Event-by-event picture for the medium-induced jet evolution

Edmond Iancu IPhT Saclay & CNRS

recent work by the "Saclay collaboration" (since 2012) J.-P. Blaizot, F. Dominguez, M. Escobedo, Y. Mehtar-Tani, B. Wu

- Motivation: di-jet asymmetry at the LHC
- Medium-induced radiation: BDMPS-Z
- Multiple branching: physical discussion
- Average gluon distribution & energy loss
- Correlations & fluctuations
- Gluon multiplicities
- Thermalization of mini-jets

From di-jets in p+p collisions ...

... to mono-jets in Pb+Pb collisions

- Central Pb+Pb: 'mono-jet' events
- The secondary jet can barely be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry : $A_{\rm J}$ (CMS)

 Event fraction as a function of the di-jet energy imbalance in p+p (a) and Pb+Pb (b-f) collisions for different bins of centrality

$$A_{\rm J} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})$$

• N.B. A pronounced asymmetry already in p+p collisions !

Di-jet asymmetry : $A_{\rm J}$ (CMS)

 Event fraction as a function of the di-jet energy imbalance in p+p (a) and Pb+Pb (b-f) collisions for different bins of centrality

$$A_{\rm J} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})$$

• Central Pb+Pb : the asymmetric events occur more often

Di-jet asymmetry at the LHC (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- The 'missing energy' is actually found in the underlying event:
 - many soft ($p_\perp < 2~{\rm GeV})$ hadrons propagating at large angles

Energy imbalance @ large angles: R = 0.8

Di-jet asymmetry at the LHC

- Very different from the usual jet fragmentation pattern in the vacuum
 - $\bullet\,$ bremsstrahlung favors collinear splittings $\Rightarrow\,$ jets are collimated
- Soft hadrons can be easily deviated towards large angles
 - elastic scatterings with the medium constituents
- A main question: how is that possible that a significant fraction of the jet energy be carried by its soft constituents ?

The generally expected picture

• "One jet crosses the medium along a distance longer than the other"

- Implicit assumption: fluctuations in energy loss are small
 - "the energy loss is always the same for a fixed medium size"

The generally expected picture

• "One jet crosses the medium along a distance longer than the other"

- Implicit assumption: fluctuations in energy loss are small
 - "the energy loss is always the same for a fixed medium size"
- Fluctuations are known to be important for a branching process

The role of fluctuations

• Different path lengths

- Fluctuations in the energy loss are as large as the average value (M. Escobedo and E.I., arXiv:1601.03629 & 1609.06104)
- Similar conclusion independently reached by a Monte-Carlo study (*Milhano and Zapp, arXiv:1512.08107, "JEWEL*")
- One needs a better understanding of the in-medium jet dynamics

INT Program, Seattle, May 20017

EbE fluctuations in jet evolution

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

100000 0000000

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

• ... and via collisions off the medium constituents

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

- ... and via collisions off the medium constituents
- Collisions can have two main effects
 - trigger additional radiation ('medium-induced branching')
 - thermalize the products of this radiation
- BDMPSZ mechanism (Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov)
 - gluon emission is linked to transverse momentum broadening

Transverse momentum broadening

• Independent multiple scattering \implies a random walk in p_{\perp}

• Collisions destroy quantum coherence and thus trigger emissions

formation time

$$t_{\rm f} \simeq \frac{1}{\Delta E} \simeq \frac{\omega}{k_{\perp}^2}$$

• During formation, the gluon acquires a momentum $k_\perp^2 \sim \hat{q} t_{
m f}$

Transverse momentum broadening

• Independent multiple scattering \implies a random walk in p_{\perp}

• Collisions destroy quantum coherence and thus trigger emissions

formation time

$$t_{
m f} \simeq rac{\omega}{\hat{q}t_{
m f}} \simeq \sqrt{rac{\omega}{\hat{q}}}$$

• During formation, the gluon acquires a momentum $k_\perp^2 \sim \hat{q} t_{
m f}$

