Event-by-event picture for the medium-induced jet evolution

Edmond Iancu IPhT Saclay & CNRS

recent work by the "Saclay collaboration" (since 2012) J.-P. Blaizot, F. Dominguez, M. Escobedo, Y. Mehtar-Tani, B. Wu

- Motivation: di-jet asymmetry at the LHC
- Medium-induced radiation: BDMPS-Z
- Multiple branching: physical discussion
- Average gluon distribution & energy loss
- Correlations & fluctuations
- **•** Gluon multiplicities
- Thermalization of mini-jets

From di-jets in $p+p$ collisions ...

... to mono-jets in Pb+Pb collisions

- Central Pb+Pb: 'mono–jet' events
- The secondary jet can barely be distinguished from the background: $E_{T1} > 100$ GeV, $E_{T2} > 25$ GeV

Di–jet asymmetry : A_J (CMS)

Event fraction as a function of the di-jet energy imbalance in $p+p$ (a) and Pb+Pb (b–f) collisions for different bins of centrality

$$
A_{\text{J}} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})
$$

 \bullet N.B. A pronounced asymmetry already in $p+p$ collisions !

Di–jet asymmetry : A_J (CMS)

Event fraction as a function of the di-jet energy imbalance in $p+p$ (a) and Pb+Pb (b–f) collisions for different bins of centrality

$$
A_{\text{J}} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})
$$

• Central Pb+Pb: the asymmetric events occur more often

Di–jet asymmetry at the LHC (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- \bullet Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- The 'missing energy' is actually found in the underlying event:
	- many soft (p_{\perp} < 2 GeV) hadrons propagating at large angles

Energy imbalance @ large angles: $R=0.8$

Di–jet asymmetry at the LHC

- Very different from the usual jet fragmentation pattern in the vacuum
	- bremsstrahlung favors collinear splittings \Rightarrow jets are collimated
- Soft hadrons can be easily deviated towards large angles
	- elastic scatterings with the medium constituents
- A main question: how is that possible that a significant fraction of the jet energy be carried by its soft constituents ?

The generally expected picture

"One jet crosses the medium along a distance longer than the other"

• Implicit assumption: fluctuations in energy loss are small

• "the energy loss is always the same for a fixed medium size"

The generally expected picture

"One jet crosses the medium along a distance longer than the other"

- Implicit assumption: fluctuations in energy loss are small
	- "the energy loss is always the same for a fixed medium size"
- Fluctuations are known to be important for a branching process

The role of fluctuations

- Fluctuations in the energy loss are as large as the average value (M. Escobedo and E.I., arXiv:1601.03629 & 1609.06104)
- Similar conclusion independently reached by a Monte-Carlo study (Milhano and Zapp, arXiv:1512.08107, "JEWEL")
- One needs a better understanding of the in-medium jet dynamics

INT Program, Seattle, May 20017 [EbE fluctuations in jet evolution](#page-0-0) Edmond Iancu 10 / 32

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

 \bullet ... and via collisions off the medium constituents

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

- \bullet ... and via collisions off the medium constituents
- Collisions can have two main effects
	- trigger additional radiation ('medium-induced branching')
	- thermalize the products of this radiation
- **BDMPSZ mechanism** (Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov)
	- gluon emission is linked to transverse momentum broadening

Transverse momentum broadening

• Independent multiple scattering \implies a random walk in p_{\perp}

• Collisions destroy quantum coherence and thus trigger emissions

formation time

$$
t_{\rm f} \,\simeq\,\frac{1}{\Delta E} \,\simeq\,\frac{\omega}{k_\perp^2}
$$

During formation, the gluon acquires a momentum $k_{\perp}^2 \sim \hat{q} t_{\rm f}$

Transverse momentum broadening

• Independent multiple scattering \implies a random walk in p_{\perp}

• Collisions destroy quantum coherence and thus trigger emissions

formation time

$$
t_{\rm f}\,\simeq\,\frac{\omega}{\hat{q}t_{\rm f}}\,\simeq\,\sqrt{\frac{\omega}{\hat{q}}}
$$

