

FISEVIER Physcs Leters B 635 (2006) 202-208

sl

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni*, J. Spengler", M. Bargiotti*, A. Bertin, M. Bruschi, S. De Cas

P. Faccioli©, B. Giacobbe ¢, F. Grima » M. Piccinini ¢, N. Semprini:
M. Villa®, A. Vitale®, A. Zoccoli“*

<, L. Fabbri®,
sari©, R. Spighi<,

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
@ At a}, one only has CO contributions :
2 — 1processes : g+ — QQ[3SI[8]] and g+g¢ - QQ[IS([)SJ ’SPI[E%,I,Z]
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NLO NRQCD up to RHIC
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FISEVIER Physcs Leters B 635 (2006) 202-208

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni*, J. Spengler", M. Bargiotti*, A. Bertin, M. Bruschi, S. De Castro®, L. Fabbri®,

P. Faccioli %, B. Giacobbe ©, F. Grimaldi Massa*, M. Piccinini ©, N. Semprini-Cesari ©, R. Spighi ¢,
M. Villa®, A. Vitale®, A. Zoccoli“*

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
@ At a}, one only has CO contributions (- virtual correction at a3):
2 — 1processes : g+ — QQ[3SI[8]] and g+g¢ - QQ[IS([)SJ ,3PI[§),1,2]
o At ag, one has in addition real emissions (including one CS process)
g+g~ QRS SR T+ g g+ q(@) QAU 2SR ]+ q(a)
q+q— Qé[lsgsj ,351[8],3P1[§)’1’2] +gandg+g— Q6[381m] +g
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NLO NRQCD up to RHIC

s o S——

FISEVIER Physcs Leters B 635 (2006) 202-208

—

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni*, J. Spengler", M. Bargiotti*, A. Bertin, M. Bruschi, S. De Castro®, L. Fabbri®,

P. Faccioli <, B. Giacobbe ¢, F. Grimaldi ¢, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa®, A. Vitale®, A. Zoccoli“*

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

@ At a}, one only has CO contributions (- virtual correction at ocg)-
2 — 1 processes : q+q — QQ[351[8]] and g+ ¢ — QQ[IS([) 3P;[82) 2]
o At ocg, one has in addition real emissions (including one CS process)
g+g~ QQUSY SR T+ g g+ (@) > QALY 3s[8] P81+ a(@)
q+q— Qa[lS([) 35[8] 3P][ %12] +gandg+g— QQ[3S ] +g
@ Done with NRQCD LDMEs fitted at LO on Pr spectra from CDF (=~ 2 TeV)

Reference NRQCD matrix elements for charmonium production. The color-
singlet matrix elements are taken from the potential model calculation of [14,
15]. The color-octet matrix elements have been extracted from the CDF data
[16] in Ref. [17]

H (ol (©lPs)) (OF1's01) = 058 PP 1) /m2
J/¥ 1.16GeV?  1.19x 1072 GeV3 1.0 x 102 GeV3

Y(2S) 0.76GeV  0.50 x 1072 GeV3  0.42 x 1072 GeV?

0 011GeV  031x1072GeV3 —
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NLO NRQCD up to RHIC II

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.
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next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
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©2006 Elsevier B.V. All rights reserved.
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NRQCD cross section at NLO
MRST2002

o(pN—> JiyX)  (nb/nucleon)
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Singlet contribution only

Lo
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We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
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NRQCD cross section at NLO
10°L  MRST2002
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Central value: 1, = i = L5 1,
"""" Band : i, g € [ g, 4 ]

Singlet contribution only

Lo I
10 10°
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@ Good fit but with ten times less CO than expected from Tevatron do/dPr data
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NLO NRQCD up to RHIC II

Abstract
We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
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H NRQCD cross section at NLO
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"""" Band : i, g € [ g, 4 ]

- Singlet contribution only
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@ Good fit but with ten times less CO than expected from Tevatron do/dPr data
@ CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)
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H NRQCD cross section at NLO
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——  Central value: i, = 1, = 1.5 1,
"""" Band : i, g € [ g, 4 ]

- Singlet contribution only

Ll Lo I
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Vs (GeV)
@ Good fit but with ten times less CO than expected from Tevatron do/dPr data
@ CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)

@ No similar analysis for Y
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From LO to NLO

NLO NRQCD up to RHIC II

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are

included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.

