Recent Jet Measurements at the LHC

Kurt Jung, Univ. of Illinois at Chicago INT Workshop Seminar May 8, 2017

8 TeV p+Pb event (CMS Experiment, 20 Nov. 2016)

Dijet event produced by a ~ **1 TeV** virtual gluon

Probing the QGP with Jets

- Jets are typically background free, but probing a specific subprocess always carries caveats:
- The medium can:
 - Redistribute jet constituent particles ("jet broadening")
 - "Quench" the jet reduce the energy of the particles that make up the jet
 - Induce gluon radiation
 - Get swept up by the jet ("medium response") and get reconstructed as part of the jet

- ..

- Can we use a map to help guide where our measurements probe?
 - Many (all) measurements probe more than one effect

Global Jet "phase space"

- Many new jet observables and measurements, often with complicated caveats and techniques
- Could use a visual aid to help us disentangle the wealth of new information from LHC + RHIC jet measurements

Global Jet "phase space"

- Many new jet observables and measurements, often with complicated caveats and techniques
- Could use a visual aid to help us disentangle the wealth of new information from LHC + RHIC jet measurements

Inclusive Jet Measurements

- Measurements of single-jet energy loss relative to pp
- Simple and well-defined; models can accurately predict energy-loss
- Convolution of all nuclear effects + QGP

Centrality/Radial Dependence of R_{AA}

- Measurements of R_{AA} using various cone sizes show virtually identical suppression magnitude
 - All measured jet cones are still relatively "small"

b-Jet Measurements

- b-Jets are identified using Secondary Vertices
 - Long lifetime of b-quark → mm or cm displacement
- Individual track displacement used as cross-check

QCD predicts modified energy loss mechanisms for heavy quarks:

- Radiative energy loss modified by "dead-cone" effect
- Collisional energy loss modified by additional mass coupling to interactions

...and others!

Heavy Jets behave like light jets...

- CMS observes similar quenching magnitude (R_{AA}) between b-jets and light jets
 - Confirmed by theoretical pQCD measurements from I. Vitev, et. al.

...but so does everything!

- R_{AA} proven to be relatively insensitive to many observables
 - For collision energy dependence: Do we just get lucky that spectrum flatness cancels out the additional energy loss?
 - <u>For flavor dependence</u>: Is the absence of a flavor dependence to R_{AA} simply an extension of this insensitivity?

arXiv: 1609.05383 arXiv: 1312.4198

A Comparison of Jets and Mesons

- Magnitude of energy loss is similar between flavored mesons and jets
 - Maybe some interesting effects at very large particle \boldsymbol{p}_{T}

A Comparison of Jets and Mesons

- Magnitude of energy loss is similar between flavored mesons and jets
 - Maybe some interesting effects at very large particle p_T

A Comparison of Jets and Mesons

arXiv: 1702.00674

Pb+Pb 30-40%

 $p_{-}^{\rm jet}$ > 100 GeV

10

2

4

20

40 100

*p*_{_} [GeV]

1.8

Jet+X Measurements

- Fluctuations and initial state geometries can drive energy loss outside of a simple "average" suppression
- Attempt to measure energy loss via *in-situ* reference

Electroweak Boson References in PbPb

- $<X_{J_{\gamma}}>$ in central PbPb reduced from pp
 - Relative shift in quenched jets similar between both new electroweak references: photons and Z-Bosons

b-jet Production Mechanisms

- Measurements of jet R_{AA} and jet R_{pA} do not distinguish between different production mechanisms
- Herwig (NLO) predicts large contributions from all three production mechanisms in the measured $p_{\rm T}$ range
 - Gluon can split anywhere from early to late in the medium evolution -> convolutes energy loss measurements!
- b dijet measurements are essential to deconvolute gluon splitting processes from leading-order processes

b-jet Production Mechanisms

- Measurements of jet R_{AA} and jet R_{pA} do not distinguish between different production mechanisms
- Herwig (NLO) predicts large contributions from all three production mechanisms in the measured $p_{\rm T}$ range
 - Gluon can split anywhere from early to late in the medium evolution -> convolutes energy loss measurements!
- b dijet measurements are essential to deconvolute gluon splitting processes from leading-order processes

b Dijets

- Observe modification consistent with inclusive-jet measurements
- Directly comparing b dijet/inclusive dijet PbPb shows virtually no effect as a function of centrality