Formation time & production angle

$$t_{
m f} \simeq rac{\omega}{k_{\perp}^2} \quad \& \quad k_{\perp}^2 \simeq \hat{q} t_{
m f} \quad \Longrightarrow \quad t_{
m f}(\omega) \simeq \sqrt{rac{\omega}{\hat{q}}}$$

- Maximal ω for this mechanism: $t_{
 m f} \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$
- Soft gluons $(\omega \ll \omega_c)$ have ...
- small formation times:

 $t_{\rm f}(\omega) \ll L$

• ... and large production angles:

$$heta(\omega) \simeq rac{k_{\perp}}{\omega} \simeq rac{\sqrt{\hat{q}L}}{\omega}$$

- promising for dijet asymmetry
 - Final transverse momentum (roughly) : $k_{\perp}^2 \sim \hat{q}L$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_{\rm f}(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$\omega \lesssim \omega_{\rm br}(L) \equiv \alpha_s^2 \hat{q} L^2 \quad \Longleftrightarrow \quad L \gtrsim t_{\rm br}(\omega) \equiv \frac{1}{\alpha_s} t_{\rm f}(\omega)$$

• LHC: the leading particle has $E \sim 100 \,\mathrm{GeV} \gg \omega_{\mathrm{br}} \sim 5 \div 10 \,\mathrm{GeV}$

- In a typical event, the LP emits ...
 - a number of $\mathcal{O}(1)$ of gluons with $\omega\sim\omega_{\rm br}$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_{\rm f}(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$\omega \lesssim \omega_{\rm br}(L) \equiv \alpha_s^2 \hat{q} L^2 \quad \Longleftrightarrow \quad L \gtrsim t_{\rm br}(\omega) \equiv \frac{1}{\alpha_s} t_{\rm f}(\omega)$$

• LHC: the leading particle has $E \sim 100 \,\mathrm{GeV} \gg \omega_{\mathrm{br}} \sim 5 \div 10 \,\mathrm{GeV}$

- In a typical event, the LP emits ...
 - a large number of softer gluons with $\omega \ll \omega_{
 m br}$

Multiple branchings

• Probability for emitting a gluon with energy $\geq \omega$ during a time L

$$\mathcal{P}(\omega, L) \simeq \alpha_s \frac{L}{t_{\rm f}(\omega)} \simeq \alpha_s L \sqrt{\frac{\hat{q}}{\omega}}$$

• When $\mathcal{P}(\omega, L) \sim 1$, multiple branching becomes important

$$\omega \lesssim \omega_{\rm br}(L) \equiv \alpha_s^2 \hat{q} L^2 \quad \Longleftrightarrow \quad L \gtrsim t_{\rm br}(\omega) \equiv \frac{1}{\alpha_s} t_{\rm f}(\omega)$$

• LHC: the leading particle has $E \sim 100 \, {
m GeV} \gg \omega_{
m br} \sim 5 \div 10 \, {
m GeV}$

• The energy loss is controlled by the hardest primary emissions

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
 - daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

• when $\omega \sim \omega_{
m br}, \, \mathcal{P}(z\omega,L) \sim 1$ independently of the value of z

• A mini-jet with $\omega \lesssim \omega_{
m br}$ decays over a time $t_{
m br}(\omega) \lesssim L$

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
 - daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

- Via successive democratic branchings, the energy is efficiently transmitted to softer and softer gluons, down to $\omega\sim T$
- The soft gluons thermalize via elastic collisions, thus stopping the branching process (*E.I. and Bin Wu, arXiv:1506.07871*)

Democratic branchings

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

- The primary gluons generate 'mini-jets' via democratic branchings
 - daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$

- All the energy taken by primary gluons with $\omega \lesssim \omega_{
 m br}$ ends up in the medium
- This energy appears in many soft quanta propagating at large angles
- What is the average energy loss and its fluctuations ?