©2006 Elsevier B.V. All rights reserved.
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- Singlet contribution only
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No similar analysis for Y
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Onium production in pp and pA collisions

Good fit but with ten times less CO than expected from Tevatron do/dPy data
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Abstract
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next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
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——  Central value: i, = 1, = 1.5 1,
"""" Band : i, g € [ g, 4 ]

- Singlet contribution only

10

No similar analysis for Y
Never done for /s > 200 GeV

J.P. Lansberg (IPNO)

Never updated with LDME:s fitted at NLO

10° _
s (Ge)

Onium production in pp and pA collisions

Good fit but with ten times less CO than expected from Tevatron do/dPy data
CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)
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What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used
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Our up-to-date NLO analysi

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
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We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
@ only direct J/y, ' and Y(1S) yields

@ Nota: in principle, we can also predict total-yield polarisation
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used
@ FDC” after complete cross-check of the Petrelli ef al. results
*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
@ only direct J/y, ' and Y(1S) yields
@ Nota: in principle, we can also predict total-yield polarisation
@ an updated data set with:

o only pp and pp data with more than 100 events (no pA data), only for y = 0
@ CDF results after a small Py extrapolation from 1.5 GeV to 0
e LHC data
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
@ only direct J/y, ' and Y(1S) yields
@ Nota: in principle, we can also predict total-yield polarisation
@ an updated data set with:

o only pp and pp data with more than 100 events (no pA data), only for y = 0
@ CDF results after a small Py extrapolation from 1.5 GeV to 0
o LHC data
@ constant feed-down (FD) fractions
o Ejy =60 +10%
o Fy(s = 66+10%

direct

© Fy(iss2s+35) = 60 £10%

qu'ect

@ Uncertainty on combined in quadrature with that of data

Arguable but accounts for a possible energy dependence of the FD fraction
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Our up-to-date NLO analysis

What we did II

We used LDME:s fitted at NLO/one loop on the Py spectra

8 8 8
Ref. (0,,CPFy (0,08 (0, Csh)
(in GeVS) (in GeV?) (in GeVs)
—2.0x107° 7.8%x1072 0
o ]/W Y.-Q. Ma,et al. PRL 106 (2011) 042002. 21x1072 3.5 %1072 5.8x107°
4.1x10°2 0 1.1x1072
B. Gong,et al. PRL 110 (2013) 042002 —2.2x 10 9.7 %10~ —4.6 X107
M.Butenschoen, B.Kniehl. PRD (2011) 051501 —9.1x 102 3.0x 10~ 1.7 x103
3pl8 1[8 308
Ref. Oy CPIN) {045 (TN (0 25y (5T)
(in GeV?>) (in GeV3) (in GeV3)
o W, B. Gong,et al. PRL 110 (2013) 042002 9.5%10° —12x10° % 3.4x107
—4.8x 107 2.9 %1072 0
Y.-Q. Ma,et al. PRL 106 (2011) 042002 7.9x107° 5.6 x 107> 3.2x107°
1.1x1072 0 3.9x107°
8 8 8
Ref. ©Ovas CPID) Oy (SID) (Oy(1s) CSIH)
o Y(IS) (in GeV?) (in GeV?) (in GeV?)
B. Gong, et al. PRL 112 (2014) 3, 032001. ~10.36 x 102 1115 x 102 —4.1x10 %

[We have also added the fit of G.T. Bodwin, et al., PRL 113, 022001 (2014) even though it is based

on a fragmentation function approach]
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Results for the J/y
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@ First 2 fits: 10 times above the data
around 200 GeV - as Maltoni et al.
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PI"— overshoots the least

The third fit is however the only which

does not account for the polarisation
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The CS component alone does a pretty
good job, even excellent in the TeV
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does not account for the polarisation
data
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@ The CS component alone does a pretty

good job, even excellent in the TeV
range

@ Taken at face value, these results show a
clear violation of NRQCD
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Results for the ¥’ and Y

@ Worse than for J/y

@ CSM even tends to overshoot at
large Vs - yet in agreement
within uncertainties (lower
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Our up-to-date NLO analysis
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SM alone (i.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to S, production was only

appearing as a real-emission QCD correction at o
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SM alone (i.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to S, production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o?
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
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SM alone (i.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to S, production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o?
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
In fact, the total yield at one loop (up to i) can be computed since 2007

See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
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SM alone (i.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to S, production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o?
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)

In fact, the total yield at one loop (up to i) can be computed since 2007

See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

One can repeat this for 1Sy production for which we have closed-form results for
the hard part at one loop

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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SM alone (i.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to S, production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o?
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
In fact, the total yield at one loop (up to i) can be computed since 2007

See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

One can repeat this for 1Sy production for which we have closed-form results for
the hard part at one loop

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

We checked these with FDC
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CSM at one loop: Results
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SM alone (i.e. NR ) with v — 0)

CSM at one loop: Results

T T
1000 Fg}‘r:m: 6010 % . E 1000 k& FilS o5 as) = 42410 % A
r—_g . E FO(ES =50410%
= 100 E =
& & 100 E
x 10 E <
T =" g 10 He=lg=ho LO ==== 3
;>» 1o w0 ] LO scale dep. ] ;>~ pofnaig LO ] LO scale dep.
WE ] NLO pge e HE 1 ] NLO g e
$ 01 g b lg T E S F A MPmemels T
o> ] NLO g e o ] NLO g e
TS5 4075 _ T = -
-g 0.01 He=Hp=ho, M= EET ]NLOmassdep‘ -g 0.1 crmue ]NLOmassdep E
[T m=1.6 GeVNLO =+~ e M50 GeV LD ——
0.001 0 ° Jy direct data = ) 0.01 . ) ¥ direct data = |
0.1 1 10 0.1 1 10
Vs (TeV) @ Vs (TeV) (b)

Same weird energy behavior as observed for the P][S] channel (and to a less
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop: Results
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Same weird energy behavior as observed for the P][S] channel (and to a less
extent for IS([)s] channel)
Non negative cross sections at large /s only for ug > pr ?