Jet-Track Correlations

- Measurement correlates jets to all tracks to factorize energy loss in bins of p_T and angular distance
- Attempt to probe substructure of jet and *quantify where the quenched energy goes*
- Uses (unquenched) pp as a reference

Constructing Jet-Track Correlations

Analysis procedure in PbPb and pp:

- 1. Construct 2D $\Delta\eta \Delta \phi$ charged particle correlations relative to jet axis
- 2. Pair acceptance geometric correction (using event mixing techniques)
- 3. Subtract long-range and uncorrelated background (using sideband in $\Delta \eta$)
- 4. Correct correlations for jet reconstruction-related biases

Jet-Track Pair-Acceptance Correction

- Finite jet and track acceptances result in trapezoidal geometry
- Correct for this pair acceptance effect with a mixed-event correction:
 - o Jets from sample correlate with tracks from different events
 - \circ Events used for mixing are matched on centrality and v_z

Jet-Track Background Subtraction

- Project background (measured on $1.5 < |\Delta \eta| < 2.5$) into $\Delta \phi$
- Propagate this background distribution in 2D
- Subtract from background from signal to yield isolated jet peak

• Finally: apply two MC-based corrections for jet reconstruction biases

Radial p_T Profile and Jet Shape

Inclusive Jet Shape

CMS-PAS-HIN-16-020

Transverse momentum profile $P(\Delta r)$

- Weight Δ η- Δ φ correlations per-track by track-p_T
- Integrate correlations in rings of $\Delta r = \sqrt{((\Delta \eta)^2 + (\Delta \varphi)^2)}$

$$\mathsf{P}(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \Sigma_{\text{jets}} \Sigma_{\text{tracks} \in (\mathbf{r}_{a}, \mathbf{r}_{b})} p_{\mathrm{T}}^{\text{trk}}$$

Jet shape $\rho(\Delta r)$

- Normalize $P(\Delta r)$ to unity over range $\Delta r < 1$
- Measures self-normalized p_T distribution of jet

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks} \in (r_a, r_b)} p_T^{\text{trk}}}{\sum_{\text{tracks}} p_T^{\text{trk}}}$$

Radial p_T Profile and Jet Shape

Importance of the Medium Response

Quenched parton shower + medium excitation Quenched parton shower Vacuum parton shower

Medium response is needed to explain large-angle ΔR flattening
 – QGP gets "dragged along" in shockwave behind the jet

Other Jet-Track Theoretical Results

Extensions using back-to-back jets

- Attempt to use a leading jet as reference and study effects on subleading jet
 - Observe larger jet asymmetry in central collisions

Jet Track Correlations

arXiv: 1609.02466

- Shift in constituent particle distribution between balanced and unbalanced jets
 - Subleading jet low-pT constituents pushed farther away for quenched jets
 - Leading jet particle distributions consistent between quenched/unquenched sample

Jet Track Correlations

arXiv: 1609.02466

- Leading jet constituents are modified, even for **balanced** dijets (!)
 - Assumption that leading jet is unmodified may not be true at LHC energies
 - Need a <u>better reference</u> for jet suppression than another jet

Jet Track Correlations

arXiv: 1609.02466

- Leading jet constituents are modified, even for balanced dijets (!)
 - JEWEL predicts this phenomenon looking at dijet surface bias

Measuring the surface bias of dijets

K. Lapidus, HP 2016

- LHC jets show smaller surface bias than RHIC jets
 - Need a true unmodified reference for jet quenching
 - Use jet-track correlations binned differentially for balanced and unbalanced dijets

