Jet Studies at RHIC Kolja Kauder

Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks (INT-17-1b)

Office of Science

The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider

HI Collisions at $\sqrt{s_{NN}}$ =200 GeV - Au+Au, Cu+Cu, Cu+Au, U+U,

Cu+Au

- Isobars (Ru+Ru & Zr+Zr, planned)

Small Systems:

- p+p, p+Au, p+Al, d+Au, ³He+Au

Not Covered: BES, BES-2 (7.7–62 GeV)

Not Covered: Polarized p+p program (up to 510 GeV)

Proton Spin Puzzle

May 9th

Kolja Kauder, INT-17-1b

Detectors

TPC BEMC

Focus on Rare Probes

- High DAQ rate
- Specialized sub-detectors
- Small acceptance

Focus on Uniform Acceptance

 2π x | η | < 1 (and more) for tracking, PID, EM Calorimetry

RHIC and the LHC

 Larger Q², new probes (Z, W, ...) in "similar"QGP
 → Stronger model constraints

• Qualitative differences?

Kinematic Reach

Unique RHIC Strengths

May 9th

Kolja Kauder, INT-17-1b

Single-Particle Correlations

Di-Hadron Correlations in small systems

Gaussian widths in p+Au (and p+Al) show interesting centrality dependence → Interpretations ongoing

p/*d*+A is no longer just a baseline or a simple system

Di-Hadrons in Au+Au – EP dependence

Path-length dependence of energy loss

QM

May 9th

Direct-γ+Hadron in Au+Au

STAR, PLB 760 (2016) 689

PHENIX, PRL 111, 032301 (2013)

- STAR: Suppression for all measured z_T
- PHENIX: Clear enhancement at large ξ (= small z_T)
- Points to: transition depends on p_T^{assc} , not z_T

Transition Point

May 9th

Kolja Kauder, INT-17-1b

Transition Point from Jet+hadron

Reconstructed Jets

Jet Cross Section in p+p and d+Au

High-precision baseline, well described in NLO \rightarrow Calibrated probe

PRL116, 122301 (2016)

May 9th

PoS(DIS2015)20

Kolja Kauder, INT-17-1b

Jets in d+Au

Underlying Event Activity in p+p

- Transverse charged particle multiplicity slightly decreases for higher leading jet p_T
- PYTHIA perugia 2012 overpredicts transverse charged multiplicity by 25% +/- 15%

QM

May 9th

The Underlying Heavy Ion Event

- $< \Sigma p_T >$ in an R=0.4 cone is ~25 GeV/c
- Intra-event fluctuations: ~6 GeV/c
- 20 GeV fluctuations are rare (~3σ)
 but 20 GeV jets are rare as well
- Challenge to identify "true" hard scatters

Comparing A+A to p+p

• Subtract average density:

$$p_T^{\text{Jet}} = p_T^{\text{rec}} - \rho A$$

- Fluctuations, Detector Effects: **Embed reference**
 - p+p in Au+Au
 - PYTHIA in GEANT

Two Approaches:

- Compare at detector level:
 + Simple, robust
 - + No additional systematics
 - Hard to compare to theory
- Unfold (invert response)
 → Compare at particle level
 + Facilitate model comparison
 Complex, sensitive

Inclusive Jet R_{AA}

- Jets suppressed by ~factor of 2 in central Cu+Au collisions.
- Suppression shows **no p**_T **dependence**,
 - similar to LHC at much higher energies.

Inclusive Jet R_{AA}

Kolja Kauder, INT-17-1b

A+A: Geometries and Strategies

YaJEM: T. Renk arXiv:1212.0646, PRC 85, 064908 (2012), PRC 87, 024905 (2013)

LHC Dijets

RHIC

Selecting a hard scatter:

- High-p_T hadron
- High-p_T direct photon
- Jet, with cuts
- LHC: Geometry ~unaffected Exploit bias at RHIC for Jet Geometry Engineering

Analyze the recoil

- Correlation
- Semi-inclusive jets
 - \rightarrow maximum path length
- Jet, with cuts
 - \rightarrow shorter path length?

arXiv:1702.01108

h-Triggered Recoil Jets

γ-Triggered Recoil Jets

- p+p: Modest difference between \Box^0 and γ -rich triggers
- To extract medium effects for □⁰+jet vs. γ+jet for p+p need full corrections, detailed study and large statistics

Shapes and Internal Structures

h-Triggered Recoil Jets

• Medium-induced broadening between *R*=0.2 and *R*=0.5

Kolja Kauder, INT-17-1b

Di-Jet Imbalance

- Au+Au di-jets more imbalanced than p+p for "hard core" selection
 p+p balance recovered in matched di ista for P=0.4
- p+p balance recovered in matched di-jets for R=0.4

