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Motivation: di-jet asymmetry at the LHC

Medium-induced radiation: BDMPS-Z

Multiple branching: physical discussion

Average gluon distribution & energy loss

o Correlations & fluctuations

Gluon multiplicities

Thermalization of mini-jets

INT Program, Seattle, May 20017 EbE fluctuations in jet evolution Edmond lancu 2/ 32



From di—jets in p+p collisions ...
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. to mono-jets in Pb+Pb collisions

@ Central Pb+Pb: ‘mono—jet’ events

@ The secondary jet can barely be distinguished from the
background: Ep; > 100 GeV, Epe > 25 GeV
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Event Fraction
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Di—jet asymmetry : A;

@ Event fraction as a function of the di—jet energy imbalance in p+p (a) and
Pb+Pb (b-f) collisions for different bins of centrality
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@ N.B. A pronounced asymmetry already in p+p collisions !
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Event Fraction
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Di—jet asymmetry : A;

@ Event fraction as a function of the di—jet energy imbalance in p+p (a) and
Pb+Pb (b-f) collisions for different bins of centrality
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(E; = pr,; = jet energies)

@ Central Pb+Pb : the asymmetric events occur more often
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Di—jet asymmetry at the LHC

s ]\'\ ~—_ CMS,/ | cMs Experiment at LHC, CERN

Data recorded: Sun Nov 14 19:31:39 2010 CEST
Run/Event: 151076 / 1328520
Lumi section: 249

. Leading jet o T
pr:205.1 GeV/c ) o

Subleading jet ) /
pr:70.0 GeVic ‘

@ Additional energy imbalance as compared to p+p : 20 to 30 GeV
@ Compare to the typical scale in the medium: 7" ~ 1 GeV (average p, )
@ The ‘missing energy’ is actually found in the underlying event:

e many soft (p; < 2 GeV) hadrons propagating at large angles
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Energy imbalance @ large angles: R
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@ No missing energy : Fji 5" = Egiivil

@ In-Cone : 1%, > E& 1c.q © di-jet asymmetry, hard particles

@ Out-of-Cone : EPUt < EQY . : soft hadrons @ large angles
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at the LHC

~——_ CMS,/ | cMs Experiment at LHC, CERN
— Data recorded: Sun Nov 14 19:31:39 2010 CEST
> Run/Event: 151076 / 1328520
Lumi section: 249

Leading jet i —
pr:205.1 GeVic . T

Subleading jet
:70.0 GeV/c

@ Very different from the usual jet fragmentation pattern in the vacuum

e bremsstrahlung favors collinear splittings = jets are collimated

@ Soft hadrons can be easily deviated towards large angles

e elastic scatterings with the medium constituents

@ A main question: how is that possible that a significant fraction of the jet
energy be carried by its soft constituents ?
INT Program, Seattle, May 20017
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The generally expected picture

@ "“One jet crosses the medium along a distance longer than the other”

@ Implicit assumption: fluctuations in energy loss are small

e “the energy loss is always the same for a fixed medium size”
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The generally expected picture

@ "“One jet crosses the medium along a distance longer than the other”

@ Implicit assumption: fluctuations in energy loss are small

e “the energy loss is always the same for a fixed medium size”

@ Fluctuations are known to be important for a branching process
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The role of fluctuations

o Different path lengths @ Fluctuations in the branching pattern

@ Fluctuations in the energy loss are as large as the average value

(M. Escobedo and E.I., arXiv:1601.03629 & 1609.06104)

@ Similar conclusion independently reached by a Monte-Carlo study
(Milhano and Zapp, arXiv:1512.08107, “JEWEL")

@ One needs a better understanding of the in-medium jet dynamics
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Medium-induced jet evolution

@ The leading particle (LP) is produced by a hard scattering

@ It subsequently evolves via radiation (branchings) ...

xX
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Medium-induced jet evolution

@ The leading particle (LP) is produced by a hard scattering

@ It subsequently evolves via radiation (branchings) ...
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@ ... and via collisions off the medium constituents
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Medium-induced jet evolution

@ The leading particle (LP) is produced by a hard scattering

@ It subsequently evolves via radiation (branchings) ...
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@ ... and via collisions off the medium constituents

@ Collisions can have two main effects
o trigger additional radiation (‘medium-induced branching’)

e thermalize the products of this radiation

@ BDMPSZ mechanism (Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov)
e gluon emission is linked to transverse momentum broadening
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Transverse momentum broadening

@ Independent multiple scattering = a random walk in p
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@ Collisions destroy quantum coherence and thus trigger emissions
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@ During formation, the gluon acquires a momentum ki ~ qt¢
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Transverse momentum broadening

@ Independent multiple scattering = a random walk in p
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@ During formation, the gluon acquires a momentum ki ~ qt¢
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Formation time & production angle

@ Maximal w for this mechanism: t < L = w < w, = §L?