Probabilistic picture

- Medium-induced jet evolution \approx a Markovien stochastic process
 - successive branchings are non-overlapping: $t_{
 m br} \sim rac{1}{lpha_s} t_{
 m f}$
 - interference phenomena could complicate the picture ... (in the vacuum, interferences lead to angular ordering)
 - ... but they are suppressed by rescattering in the medium (Blaizot, Dominguez, E.I., Mehtar-Tani, 2012) (Apolinário, Armesto, Milhano, Salgado, 2014)
- Hierarchy of equations for *n*-point correlation functions ($x \equiv \omega/E$)

$$D(x,t) \equiv x \left\langle \frac{\mathrm{d}N}{\mathrm{d}x}(t) \right\rangle, \qquad D^{(2)}(x,x',t) \equiv xx' \left\langle \frac{\mathrm{d}N_{\mathrm{pair}}}{\mathrm{d}x\,\mathrm{d}x'}(t) \right\rangle$$

- Analytic solutions (Blaizot, E. I., Mehtar-Tani, '13; Escobedo, E.I., '16)
- Interesting new phenomena:
 - wave turbulence, KNO scaling, large fluctuations

Wave turbulence

- Democratic branchings lead to wave turbulence
 - energy flows from one parton generation to the next one, at a rate which is independent of the generation
 - it eventually dissipates into the medium, via thermalization
 - mathematically: a fixed point $D(x) = \frac{1}{\sqrt{x}}$ (Kolmogorov spectrum)

Gluon spectrum: the average energy loss

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Kinetic equation for D(x,t): 'gain' - 'loss'

• Exact solution with initial condition $D(x, t = 0) = \delta(x - 1)$

$$D(x,\tau) = \frac{\tau}{\sqrt{x(1-x)^{3/2}}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• $t_{\rm br}(E)$: the lifetime of the LP until its first democratic branching

- $\bullet\,$ early times $\tau\ll 1$: leading particle peak near x=1
- $\tau\gtrsim 1$: the spectrum is suppressed at all values of x
- power-law spectrum $D \propto rac{1}{\sqrt{x}}$ at $x \ll 1$ for any au

Pronounced LP peak at small times

$$D(x,\tau) = \frac{\tau}{\sqrt{x(1-x)^{3/2}}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Increasing t: the LP peaks decreases, broadens, and moves to the left

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• The LP peaks disappears when $\tau \sim 1$

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• The shape at small x is not changing: genuine fixed point

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{\omega}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• The energy flows out of the spectrum: $\int_0^1 \mathrm{d}x \, D(x,\tau) = \mathrm{e}^{-\pi\tau^2}$

The average energy loss

• The missing energy is transmitted to the medium, via elastic collisions (*E.I. and Bin Wu, 2015*)

$$\langle \Delta E \rangle = E \left(1 - e^{-\pi \tau^2} \right) = E \left[1 - e^{-\pi \frac{\omega_{\rm br}}{E}} \right]$$

• LHC: $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \div 10 \,\text{GeV}$

$$\langle \Delta E \rangle \simeq \pi \omega_{\rm br} = \pi \alpha_s^2 \hat{q} L^2$$

Consistent with our general physical picture:
 ▷ energy loss is controlled by the primary emissions with ω ~ ω_{br}

Fluctuations in the energy loss

• Recall: the probability for a primary emission with $\omega \sim \omega_{\rm br}$ is of $\mathcal{O}(1)$

- the average number of such emissions is of $\mathcal{O}(1)$ (indeed, it is π)
- successive such emissions are quasi-independent $(E \gg \omega_{\rm br})$
- Fluctuations in the number of such emissions must be of $\mathcal{O}(1)$ as well
- The fluctuations in the energy loss are comparable with the average value
- Confirmed by exact calculations (M. Escobedo and E. I., arXiv:1601.03629)

$$\sigma^2 \equiv \langle \Delta E^2
angle - \langle \Delta E
angle^2 \simeq rac{\pi^2}{3} \, \omega_{
m br}^2 = rac{1}{3} \langle \Delta E
angle^2$$

Di-jet asymmetry from fluctuations

• Average asymmetry is controlled by the difference in path lengths

$$\langle E_1 - E_2 \rangle = \langle \Delta E_2 - \Delta E_1 \rangle \propto \langle L_2^2 - L_1^2 \rangle$$

• In experiments though, one rather measures $|E_1 - E_2|$

$$\langle (E_1 - E_2)^2 \rangle - \langle E_1 - E_2 \rangle^2 = \sigma_1^2 + \sigma_2^2 \propto \langle L_1^4 + L_2^4 \rangle$$