During formation, the gluon acquires a momentum $k_{\perp}^2 \sim \hat{q} t_{\rm f}$

Formation time & production angle

$$
t_{\rm f} \simeq \frac{\omega}{k_{\perp}^2} \& k_{\perp}^2 \simeq \hat{q} t_{\rm f} \implies t_{\rm f}(\omega) \simeq \sqrt{\frac{\omega}{\hat{q}}}
$$

- Maximal ω for this mechanism: $t_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$
- Soft gluons $(\omega \ll \omega_c)$ have ...
- small formation times:

 $t_{\rm f}(\omega) \ll L$

• ... and large production angles:

$$
\theta(\omega) \, \simeq \, \frac{k_{\perp}}{\omega} \, \simeq \, \frac{\sqrt{\hat{q}L}}{\omega}
$$

- promising for dijet asymmetry
	- Final transverse momentum (roughly) : $k_\perp^2 \sim \hat q L$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$
\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_{\rm f}(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}
$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$
\omega \lesssim \omega_{\text{br}}(L) \equiv \alpha_s^2 \hat{q} L^2 \iff L \gtrsim t_{\text{br}}(\omega) \equiv \frac{1}{\alpha_s} t_{\text{f}}(\omega)
$$

 \bullet LHC: the leading particle has $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \div 10 \,\text{GeV}$

- In a typical event, the LP emits ...
	- a number of $\mathcal{O}(1)$ of gluons with $\omega \sim \omega_{\rm br}$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$
\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_{\rm f}(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}
$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$
\omega \lesssim \omega_{\rm br}(L) \equiv \alpha_s^2 \hat{q} L^2 \quad \Longleftrightarrow \quad L \gtrsim t_{\rm br}(\omega) \equiv \frac{1}{\alpha_s} t_{\rm f}(\omega)
$$

 \bullet LHC: the leading particle has $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \div 10 \,\text{GeV}$

- In a typical event, the LP emits ...
	- a large number of softer gluons with $\omega \ll \omega_{\rm br}$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$
\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_f(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}
$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$
\omega \lesssim \omega_{\rm br}(L) \equiv \alpha_s^2 \hat{q} L^2 \quad \Longleftrightarrow \quad L \gtrsim t_{\rm br}(\omega) \equiv \frac{1}{\alpha_s} t_{\rm f}(\omega)
$$

 \bullet LHC: the leading particle has $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \div 10 \,\text{GeV}$

• The energy loss is controlled by the hardest primary emissions

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
	- \bullet daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

• when $\omega \sim \omega_{\rm br}$, $\mathcal{P}(z\omega, L) \sim 1$ independently of the value of z

A mini-jet with $\omega \lesssim \omega_{\rm br}$ decays over a time $t_{\rm br}(\omega) \lesssim L$

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
	- daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

- Via successive democratic branchings, the energy is efficiently transmitted to softer and softer gluons, down to $\omega \sim T$
- The soft gluons thermalize via elastic collisions, thus stopping the branching process (E.I. and Bin Wu, arXiv:1506.07871)

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
	- daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

- All the energy taken by primary gluons with $\omega \lesssim \omega_{\rm br}$ ends up in the medium
- This energy appears in many soft quanta propagating at large angles
- What is the average energy loss and its fluctuations?

Probabilistic picture

- Medium-induced jet evolution \approx a Markovien stochastic process
	- successive branchings are non-overlapping: $t_{\rm br} \sim \frac{1}{\alpha_s}\, t_{\rm f}$
	- interference phenomena could complicate the picture ... (in the vacuum, interferences lead to angular ordering)
	- ... but they are suppressed by rescattering in the medium (Blaizot, Dominguez, E.I., Mehtar-Tani, 2012) (Apolinário, Armesto, Milhano, Salgado, 2014)
- Hierarchy of equations for *n*-point correlation functions ($x \equiv \omega/E$)

$$
D(x,t) \equiv x \left\langle \frac{dN}{dx}(t) \right\rangle, \qquad D^{(2)}(x,x',t) \equiv xx' \left\langle \frac{dN_{\text{pair}}}{dx dx'}(t) \right\rangle
$$