@ Soft gluons (w < w,) have ...

o small formation times: A
tr(w) < L 0
/gai’f“,\j(,’-f I et
e ... and large production angles: R R Teeemaicozacazasess
\%a

w o w \\\%

e promising for dijet asymmetry S

fw) ~ "k o V4 g \%%

@ Final transverse momentum (roughly) : k% ~ ¢L
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Multiple branchings

@ Probability for emitting a gluon with energy > w during a time L

L q
L)~a;, —— ~ as L/ =
Plw,L) ~« @) e .

@ When P(w, L) ~ 1, multiple branching becomes important

1
w S wn(l) =Gl = L 2 th(w) = —ti(w)

S

@ LHC: the leading particle has £ ~ 100 GeV > wy,, ~ 5 +10GeV

) 173
W~ Whr

E @666666
O%%
tf fbr

@ In a typical event, the LP emits ...

e a number of O(1) of gluons with w ~ wy,
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Multiple branchings

@ Probability for emitting a gluon with energy > w during a time L
I e
Qg ~ a4 L g
te(w) w

@ When P(w, L) ~ 1, multiple branching becomes important

P(w, L) ~

1
w S wp(L) =Gl = L 2 th(w) = —tr(w)

Qg
@ LHC: the leading particle has EZ ~ 100 GeV > wy, ~ 5+ 10 GeV

P £ &5 & ¢
3 9 R

w K Wy
@ In a typical event, the LP emits ...

e a large number of softer gluons with w < wy,;
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Multiple branchings

@ Probability for emitting a gluon with energy > w during a time L

L q
Ly~ay, —— ~ as L/ =
Plw, L)~ « @) e’ ”

© When P(w, L) ~ 1, multiple branching becomes important

1
w S wp(L) =Gl = L 2 th(w) = —t(w)

S

@ LHC: the leading particle has £ ~ 100 GeV > wy,, ~ 5 +10GeV
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@ The energy loss is controlled by the hardest primary emissions

W L Why
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Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

@ The primary gluons generate ‘mini-jets’ via democratic branchings

o daughter gluons carry comparable energy fractions: z ~1— 2z~ 1/2
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e when w ~ wy,, P(zw, L) ~ 1 independently of the value of z

@ A mini-jet with w < wy,, decays over a time {y,,(w) < L
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Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

@ The primary gluons generate ‘mini-jets’ via democratic branchings

o daughter gluons carry comparable energy fractions: z ~ 1 — 2z ~ 1/2
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@ Via successive democratic branchings, the energy is efficiently transmitted to
softer and softer gluons, down to w ~ T’

@ The soft gluons thermalize via elastic collisions, thus stopping the branching
process (E.I. and Bin Wu, arXiv:1506.07871)
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Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

@ The primary gluons generate ‘mini-jets’ via democratic branchings

o daughter gluons carry comparable energy fractions: z ~1— 2z~ 1/2
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@ All the energy taken by primary gluons with w < wy, ends up in the medium
@ This energy appears in many soft quanta propagating at large angles

@ What is the average energy loss and its fluctuations ?
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Probabilistic picture

@ Medium-induced jet evolution &~ a Markovien stochastic process

@ successive branchings are non-overlapping: ty,, ~ a% te

e interference phenomena could complicate the picture ...

(in the vacuum, interferences lead to angular ordering)

o ... but they are suppressed by rescattering in the medium

(Blaizot, Dominguez, E.l., Mehtar-Tani, 2012)
(Apolinério, Armesto, Milhano, Salgado, 2014)

@ Hierarchy of equations for n-point correlation functions (x = w/FE)

- dN 5 - dNpair
D(z,t) =z <dx(t)> . DW(z, 2 t) = a2’ <dx3x/ (t)>
@ Analytic solutions (Blaizot, E. |., Mehtar-Tani, '13; Escobedo, E.I., '16)

@ Interesting new phenomena:

e wave turbulence, KNO scaling, large fluctuations
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Wave turbulence

@ Democratic branchings lead to wave turbulence

e energy flows from one parton generation to the next one, at a rate
which is independent of the generation
e it eventually dissipates into the medium, via thermalization

e mathematically: a fixed point D(z) = \% (Kolmogorov spectrum)

Energy injection
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Viscous dissipation
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Gluon spectrum: the average energy loss

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

@ Kinetic equation for D(z,t): ‘gain’ - ‘loss’