• Fluctuations dominate whenever $L_1 \sim L_2$ (the typical situation)

Di-jet asymmetry from fluctuations

• Average asymmetry is controlled by the difference in path lengths

 $\langle E_1 - E_2 \rangle = \langle \Delta E_2 - \Delta E_1 \rangle \propto \langle L_2^2 - L_1^2 \rangle$

• In experiments though, one rather measures $|E_1 - E_2|$

$$\langle (E_1 - E_2)^2 \rangle - \langle E_1 - E_2 \rangle^2 = \sigma_1^2 + \sigma_2^2 \propto \langle L_1^4 + L_2^4 \rangle$$

• Difficult to check: no direct experimental control of L_1 and L_2

Monte-Carlo studies (JEWEL)

(Milhano and Zapp, arXiv:1512.08107)

• Left: Central production $(L_1 = L_2)$ vs. randomly distributed production points ("full geometry")

- Right: Distribution of $\Delta L \equiv L_1 L_2$ for di-jet events in different classes of asymmetry (A_J)
 - the width of the distribution is a measure of fluctuations

Correlations & fluctuations

M.A. Escobedo and E. I., arXiv:1601.03629, arXiv:1609.06104

• The variance is related to the density $D^{(2)}(x, x', t)$ of gluon pairs:

$$D^{(2)}(x, x', t) \equiv xx' \left\langle \frac{\mathrm{d}N_{\mathrm{pair}}}{\mathrm{d}x\,\mathrm{d}x'}(t) \right\rangle$$

• Kinetic equation for $D^{(2)}(x, x', t)$: correlations due to common ancestors

• The 1-body density D(x + x', t) acts as a source for the 2-body density

The gluon pair density

• The 2 measured gluons x and x' have a last common ancestor (LCA) $x_1 + x_2$

$$D^{(2)}(x,x',\tau) = \frac{1}{2\pi} \frac{1}{\sqrt{xx'(1-x-x')}} \left[e^{-\frac{\pi\tau^2}{1-x-x'}} - e^{-\frac{4\pi\tau^2}{1-x-x'}} \right]$$

- 1st term: the splitting of the LCA occurs at late times $\tau' \sim \tau$
- $\bullet\,$ 2nd term: the splitting of the LCA occurs at early times $\tau'\sim 0$
- All the *n*-body correlations $D^{(n)}$ have been similarly computed
 - fluctuations are stronger than for jets in the vacuum

Fluctuations in the gluon distribution

• Soft gluons ($x \ll 1$) and small medium/high energy jet ($au \ll 1$)

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}} \simeq \frac{\tau}{\sqrt{x}}$$
$$D^{(2)}(x,x',\tau) \simeq \frac{3}{2} \frac{\tau^2}{\sqrt{xx'}} \simeq \frac{3}{2} D(x,\tau) D(x',\tau)$$

• Factorization ... but large fluctuations

$$D^{(2)}(x, x', \tau) - D(x, \tau)D(x', \tau) \simeq \frac{1}{2}D(x, \tau)D(x', \tau)$$

• This difference would vanish for a Poissonian distribution

• Huge fluctuations in the multiplicities of the soft gluons

Multiplicities: Koba-Nielsen-Olesen scaling

• Number of gluons with $\omega \geq \omega_0$, where $\omega_0 \ll E$:

$$\langle N(\omega_0) \rangle = \int_{\omega_0}^E \mathrm{d}\omega \, \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq 1 + 2 \left[\frac{\omega_{\mathrm{br}}}{\omega_0} \right]^{1/2}$$
 (LP + radiation)

- $\langle N(\omega_0)\rangle\simeq 1$ when $\omega_0\gg\omega_{\rm br}$: just the LP
- $\langle N(\omega_0) \rangle \gg 1$ when $\omega_0 \ll \omega_{\rm br}$: multiple branching
- All the higher moments $\langle N^p
 angle$ have been similarly computed

$$\frac{\langle N^2 \rangle}{\langle N \rangle^2} \simeq \frac{3}{2}, \qquad \frac{\langle N^p \rangle}{\langle N \rangle^p} \simeq \frac{(p+1)!}{2^p}$$

