STAR Open Heavy Flavor Measurements

May 1-5, 2017 INT-17-1b Program, Seattle

X. Dong

Physics Goals

To understand the heavy quark energy loss in the QGP To extract the emergent QGP transport parameters

Physics Goals

Full momentum coverage, especially at low p_T

- better sensitivity to the collisional energy loss
- better constraint to the diffusion coefficient parameter
- better constraint to the total charm yield

May 1-5, 2017

Indirect - through inclusive semi-leptonic/J/ ψ channels

- easy to trigger
- high statistics
- background sources
- kinematic smearing due to decays
- **<u>Direct</u>** through exclusive hadronic channels
 - full charmed hadron kinematics
 - hard to trigger
 - smaller branching ratios

- need precision vertex detector to reduce combinatorial background

Hadron	Abundance	cτ (μm)
D ⁰	56%	123
D+	24%	312
D _s	10%	150
Λ_{c}	10%	60
B+	40%	491
B ⁰	40%	456

Creation of Heavy Quarks

- FONLL pQCD describes charm production in p+p from 200 GeV -13 TeV

Heavy Quark Correlations in p+p Collisions

• D*-h azimuthal correlation

rrrr

- consistent with h-h correlation in the away side
- lower correlation yield in the near side harder fragmentation for charm
- PYTHIA calculations describe the correlations well
- Proof-of-principle measurement of D-Dbar azimuthal correlations

Detector Setup

May 1-5, 2017

INT-17-1b Program, Seattle

X. Dong

Precision measurements of heavy flavor hadrons need a detector with:

- Ultimate position resolution and solid mechanical support *
- Thin detector material to allow precision measurement over a broad $\ensuremath{\mathsf{p}_{\mathsf{T}}}$ region *
- Full azimuthal angle coverage at mid-rapidity
- Fast DAQ readout to be able to handle RHIC-II luminosity
- Sufficient radiation tolerance to be operated in RHIC collider environment

* Uniqueness of the STAR HFT	

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Thickness
Silicon Strip Detector	22	30 / 860	1% X ₀
Intermediate Silicon Tracker	14	170 / 1800	1.3%X ₀
DiVol	8	12 / 12	0.4%X ₀
	2.9	12 / 12	0.4%X ₀ *

* 0.5%X₀ in Run14

Key Instruments – Pixel Silicon Detector

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (μm²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	~1%X ₀	~1%X ₀	~1%X ₀	1%X ₀	0.4%X ₀

STAR Pixel – first application of MAPS technology in collider experiments (MAPS - Monolithic Active Pixel Sensor)

Next generation MAPS planed for future experiments: ALICE ITS upgrade, sPHENIX MVTX - to address the QGP medium properties Also for CBM, EIC detector R&D

Pixel Detector Performance

May 1-5, 2017

INT-17-1b Program, Seattle

D⁰ Reconstruction

(Toolkit for Multivariate Analysis)

w/o HFTw/ HFT2010+20112014#events(MB) analyzed1.1 billionsig. per billion events13*

*L. Adamczyk et al. (STAR), PRL113 142301

INT-17-1b Program, Seattle

Charm Hadron R_{AA}

- Significant charm hadron suppression in central Au+Au collisions at p_T >3 GeV/c
- $R_{AA}(D) \sim R_{AA}(h)$ at $p_T > 3 \text{ GeV/c}$
 - suggesting significant charm quark energy loss

Charm Hadron v₂

- Mass ordering at p_T < 2 GeV/c (hydrodynamic behavior)
- $v_2(D)$ follows the (m_T-m₀) NCQ scaling as light hadrons below 1 GeV/c²

Evidence of charm quarks flowing the same with the medium

- suggest charm quarks may have achieved thermalization

May 1-5, 2017

INT-17-1b Program, Seattle

Charm Hadron v₂ Compared to Models

- 3D viscous hydro model calculations describe the D⁰ v₂ at p_T< 3-4 GeV/c
 Indication of charm quark thermalization in the QGP
- Data precision good enough to constrain model calculations

rrrr

INT-17-1b Program, Seattle

R_{AA} and v₂ Compared to Models

rrrrr

D⁰ Triangular Flow

SUBATECH: M. Nahgrang et al, PRC 91, 014904 (2015)

- Significant D⁰ v₃ at RHIC
- $D^0 v_3$ follows the same scaling as light hadrons

-> consistent with significant charm flow, suggesting thermalization of charm quarks

Charm Hadronization

Coalescence hadronization Strangeness enhancement -> D_s enhancement Baryon enhancement -> Λ_c enhancement

$$2\sigma_{c\bar{c}} = D^0 + D^+ + D_s^+ + \Lambda_c^+$$
 + C.C.
60.8% 24.0% 8.0% 6.2% *M Lisovyi, et. al. EPJ C 76, 397 (2016)*

D_s Enhancement

TAMU: H. Min et al. PRL 110,112301 (2013)