@ (1, (E) : the lifetime of the LP until its first democratic branching

e early times 7 < 1 : leading particle peak near x = 1
e 7 = 1 : the spectrum is suppressed at all values of z
e power-law spectrum D ﬁ at z < 1 for any 7
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Gluon spectrum
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@ Pronounced LP peak at small times
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Gluon spectrum
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@ Increasing t: the LP peaks decreases, broadens, and moves to the left
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Gluon spectrum
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@ The LP peaks disappears when 7 ~ 1
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Gluon spectrum
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@ The shape at small z is not changing: genuine fixed point
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Gluon spectrum
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@ The energy flows out of the spectrum: fol de D(x,7) = e~
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The average energy loss

@ The missing energy is transmitted to the medium, via elastic collisions

(E.l. and Bin Wu, 2015)

(AB) = B(1—e") = B[1- e ¥]
@ LHC: £~ 100GeV > wpy ~5+10GeV
(AE) ~ mwy, = ma2gL?

@ Consistent with our general physical picture:
>> energy loss is controlled by the primary emissions with w ~ wy,

()
W ~ Whr

P £ &5 5 ¢
3 B e

w K Wiy
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Fluctuations in the energy loss

@ Recall: the probability for a primary emission with w ~ wy, is of O(1)

P £ 5 5 ¢
3 % RE

o the average number of such emissions is of O(1) (indeed, it is 7)

w K Wiy

e successive such emissions are quasi-independent (E >> wy,,)
@ Fluctuations in the number of such emissions must be of O(1) as well
@ The fluctuations in the energy loss are comparable with the average value

@ Confirmed by exact calculations (M. Escobedo and E. ., arXiv:1601.03629)

2 2 2 m 2
0° = (AE) — (AE)* ~ — wj,

_ (AB)?

1
3
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Di-jet asymmetry from fluctuations

@ Average asymmetry is controlled by the difference in path lengths
(B1 — By) = (AEy — AEy) o (L3 — LY)
@ In experiments though, one rather measures |E; — Es|
(Br = E2)*) = (B1 — B2)® = 0] + 03 o (L] + L)

@ Fluctuations dominate whenever Ly ~ Lo (the typical situation)
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Di-jet asymmetry from fluctuations

@ Average asymmetry is controlled by the difference in path lengths
(By — E2) = (AEy — AE) o (L} — L3)
@ In experiments though, one rather measures |E, — Es|
((By — E»)?) = (B1 — Bp)* = 0f + 05 o< (L] + L)

@ Difficult to check: no direct experimental control of L and Lo
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Monte-Carlo studies (JEWEL)

(Milhano and Zapp, arXiv:1512.08107)

di-jet asymmetry in PbPb

§ 2.5 ;7 ‘ o ‘]EWEL +PYT‘HI A full geo‘mmy *; Ay dependence of path-lengh differences in JEWEL+PYTHIA
% E —— JEWEL+PYTHIA central production § o0 [ L
% E 4 | L _
ER B £ 0 —o0<4<02 ]
.0 1 = P —— 02<A;<04 1
- ] 3 [ — 04<A;<06 ]
F 1 0.15 — —
B B = S ——06<4;<1 ]
£ ] =~ r b
f ] Z r ]
e E 5 01— —
0 F——— = r ]
= E > r ]
12 = 0.05 — —
£ | Bty _.J_ﬁ 3 = 4
& E - B ] r ]
08 - C E ]
L R R R O 0o — ‘
o 02 04 06 08 1 -10 5 © 5 10
A AL, = Ly — Ly [fm]

@ Left: Central production (L; = Ls) vs. randomly distributed production
points (“full geometry")

@ Right: Distribution of AL = L, — Lo for di-jet events in different classes of
asymmetry (A;)

e the width of the distribution is a measure of fluctuations
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Correlations & fluctuations

M.A. Escobedo and E. I., arXiv:1601.03629, arXiv:1609.06104

@ The variance is related to the density D(® (z,2’,t) of gluon pairs:

dn, air
D@ (z, 2 t) = a2 <dgc g:}:’ (t)>

@ Kinetic equation for D®)(z, 2/, t): correlations due to common ancestors

\H~

@ The 1-body density D(x + 2/, t) acts as a source for the 2-body density
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The gluon pair density

@ The 2 measured gluons = and =’ have a last common ancestor (LCA) x1 + x5

e
Bygoos?
Xy 6’L€
{)b
SEEETT0C Oy
Rl 26-2666 ra %\ .
55
1 _ T2 _ an72
D(Q)(x,xl,T) - = e oo — e T-w—a

21 \Jaa' (1 — x — ')
o 1st term: the splitting of the LCA occurs at late times 7/ ~ 7
o 2nd term: the splitting of the LCA occurs at early times 7/ ~ 0