- Analytic solutions (Blaizot, E. I., Mehtar-Tani, '13; Escobedo, E.I., '16)
- Interesting new phenomena:
	- wave turbulence, KNO scaling, large fluctuations

Wave turbulence

- Democratic branchings lead to wave turbulence
	- energy flows from one parton generation to the next one, at a rate which is independent of the generation
	- it eventually dissipates into the medium, via thermalization
	- mathematically: a fixed point $D(x) = \frac{1}{\sqrt{x}}$ (Kolmogorov spectrum)

Gluon spectrum: the average energy loss

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Kinetic equation for $D(x, t)$: 'gain' - 'loss'

• Exact solution with initial condition $D(x, t = 0) = \delta(x - 1)$

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \quad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

 \bullet $t_{\text{br}}(E)$: the lifetime of the LP until its first democratic branching

- early times $\tau \ll 1$: leading particle peak near $x = 1$
- $\tau \geq 1$: the spectrum is suppressed at all values of x
- power-law spectrum $D\propto\frac{1}{\sqrt{x}}$ at $x\ll 1$ for any τ

• Pronounced LP peak at small times

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \quad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

 \bullet Increasing t: the LP peaks decreases, broadens, and moves to the left

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \quad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

 $\tau = 0.1, 0.2, 0.4, 0.8$

• The LP peaks disappears when $\tau \sim 1$

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \quad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

 \bullet The shape at small x is not changing: genuine fixed point

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \quad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

The energy flows out of the spectrum: $\int_0^1 dx D(x, \tau) = e^{-\pi \tau^2}$

The average energy loss

• The missing energy is transmitted to the medium, via elastic collisions (E.I. and Bin Wu, 2015)

$$
\langle \Delta E \rangle = E \left(1 - e^{-\pi \tau^2} \right) = E \left[1 - e^{-\pi \frac{\omega_{\rm br}}{E}} \right]
$$

 \bullet LHC: $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \div 10 \,\text{GeV}$

$$
\langle \Delta E \rangle \, \simeq \, \pi \omega_{\rm br} = \, \pi \alpha_s^2 \hat{q} L^2
$$

• Consistent with our general physical picture: \triangleright energy loss is controlled by the primary emissions with $ω \sim ω_{\text{br}}$

Fluctuations in the energy loss

• Recall: the probability for a primary emission with $\omega \sim \omega_{\rm br}$ is of $\mathcal{O}(1)$

- the average number of such emissions is of $\mathcal{O}(1)$ (indeed, it is π)
- successive such emissions are quasi-independent $(E \gg \omega_{\rm br})$
- Fluctuations in the number of such emissions must be of $\mathcal{O}(1)$ as well
- The fluctuations in the energy loss are comparable with the average value
- Confirmed by exact calculations (M. Escobedo and E. I., arXiv:1601.03629)

$$
\sigma^2 \, \equiv \, \langle \Delta E^2 \rangle - \langle \Delta E \rangle^2 \, \simeq \, \frac{\pi^2}{3} \, \omega_{\rm br}^2 \, = \, \frac{1}{3} \langle \Delta E \rangle^2
$$

Di-jet asymmetry from fluctuations

• Average asymmetry is controlled by the difference in path lengths

$$
\langle E_1 - E_2 \rangle = \langle \Delta E_2 - \Delta E_1 \rangle \propto \langle L_2^2 - L_1^2 \rangle
$$

• In experiments though, one rather measures $|E_1 - E_2|$

$$
\langle (E_1 - E_2)^2 \rangle - \langle E_1 - E_2 \rangle^2 = \sigma_1^2 + \sigma_2^2 \propto \langle L_1^4 + L_2^4 \rangle
$$

 \bullet Fluctuations dominate whenever $L_1 \sim L_2$ (the typical situation)

Di-jet asymmetry from fluctuations

• Average asymmetry is controlled by the difference in path lengths

 $\langle E_1 - E_2 \rangle = \langle \Delta E_2 - \Delta E_1 \rangle \propto \langle L_2^2 - L_1^2 \rangle$