Is it due to ISR, FSR ? Is NRQCD simply not holding at low Py ?
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or CSM alone (i.e. NR D) with v — 0)

CSM at one loop for 1S,
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CSM at one loop for 1S,

@ At LO, ¢ production occurs without final-state gluon emission
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, ¢ production occurs without final-state gluon emission
@ Empirical way to see if the pathological energy behaviour of both CO and CS for
3S, may be due to final state emissions, typical of quarkonium production
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, ¢ production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
3S, may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist (see the appendix C Egs (C.25), (C.26),

(C.32) and (C.35)] of A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, ¢ production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
3S, may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),
(C.32) and (C.35)] of  A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

@ Same happens with the 'SL*
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, ¢ production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
3S, may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),
(C.32) and (C.35)] of  A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

@ Same happens with the 'SL*

@ No sign of negative terms in the TMD factorisation approach up to one loop

M. Echevarria, T. Kasemets, JPL, C. Pisano A. Signori (in progress); J.P. Ma, J.X. Wang, S. Zhao, PRD 88 (2013) 014027
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or CSM alone (i.e. NR D) with v — 0)

A glimmer of hope: Low Pr ya1/ X2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154
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NLO analysis for CSM alone (i.e. NRQCD with

A glimmer of hope: Low Pr ya1/ X2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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@ The Landau-Yang suppression shows up for y. in the Low Pr/m region

@ | The nature (quantum #) of the produced final state seems still relevant ! ‘
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Energy dependence of the CEM and of its NRQCD Ersatz

Basics of the Colour Evaporation Model
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Energy dependence of the CEM and of its NRQCD Ersatz

Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

5 dO'(N)LO
(N)LO, direct _ Fdirect K Ragole! d )
05 =Fg maq
2mq  dmgg
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Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

amy do OO
(N)LO, direct _ Fdirect K Ragole! d )
o) =lg . MqQq
2mq  dmgg

o USing a Simple Statistical COunting [ runs over all the charmonium states below the DD threshold]
J. F. Amundson,et al. PLB 372 (1996)

direct _ 1 21‘!’ +1 _ i
Iy 9%,(2);+1) 45

>

most of the data could accounted for !
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>

most of the data could accounted for !

@ Ramona Vogt’s fits roughly give the same number for direct J/y’s
M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048
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Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

amy do OO
(N)LO, direct _ Fdirect K Ragole! d )
o) =lg . MqQq
2mq  dmgg

o USing a Simple Statistical COunting [ runs over all the charmonium states below the DD threshold]
J. F. Amundson,et al. PLB 372 (1996)

direct _ 1 21‘!’ +1 _ i
Iy 9%,(2);+1) 45

>

most of the data could accounted for !

@ Ramona Vogt’s fits roughly give the same number for direct J/y’s
M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

@ It can easily be check by MCFM at NLO for instance http://mctm. £nal . gov/
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NRQCD Ersatz of the CEM
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Energy dependence of the CEM and of its NRQCD Ersatz

NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
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@ These violate the velocity scaling rules also violated by the NLO fits btw
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Energy dependence of the CEM and of its NRQCD Ersatz

NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
@ These violate the velocity scaling rules also violated by the NLO fits btw

@ AtLO in v, one has
(Ox,(st)) =3 <osl<‘s“ ),
(0s,(55)) =5 x (O, (s")), (1)
(O, (SI*T)) =4 x (05, (SI)).
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NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
@ These violate the velocity scaling rules also violated by the NLO fits btw

@ AtLOin v, one has

(O3, (s =3 <osl<‘s“ ),
(0s,(55)) =5 x (O, (s")), 0
(055, CSI)) =4 x (O, ('SI)).

° If as it should be in NRQCD, (Oss, (°S; 1])) is the usual CS LDME,
. 2 (2] +1) |R(0) %, everything is fixed
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CEM results
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@ NRQCD-like CEM badly overshoots the data
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o Expected since CO LDMEs are as large as the CS, whereas the hard parts

tend to be larger.
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o Expected since CO LDMEs are as large as the CS, whereas the hard parts

tend to be larger.
o Weird energy behaviour
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@ NRQCD-like CEM badly overshoots the data
o Expected since CO LDMEs are as large as the CS, whereas the hard parts
tend to be larger.
o Weird energy behaviour
e Conventional CEM does a pretty good job
o No th. uncertainty shown
o “Natural” value of Fd"e“ is ok
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