@ All the n-body correlations D) have been similarly computed

o fluctuations are stronger than for jets in the vacuum
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Fluctuations in the gluon distribution

@ Soft gluons (z < 1) and small medium/high energy jet (7 < 1)

D( ) = ; e_ﬂ' 7——2‘ ~ L
o Va = apr G
2 ‘
D®(x,a',7) =~ ;\/;7 ~ gD(:L'-,T)D(;L-’,T)

@ Factorization ... but large fluctuations
1
D®(z,a',7) — D(w,7)D(',7) ~ 5 D(z,7)D(x’,7)

@ This difference would vanish for a Poissonian distribution

§ r x
A U U

& ¥ X {é@
& o & &

o S I3
5 665(@ (666@ 468 “ 6666 &

5 &

@ Huge fluctuations in the multiplicities of the soft gluons
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Multiplicities: Koba-Nielsen-Olesen scaling

@ Number of gluons with w > wy, where wyg < E :

E 1/2
(N (wo)) :/ dw% ~ 142 [wbr] (LP + radiation)

0 wo

o (N(wp)) ~ 1 when wy > wy, : just the LP
o (N(wp)) > 1 when wy < wp, : multiple branching

@ All the higher moments (NP?) have been similarly computed

(NP) _ (p+1)!

Wy =

(N2 3
a2 2
@ KNO scaling : the reduced moments are pure numbers
@ A special negative binomial distribution (parameter r = 2)

o huge fluctuations (say, as compared to a Poissonian distribution)

ON 1 ON 1

W = ﬁ VS. m = 7<N>
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Multiplicities: Koba-Nielsen-Olesen scaling

@ Number of gluons with w > wy, where wyg < E :

E 1/2
(N (wo)) :/ dw% ~ 142 [wbr] (LP + radiation)

0 wo

o (N(wp)) =~ 1 when wy > wy, : just the LP
o (N(wp)) > 1 when wy < wy, : multiple branching

@ All the higher moments (N?) have been similarly computed

(N?)
(N)?

(N7 (p+1)!
N T

3
~ 5,

@ KNO scaling : the reduced moments are pure numbers
@ A special negative binomial distribution (parameter r = 2)

o fluctuations are stronger than for jets in the vacuum (r = 3)

ON 1 ON 1

mM v T Ny T B
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Jet thermalization

@ Kinetic equation for longitudinal dynamics: branchings + elastic collisions
(Fokker-Planck approximation: drag and diffusion)

@ Gluon distribution in energy (p) and longitudinal coordinate (z)

@ Initial conditionatt=2=0: £ = 90T

IpIfT o
6

o w

o tpr(E) : the lifetime of the leading particle

o the time before the LP undergoes a first democratic branching
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Jet thermalization

@ Kinetic equation for longitudinal dynamics: branchings + elastic collisions
(Fokker-Planck approximation: drag and diffusion)

@ Gluon distribution in energy (p) and longitudinal coordinate (z)

@ Initial conditionatt=2=0: £ = 90T

IpIfT o
6

(a) (b)

@ With increasing time, the jet substructure is softening (mostly via
branchings) and broadening (via drag and diffusion)
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Jet thermalizatio
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Jet thermalization
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The late stages: thermalizing a mini-jet

o At late times ¢ > t,,(E), the jet is ‘fully quenched’

e no trace of the leading particle, just a thermalized tail
o the typical situation for a mini-jet : E < wy,, (L)

05 E=25T t=141g t= 144 2 = 5.0 e

— Numerics
0.5 —-- Thermal
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Energy loss towards the medium

90 J— -
=== AEjqo el
—  AEp, 7
,
1] G
<_360 %
2 7
o /
o /
30 J/
V) A —— _
Ve
p
0 2 7 6 8 0 12 14
t/trel

@ Upper curves: £ = 90T; lower curves: E = 25T
@ AFEe : the energy carried by the thermalized tail (t — z > t,q1)

o Aoy = mwh(t) oc t? : only branchings
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Conclusions

o Effective theory and physical picture for jet quenching from pQCD

e event-by-event physics: multiple branching

democratic branchings leading to wave turbulence

o thermalization of the soft branching products with p ~ T’

efficient transmission of energy to large angles

wide probability distribution, strong fluctuations, KNO scaling

@ Fluctuations compete with the difference in path lengths in
determining the di-jet asymmetry

o Qualitative and semi-quantitative agreement with the phenomenology
of di-jet asymmetry at the LHC

@ Important dynamical information still missing: vacuum-like radiation
(parton virtualities), medium expansion ...
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