• In experiments though, one rather measures $|E_1 - E_2|$

$$
\langle (E_1 - E_2)^2 \rangle - \langle E_1 - E_2 \rangle^2 = \sigma_1^2 + \sigma_2^2 \propto \langle L_1^4 + L_2^4 \rangle
$$

• Difficult to check: no direct experimental control of L_1 and L_2

Monte-Carlo studies (JEWEL)

(Milhano and Zapp, arXiv:1512.08107)

• Left: Central production $(L_1 = L_2)$ vs. randomly distributed production points ("full geometry")

- Right: Distribution of $\Delta L \equiv L_1 L_2$ for di-jet events in different classes of asymmetry (A_J)
	- the width of the distribution is a measure of fluctuations

Correlations & fluctuations

M.A. Escobedo and E. I., arXiv:1601.03629, arXiv:1609.06104

The variance is related to the density $D^{(2)}(x,x^\prime,t)$ of gluon pairs:

$$
D^{(2)}(x, x', t) \equiv xx' \left\langle \frac{\mathrm{d}N_{\mathrm{pair}}}{\mathrm{d}x \, \mathrm{d}x'}(t) \right\rangle
$$

Kinetic equation for $D^{(2)}(x,x^\prime,t)$: correlations due to common ancestors

The 1-body density $D(x + x', t)$ acts as a source for the 2-body density

The gluon pair density

The 2 measured gluons x and x' have a last common ancestor (LCA) $x_1 + x_2$

$$
D^{(2)}(x, x', \tau) = \frac{1}{2\pi} \frac{1}{\sqrt{x x'(1 - x - x')}} \left[e^{-\frac{\pi \tau^2}{1 - x - x'}} - e^{-\frac{4\pi \tau^2}{1 - x - x'}} \right]
$$

- 1st term: the splitting of the LCA occurs at late times $\tau' \sim \tau$
- 2nd term: the splitting of the LCA occurs at early times $\tau' \sim 0$
- All the *n*-body correlations $D^{(n)}$ have been similarly computed
	- fluctuations are stronger than for jets in the vacuum

Fluctuations in the gluon distribution

• Soft gluons ($x \ll 1$) and small medium/high energy jet ($\tau \ll 1$)

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}} \simeq \frac{\tau}{\sqrt{x}}
$$

$$
D^{(2)}(x, x', \tau) \simeq \frac{3}{2} \frac{\tau^2}{\sqrt{x x'}} \simeq \frac{3}{2} D(x,\tau) D(x',\tau)
$$

• Factorization ... but large fluctuations

$$
D^{(2)}(x, x', \tau) - D(x, \tau)D(x', \tau) \simeq \frac{1}{2}D(x, \tau)D(x', \tau)
$$

This difference would vanish for a Poissonian distribution

• Huge fluctuations in the multiplicities of the soft gluons

Multiplicities: Koba-Nielsen-Olesen scaling

• Number of gluons with $\omega > \omega_0$, where $\omega_0 \ll E$:

$$
\langle N(\omega_0) \rangle = \int_{\omega_0}^{E} d\omega \, \frac{dN}{d\omega} \, \simeq \, 1 + 2 \left[\frac{\omega_{\rm br}}{\omega_0} \right]^{1/2} \, \left(\mathsf{LP} + \mathsf{radiation} \right)
$$

- $\langle N(\omega_0)\rangle \simeq 1$ when $\omega_0 \gg \omega_{\rm br}$: just the LP
- \bullet $\langle N(\omega_0) \rangle \gg 1$ when $\omega_0 \ll \omega_{\rm br}$: multiple branching
- All the higher moments $\langle N^p \rangle$ have been similarly computed

$$
\frac{\langle N^2 \rangle}{\langle N \rangle^2} \simeq \frac{3}{2}, \qquad \frac{\langle N^p \rangle}{\langle N \rangle^p} \simeq \frac{(p+1)!}{2^p}
$$

- KNO scaling : the reduced moments are pure numbers
- A special negative binomial distribution (parameter $r = 2$)
	- huge fluctuations (say, as compared to a Poissonian distribution)

$$
\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{2}} \quad \text{vs.} \quad \frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{\langle N \rangle}}
$$