Di-Jet Imbalance

- p+p balance no longer recovered
- Energy shifted outward, yet remains inside 0.4
- Leading or sub-leading jet? A_I can't answer

arXiv:1609.03878

Di-Jet+Hadron Correlations

- No modification relative to p+p on the trigger side \rightarrow Surface Bias
- Hints of excess soft yield on the recoil side
- Integration over balanced jets (no A_J cut) may dilute recoil suppression

Groomed Momentum Sharing z_o

Soft Drop: Remove wide angle soft radiation

With β =0 and Cambridge/Aachen:

Relative z of the softer prong

Based on declustering an angular-ordered tree

I. Thaler ALICE Jet Workshop (2015)

Larkoski et al., PRD 91, 111501 (2015)

May 9th

 $z_g =$ $p_{T1} + p_{T2}$ In vacuum: $\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} \propto \overline{P_i}(z_g) + \mathcal{O}(\alpha_s^2)$ **P_i: AP splitting functions** ~ independent of α_s ~ independent of p_T (in UV limit) ~ independent of quark/gluon jet Connection to fundamental QCD

 $\min(p_{T1}, p_{T2})$

z_g in p+p at 200 GeV

Di-Jet z_g in Au+Au and p+p

 z_g found in matched jets with $p_{T,cut} > 0.2 \text{ GeV}/c$ Trigger Jet contains HT with $E_T > 5.4 \text{ GeV}$

May 9th

 No significant splitting modification on near- or away-side
 but A_I is modified!

Contrast to LHC

- Splitting function not affected by medium • interactions?
- Other explanations? •

central Pb+Pb

May 9th

below 250 GeV/c

HP '16

 $Z_{a}^{0.6}$

Summary

- RHIC offers unparalleled flexibility and unique strengths for jet studies
- Small Systems p+p, p+A, d+A, ³He+A:
 p/d+A no longer just a baseline, nor a simple system
- Large Systems Au+Au, Cu+Au, U+U:
 - Common theme across all inclusive and differential measurements of E-loss:
 - Energy redistributed to larger angles and softer particles
 - LHC: Lost quickly to large angles
 - RHIC: Can be recovered at small R for some selections
 - Interesting contrast to LHC data in splitting via z_g

The Future

- State-of-the-art jet detector at RHIC
 - uniform acceptance
 - HCAL and EMCal
- High Statistics
 - 10⁷ jets above 20 GeV
 - 10⁴ direct γ above 20 GeV

- Interdisciplinary: physicists, computer scientists, statisticians
- Mission: Comprehensive software framework for systematic, rigorous, unified comparison of theory and experiment

• CD0!

BACKUP

Sequential recombination algorithms

- Calculate **distance** d_{ij} between 1. two particles and **beam distance** d_{iB} for all particles
- 2.
- Find **smallest** of all d_{ij} , d_{iB} If it's a d_{ij} , **recombine** particles 3. *i&j*. If it's a d_{iB} , call particle *i* a **jet**
- Repeat until no particles are left 4.

- Resulting clusters are **jets**.
 - **Operational** definition. No unambiguous jet definition exists!
 - Advantages:
 - Minimize sensitivity to hadronization: IR-safe and collinear-safe algorithm and instrumentation
 - Measure energy flow: connect to dynamics of partons
 - Comparison to QCD calculations beyond event generators

FastJet3

M. Cacciari and G. Salam Phys. Lett. B 641, 57 (2006)

Vacuum and medium formation times Hard medium-induced radiation happens late in the shower

At RHIC can only see medium for rare large angle emissions or even splittings. Larger z_{cut} and/or ΔR_{12} selection would increase sensitivity

Marta Verweij

Quark Matter 2017

z_g – RHIC vs LHC

Vacuum formation time of gluons with certain energy

STAR and CMS are probing very different formation times. No overlap

YaJEM Calculation for STAR Dijets (First Look)

p_{T1} > 20 & p_{T2} > 10

Courtesy of Kirill Lapidus

1D hydro R = 0.4 constituent bias 2 GeV 5.5 hard track in either of two jets back-to-back

Signs of creation hot spots shift by 2-4 fm

Needs further investigation -- Be mindful of fluctuations and hydrodynamic expansion

Kolja Kauder, INT-17-1b

 $p_T^{SubLead}$ & Constituent $p_T \rightarrow$ systematically dial in the path length of the recoil jet

Dijet Imbalance = Recoil E-loss? Found a "**sweet spot**" Lost energy seems to be **contained within R=0.4**

Matching: Differentially study Broadening – jet-by-jet Softening – jet-by-jet