- A strong enhancement w.r.t PYTHIA and ee/pp/ep fragmentation ratio average
- D_s/D^0 ratio larger than the TAMU prediction
 - D_s/D^0 for TAMU: $R_{AA}(D_s)/R_{AA}(D)|_{TAMU} * 0.187$
- SHM predicts D_s/D^0 ratio ~ 0.35-0.40 (central) A. Andronic et al., PLB 571, 36 (2003)

Strangeness-to-nonstrangness Meson Ratios

Similar amplitude as light hadrons at 3.5-8 GeV/c, smaller at lower p_T

May 1-5, 2017

111111

BERKELEY

m

INT-17-1b Program, Seattle

Λ_{c} Reconstruction in Heavy Ion Collisions

• $pK^* 1.98\% * 66.7\% = 1.32\%$ $\Lambda_c^+ \rightarrow p K^- \pi^+$ • $\Delta^{++}K^- 1.09\% * 100\% = 1.09\%$ $c\tau = 60 \,\mu m$ • $\Lambda(1520) \pi^+ 2.2\% * 22.5\% = 0.495\%$ B.R. = 6.35% Non-resonant 3.5% 120 Au+Au @ 200GeV 3.0<p_<6.0 GeV/c 10-60% - pK⁻ π^+ + pK⁺ π^- Counts/(10 MeV/c²) 0 0 0 0 0 0 — wrong-sign $\#(\Lambda_{\rm c}) = 108 \pm 21$ 40 STAR Preliminary 20 2.1 2.2 2.3 2.4 2.5 $M_{\text{pK}\pi}$ (GeV/c²)

rrrrr

Ko model : Y. Oh, et.al. PRC 79 (2009) 044905; Greco model : S.Ghosh, et. al. PRD 90 (2014) 054018

- Significant enhancement in Λ_c/D compared to PYTHIA/fragmentation baseline
- The Λ_c/D^0 ratio is compatible with light flavor baryon-to-meson ratios
- Consistent with coalescence + thermalized charm quarks

Summary - Charm

$$\begin{split} &\mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{D})\sim\mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{h})\;(\mathsf{p}_\mathsf{T}{>}3\;\mathsf{GeV/c})\\ &\mathsf{v}_2(\mathsf{D})\sim\mathsf{v}_2(\mathsf{h})\;\mathsf{vs.}\;\mathsf{m}_\mathsf{T}\\ &\Lambda_c\!/\mathsf{D}^0\;\text{and}\;\mathsf{D}_s\!/\mathsf{D}^0\;\text{enhancement} \end{split}$$

- charm quarks lose significant energy
- charm quarks flow like light quarks
- coalescence hadronization

Charm quarks very strongly coupled with QGP

Evidence of charm quark flowing and possibly thermalized in the QGP

2016 datasets

Au+Au 200 GeV, 2x more minimum bias, x5 times sampled luminosity d+Au 200 GeV, 300M minimum bias

- Centrality dependence of D^0 spectra and v_2
- $D^0 v_1$ unique access to initial magnetic field
- $D_s/\Lambda_c R_{cp}$
- D⁰ CNM measurement
- $D^0 v_2$ in d+Au collisions
- Di-electrons at IMR for correlated charm and QGP radiation

D/B->e in p+p Collisions

Method: Template fit to e-h azimuthal correlation in p+p collisions - Challenging to do this in Au+Au collisions due to various background

• $e_B/(e_D+e_B)$ fraction is consistent with the FONLL pQCD calculation

X. Dong

Topological Separation of Bottom Decays with HFT

Hadron	Abundance (fragmentation)	cτ (μm)
D^0	56%	123
D+	24%	312
D _s	10%	150
$\Lambda_{\sf c}$	10%	60
B+	40%	491
B ⁰	40%	456

BERKELEY LAB

Inclusive impact parameter method e.g. *D/B->e*, *B->D*, *B->J/ψ*...

Precision silicon vertex tracker is crucial

Non-prompt J/ ψ pseudo-c τ

Non-prompt J/ ψ R_{AA}

• Non-prompt J/ ψ suppressed at $p_T > 6$ GeV/c (FONLL baseline)

Non-prompt D⁰ DCA

X. Dong

Non-prompt D⁰ R_{AA}

• Non-prompt D^0 suppressed at $p_T > 6$ GeV/c

• Indication of less suppression for non-prompt D^0 compared to inclusive D^0

Template Fit to Electron DCA Distributions

rrrrrr

BERKELE

³⁰

Charm/Bottom Separated Electron R_{AA}

R_{AA}(e_D) < R_{AA}(e_B) (~2σ at 3-8 GeV/c)
 Consistent with mass hierarchy for parton energy loss

May 1-5, 2017

INT-17-1b Program, Seattle

X. Dong

Bottom Measurements at STAR

• $R_{AA}(e_B) < R_{AA}(e_D)$ at 3 – 8 GeV/c (2 σ) mass hierarchy of parton energy loss

Near term plan: 2016 datasets: x2 mb data, x5 more sample luminosity - centrality dependence, bottom decay electron v₂