Multiplicities: Koba-Nielsen-Olesen scaling

• Number of gluons with $\omega > \omega_0$, where $\omega_0 \ll E$:

$$
\langle N(\omega_0) \rangle = \int_{\omega_0}^{E} d\omega \, \frac{dN}{d\omega} \, \simeq \, 1 + 2 \left[\frac{\omega_{\rm br}}{\omega_0} \right]^{1/2} \, \left(\mathsf{LP} + \mathsf{radiation} \right)
$$

- $\langle N(\omega_0)\rangle \simeq 1$ when $\omega_0 \gg \omega_{\rm br}$: just the LP
- $\langle N(\omega_0)\rangle \gg 1$ when $\omega_0 \ll \omega_{\rm br}$: multiple branching
- All the higher moments $\langle N^p \rangle$ have been similarly computed

$$
\frac{\langle N^2 \rangle}{\langle N \rangle^2} \simeq \frac{3}{2}, \qquad \frac{\langle N^p \rangle}{\langle N \rangle^p} \simeq \frac{(p+1)!}{2^p}
$$

- KNO scaling : the reduced moments are pure numbers
- A special negative binomial distribution (parameter $r = 2$)
	- fluctuations are stronger than for jets in the vacuum $(r = 3)$

$$
\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{2}} \quad \text{vs.} \quad \frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{3}}
$$

Jet thermalization (E.I. and Bin Wu, arXiv:1506.07871)

- Kinetic equation for longitudinal dynamics: branchings $+$ elastic collisions (Fokker-Planck approximation: drag and diffusion)
- Gluon distribution in energy (p) and longitudinal coordinate (z)
- Initial condition at $t = z = 0$: $E = 90 T$

- \bullet $t_{\text{br}}(E)$: the lifetime of the leading particle
- the time before the LP undergoes a first democratic branching

INT Program, Seattle, May 20017 [EbE fluctuations in jet evolution](#page-0-0) Edmond Iancu 28 / 32

Jet thermalization (E.I. and Bin Wu, arXiv:1506.07871)

- \bullet Kinetic equation for longitudinal dynamics: branchings $+$ elastic collisions (Fokker-Planck approximation: drag and diffusion)
- Gluon distribution in energy (p) and longitudinal coordinate (z)
- Initial condition at $t = z = 0$: $E = 90 T$

• With increasing time, the jet substructure is softening (mostly via branchings) and broadening (via drag and diffusion)

INT Program, Seattle, May 20017 [EbE fluctuations in jet evolution](#page-0-0) Edmond Iancu 28 / 32

Jet thermalization

 \bullet $t = t_{\text{br}}(E)$: the leading particle disappears (democratic branching)

Jet thermalization

• $t = 1.5 t_{\text{br}}(E)$: the jet is fully quenched

The late stages: thermalizing a mini-jet

- At late times $t \gg t_{\text{br}}(E)$, the jet is 'fully quenched'
	- no trace of the leading particle, just a thermalized tail
	- the typical situation for a mini-jet : $E \lesssim \omega_{\text{br}}(L)$

Energy loss towards the medium

• Upper curves: $E = 90 T$; lower curves: $E = 25 T$

- \bullet ΔE_{ther} : the energy carried by the thermalized tail $(t z \geq t_{\text{rel}})$
- $\Delta E_{\rm flow} = \pi \omega_{\rm br}(t) \propto t^2$: only branchings

Conclusions

- Effective theory and physical picture for jet quenching from pQCD
	- event-by-event physics: multiple branching
	- democratic branchings leading to wave turbulence
	- thermalization of the soft branching products with $p \sim T$
	- efficient transmission of energy to large angles
	- wide probability distribution, strong fluctuations, KNO scaling
- Fluctuations compete with the difference in path lengths in determining the di-jet asymmetry
- Qualitative and semi-quantitative agreement with the phenomenology of di-jet asymmetry at the LHC
- • Important dynamical information still missing: vacuum-like radiation (parton virtualities), medium expansion ...