- KNO scaling : the reduced moments are pure numbers
- A special negative binomial distribution (parameter r = 2)
 - huge fluctuations (say, as compared to a Poissonian distribution)

$$\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{2}}$$
 vs. $\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{\langle N \rangle}}$

Multiplicities: Koba-Nielsen-Olesen scaling

• Number of gluons with $\omega \geq \omega_0$, where $\omega_0 \ll E$:

$$\langle N(\omega_0) \rangle = \int_{\omega_0}^E \mathrm{d}\omega \, \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq 1 + 2 \left[\frac{\omega_{\mathrm{br}}}{\omega_0} \right]^{1/2}$$
 (LP + radiation)

- $\langle N(\omega_0)\rangle\simeq 1$ when $\omega_0\gg\omega_{\rm br}$: just the LP
- $\langle N(\omega_0) \rangle \gg 1$ when $\omega_0 \ll \omega_{\rm br}$: multiple branching
- All the higher moments $\langle N^p
 angle$ have been similarly computed

$$\frac{\langle N^2 \rangle}{\langle N \rangle^2} \simeq \frac{3}{2}, \qquad \frac{\langle N^p \rangle}{\langle N \rangle^p} \simeq \frac{(p+1)!}{2^p}$$

- KNO scaling : the reduced moments are pure numbers
- A special negative binomial distribution (parameter r = 2)
 - fluctuations are stronger than for jets in the vacuum (r = 3)

$$\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{2}}$$
 vs. $\frac{\sigma_N}{\langle N \rangle} = \frac{1}{\sqrt{3}}$

Jet thermalization (E.I. and Bin Wu, arXiv:1506.07871)

- Kinetic equation for longitudinal dynamics: branchings + elastic collisions (Fokker-Planck approximation: drag and diffusion)
- Gluon distribution in energy (p) and longitudinal coordinate (z)
- Initial condition at t = z = 0: E = 90 T

- $t_{\rm br}(E)$: the lifetime of the leading particle
- the time before the LP undergoes a first democratic branching

INT Program, Seattle, May 20017

EbE fluctuations in jet evolution

Edmond lancu

Jet thermalization (E.I. and Bin Wu, arXiv:1506.07871)

- Kinetic equation for longitudinal dynamics: branchings + elastic collisions (Fokker-Planck approximation: drag and diffusion)
- Gluon distribution in energy (p) and longitudinal coordinate (z)
- Initial condition at t = z = 0: E = 90 T

• With increasing time, the jet substructure is softening (mostly via branchings) and broadening (via drag and diffusion)

INT Program, Seattle, May 20017

EbE fluctuations in jet evolution

Jet thermalization

• $t = t_{\rm br}(E)$: the leading particle disappears (democratic branching)

Jet thermalization

• $t = 1.5 t_{\rm br}(E)$: the jet is fully quenched

The late stages: thermalizing a mini-jet

- At late times $t \gg t_{\rm br}(E)$, the jet is 'fully quenched'
 - no trace of the leading particle, just a thermalized tail
 - the typical situation for a mini-jet : $E \lesssim \omega_{\rm br}(L)$

Energy loss towards the medium

• Upper curves: E = 90 T; lower curves: E = 25 T

• $\Delta E_{\rm ther}$: the energy carried by the thermalized tail $(t - z \ge t_{\rm rel})$

• $\Delta E_{\rm flow} = \pi \omega_{
m br}(t) \propto t^2$: only branchings

Conclusions

- Effective theory and physical picture for jet quenching from pQCD
 - event-by-event physics: multiple branching
 - democratic branchings leading to wave turbulence
 - $\bullet\,$ thermalization of the soft branching products with $p\sim T$
 - efficient transmission of energy to large angles
 - wide probability distribution, strong fluctuations, KNO scaling
- Fluctuations compete with the difference in path lengths in determining the di-jet asymmetry
- Qualitative and semi-quantitative agreement with the phenomenology of di-jet asymmetry at the LHC
- Important dynamical information still missing: vacuum-like radiation (parton virtualities), medium expansion ...