Precision bottom (B-meson and b-jet) measurements over a broad momentum region (especially at low p_{T})

- systematic investigation of mass dependence of parton energy loss

- precision determination of heavy quark diffusion coefficient D_{HO}

May 1-5, 2017

INT-17-1b Program, Seattle

Backups

May 1-5, 2017 INT-17-1b Program, Seattle

Charm Production in p+p Collisions

STAR Heavy Flavor Tracker

2013 May 2014 Spring	 – PXL prototype engineering run with 3 sectors (out of 10 in total) – Commissioning in Au+Au 200 GeV collisions. Physics mode since
then	<u> </u>
2014 Sept	 HFT project closeout. Project finished on time and under budget
2015 Spring	- p+p and p+Au 200 GeV runs with HFT
2016 Spring	- Au+Au and d+Au 200 GeV runs with HFT

Monolithic Active Pixel Sensors (MAPS)

MAPS pixel cross-section (not to scale)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 µm) → MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+	-	+
Small material budget	+	-	+
Readout speed	+	++	-
Radiation tolerance	+	++	-

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

STAR HFT – first application of MAPS pixel detector at a collider

Event plane method

- Event plane (EP) reconstructed using TPC tracks with acceptance non-uniformity corrected
- Tracks in η-sub region are used to reconstruct EP to suppress non-flow effects

May 1-5, 2017

Two-particle correlation method

•
$$V_2^{D \cdot h} = \langle \cos(2\varphi_D - 2\varphi_h) \rangle = v_2^D \cdot v_2^h$$

 $V_2^{h \cdot h} = \langle \cos(2\varphi_{h1} - 2\varphi_{h2}) \rangle = (v_2^h)^2$
• $v_2^{signal} = \frac{N_{cand} \cdot v_2^{cand} - N_{bkg} \cdot v_2^{bkg}}{N_{signal}}$
Background estimated from side-band
0

0

2

3

X. Dong

p_T (GeV/c)

- Same $\Delta \eta$ gap as used in EP method

39

6

5

X. Dong

$D^0 v_2$ Compared to Models

Different models:

- SUBATECH: pQCD + hard thermal loop
 P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, Strangeness in quark matter
- TAMU: T-matrix, non-perturbative model with internal energy potential
 - M. He, R. J. Fries, and R. Rapp, PRC86, 014903 (2012)
- Duke: free constant D_s, fit to LHC high p_T R_{AA}
 S. Cao, G.-Y. Qin, and S. A. Bass, PRC88, 044907 (2013)
- hydro: A 3D viscous hydrodynamic model
 L.-G. Pang, Y. Hatta, X.-N. Wang, and B.-W. Xiao, PRD91, 074027 (2015)
- PHSD: Parton-Hadron-String Dynamics, a transport model
 - H. Berrehrah et al. PRC90 (2014) 051901
- LBT: A Linearized Boltzmann Transport model
 - S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, PRC94, 014909 (2016)

compare with	$2\pi TD_s$	χ2/n.d.f.	<i>p</i> -value
3D viscous hydro	-	3.6 / 6	0.73
LBT	3-6	11.1 / 8	0.19
PHSD	5-12	8.7 / 7	0.28
TAMU c quark diff.	2-12	10.0 / 8	0.26
SUBATECH	2-4	15.2 / 8	0.06
TAMU no c quark diff.	-	29.5 / 8	2 x 10-4
DUKE	7	37.5 / 8	2 x 10-5

May 1-5, 2017

INT-17-1b Program, Seattle

V2 Comparisons: RHIC vs. LHC

$\mathsf{D}^0\:\mathsf{R}_{\mathsf{A}\mathsf{A}}$ and v_2 Compared to Models at RHIC

rrrrr

 Charm mesons at RHIC show significant suppression at high p_T, R_{AA}(D) ~ R_{AA}(h) significant flow at low-intermediate p_T, v₂(D) ~ v₂(h) vs. m_T-m₀
 Models with a diffusion coefficient 2πTD_s ~ 2-12 describe both D⁰ R_{AA} and v₂ differences between models to be settled

X. Dong

D_s Enhancement in Heavy Ion Collisions

•Significant D_s/D^0 enhancement in mid-central Au+Au and Pb+Pb collisions w.r.t fragmentation baseline or p+p measurement

- Coalescence hadronization

rrrrr

- SHM predicts D_s/D^0 ratio ~ 0.35-0.40 (central) A. Andronic et al., PLB 571 (2003) 36
- relation to charm quark thermalization in QGP?

Non-prompt D⁰ Fraction

X. Dong

Comparison to PHENIX and ALICE

Bottom Electron R_{AA} at RHIC

PHENIX, PRC 93 (2016) 034904

 R_{AA}(e_B) < R_{AA}(e_D) at 3 – 5 GeV/c in central Au+Au 200 GeV collisions mass hierarchy of parton energy loss

May 1-5, 2017 INT-17-1b Program, Seattle

B-meson and non-prompt J/ ψ at high p_T

May 1-5, 2017 I

INT-17-1b Program, Seattle