Summary (I) – Theoretical Needs

http://jetscape.wayne.edu/

- Need new MC generators to fully describe the collision dynamics in a coherent and systematic way
 - Avoid comparing apples to oranges by allowing consistent treatment of one aspect of the collision and varying others
 - Snap-in "modules" can work together to simulate a full collision no need to reinvent the wheel

Summary (II) – Experimental Needs

- Need to make sense of the wealth of jet physics measured at LHC (and RHIC!)
 - Should attempt to describe results as a part of a whole, draw conclusions based on entire physical picture (not just on a single measurement)
- Jet quenching clearly observed for many years
 - Jet-Track studies show clear evidence of energy transported to low- p_T at large angles
- New measurements (e.g. jet substructure) can remove some sensitivities to post-collision dynamics and start to discriminate between quark and gluon jets – more like this will be required!

Jet Substructure

- After clustering with anti- k_T algorithm, recluster with a sequential clustering algorithm like C/A to obtain fragmentation hierarchy
 - Observe fragmentation-specific behavior within the jet
 - Less sensitive to hadronization than jet-track correlations

Measuring the Jet Substructure

- Quark and gluon z_g distributions are very similar in pp
- Jets with two hard subjets (large zg) relatively more suppressed than jets with a single core (small zg)
 QGP can "see" the parton shower!

Jet p_T dependence

- Clear indication of *reduced modification with increasing jet* p_T
- Distributions are self-normalized cannot differentiate between low z_g enhancement or high z_g suppression

Ideas for z_g modification

Jet grooming

- Jet grooming removes soft divergences and uncorrelated background
 - "Soft-drop" primarily removes late-stage soft gluon emission
- Common technique in HEP introduced in heavy-ion collisions

Procedure finds splitting with largest angular separation

Hadronization effects are suppressed – more useful than single-particle meas.

Schematic sketch from A. Larkoski LPC Workshop Jan. 2014

Substructure Probes of the QGP

Jet suppression might depend on the shower shape in a number of different ways...

When the jet prongs are separated enough so that they are each seen (and quenched) by the QGP

Presence of **extra emission** and/or modification of parton branching in the QGP

If there are **correlated background particles** with the shower in the QGP

(Suggested by Jet-Track studies)

Constraining nPDFs with Dijets

- Dijet η distributions correlate strongly with Bjorken-x
 - Measurements of inclusive-jet η_{dijet} can constrain nPDFs

Radial p_T Profile and Jet Shape

2.76 TeV Leading Jets

10.1007/JHEP11(2016)055

- Anti- k_t calo jets, R = 0.3
- Leading jets, p_T > 120 GeV
- PLB: Inclusive jets, p_T > 120 GeV
- Normalized over $\Delta r < 0.3$
- 0-30% centrality bin

5.02 TeV Inclusive Jets

- Anti- k_t calo jets, R = 0.4
- Inclusive jets, p_T > 120 GeV
- Normalized over ∆r < 1
- 0-10% centrality bin

PbPb to pp modifications are similar at 5.02 and 2.76 TeV: differences in pp reference jet shape account for differences in ratio $\rho(\Delta r)_{PbPb}/\rho(\Delta r)_{pp}$

ρ(Δr)

Discriminators

 [&]quot;JP" = Jet Probability tagger used as cross-check (no SV)

b & c-jets: A good probe of gluon nPDFs

 Inclusive dijet measurement convoluted by *quark PDFs*, while b/c-jet measurements are dominated by *gluon PDFs*

- b-Jet R_{pA}^{Pythia} finds no discrepancy from unity
- Inclusive measurements of b-jets in pPb not sensitive enough to probe gluon nPDFs – need more data!

Charm-Jet Spectra

R_{pA} for heavy+light flavors

Inclusive jet: 1601.02001 b jet: 1510.03373 c jet: 1612.08972

- All jet samples are consistent with one another
- No indications of flavor-dependent nPDF effects within uncertainties