Jet Quenching at RHIC and LHC

Oliver Busch

University of Tsukuba Heidelberg University

- Nuclear modification factor
- Event plane dependence
- Semi-inclusive jet-hadron yields
- Jet shapes, subjets, jet mass
- Identified jet fragmentation

- Nuclear modification factor
- Event plane dependence
- Semi-inclusive jet-hadron yields
- Jet shapes, subjets, jet mass
- Identified jet fragmentation

selection strongly biased towards:

- light flavour jet results
- LHC
- ALICE

Hadron nuclear modification factor

- high-p_ hadron suppression both at RHIC and LHC
- hadron observable biased towards leading fragment
 → study the effect for fully reconstructed jets
- theory: energy loss ⊗ leading hadron fragmentation
 → parton shower ⊗ energy loss ⊗ hadronisation

Underlying event

 jet reconstruction in heavy-ion collisions : difficult due to the high underlying event background not related to hard scattering

correct spectra for background fluctuations and detector effects

Experimental aspects / differences

- jet reconstruction:
 - EM + hadron calorimeter based (ATLAS)
 - charged track + EMCal based (STAR + ALICE)
 - particle flow (CMS)
- fake jet rejection:
 - constituent p⊤ cuts
 - leading constituent bias / track jet matching
 - di-jet (hadron-jet) coincidence
 - subtraction
 -
 - consistently applied to the reference, but may introduce physics bias
- background subtraction:
 - median density from clusters (ALICE, STAR)
 - iterative geometrical (ATLAS, CMS)
- corrections: for detector effects (efficiency, resolution) and background fluctuations (resolution-like)
 - typical: full corrections to particle level
 - sometimes: detector and/or background effects applied to a reference

complementarity of LHC experiments

ALICE: 'charged' jets from charged particle tracking

+ 'full' jets from tracking + em. Calorimeter

- ATLAS/CMS: em. + hadronic calorimetry (+tracking)
- complementary jet p_T reach, ALICE typically lower constituent p_T cutoff

ALICE, Phys. Lett. B 722 (2013) 262

Jet nuclear modification factor: ATLAS

• ATLAS jet R_{AA} at $\sqrt{s_{NN}}$ = 2.76 TeV, R = 0.4

strong suppression observed, similar to hadron R_{AA}
 → parton energy not recovered inside jet cone

- stronger suppression for more central events
- weak p_T dependence

ATLAS, PRL 114, 072302

Jet nuclear modification factor: ALICE

- ALICE full jet R_{AA} at $\sqrt{s_{NN}}$ = 2.76 TeV, R = 0.2
- $p_T^{const,ch} > 150 \text{ MeV}$, $E^{Cluster} > 300 \text{ MeV}$, $p_T^{lead, ch} > 5 \text{ GeV/c}$
- maybe hint for weak p_T dependence

Phys.Lett. B746 (2015) 1

JEWEL: PLB 735 (2014) YaJEM:PRC 88 (2013) 014905

 JEWEL and YaJEM jet quenching models reproduce suppression

Jet nuclear modification factor: CMS

- CMS jet R_{AA} at $\sqrt{s_{NN}}$ = 2.76 TeV, R = 0.2, 0.3, 0.4
- constituent p_T > 150 MeV/c, fake jet spectrum from 'background events' subtracted

Angular dependence

- R dependence sensitive to broadening of transverse jet profile
- ATLAS RCP double ratio: R dependence seen, in particular for low p_T and high R
- not observed in ALICE (but small R difference)

Rapidity dependence

- expect stronger energy loss for gluons than for quarks
- ATLAS: no significant rapidity dependence of RAA, despite change in q/g
 - balanced by parton spectral slope, y-dependence of energy density ?
 - role of fluctuations / biases ?

\sqrt{s} dependence

Jet Azimuthal Anisotropy

Local background subtraction

- ALICE jet v2: event plane from forward/backward V0 scintillators
- account for flow-modulation of background via event-by-event fit and subtraction of local background density
- unfolding to account for background fluctuations : separately for spectra in- and out-of-plane

Charged jet v₂: results

- quantify azimuthal asymmetry via 2nd Fourier harmonic v₂^{ch jet}
- central collisions: 1.5 2 sigma from $v_2^{ch jet} = 0$
 - \rightarrow consistent with 0, but maybe hint for effect of initial density fluctuations ?
- non-zero v₂^{ch jet} in semi-central collisions

Comparison to previous results

 ALICE + CMS single particles, ATLAS full jets : different energy scales !

non-zero v2 up to high pT

CMS, PRL 109 (2012) 022 ATLAS, PRL 111 (2013) 152 ALICE, Phys. Lett. B753 (2016) 511 ALICE, Phys. Lett. B719 (2013) 18

Comparison to JEWEL

- good agreement with JEWEL in semi-central collisions
- clear indication of path-length dependence of energy loss
- caveat: no transverse expansion in JEWEL

Phys. Lett. B753 (2016) 511

Semi-Inclusive Hadron-Jet Distributions

Hadron triggered recoil jets

trigger

hadron

- charged jets recoiling from charged hadron
 - hadron biased towards surface
- Δ_{recoil} : difference between hadron trigger p_T classes
 - further fake jet removal

Δ_{IAA}

- Δ_{recoil} divided by PYTHIA reference: significant suppression observed
- subtraction technique allows for large R up to 0.5 with constituent p_T > 0.150 GeV/c, no leading constituent bias

ALICE, JHEP 09 (2015) 170

Δ_{IAA} : R dependence

- R dependence as expected for vacuum fragmentation (PYTHIA)
- no medium-induced broadening observed for recoil jets

ALICE, JHEP 09 (2015) 170

Medium-induced acoplanarity ?

- Δφ hadron-jet: potentially sensitive to large-angle scattering
- data compared to embedded PYTHIA reference
- no significant effect within present uncertainties

Recoil jets at RHIC

- STAR charged jets, mixed event background subtraction
- I_{CP}(central-peripheral): jet suppression observed
- estimate E-loss through spectral 'shift' ΔE : energy transported out-of-cone smaller at RHIC than LHC

System		$Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}$	$Pb+Pb \sqrt{s_{NN}} = 2.76 \text{ TeV}$
$p_{\rm T,jet}^{\rm ch}$ range (GeV/c)		[10, 20]	[60,100]
		$p_{\rm T}$ -shift of $Y\left(p_{{\rm T,jet}}^{\rm ch}\right)~({\rm GeV}/c)$	
		$peripheral \rightarrow central$	$p+p \rightarrow central$
R	0.2	$-4.4 \pm 0.2 \pm 1.2$	
	0.3	$-5.0 \pm 0.5 \pm 1.2$	
	0.4	$-5.1 \pm 0.5 \pm 1.2$	
	0.5	$-2.8 \pm 0.2 \pm 1.5$	-8 ± 2

STAR, nucl-ex/1702.01108

Recoil jets at RHIC: R dependence

no evidence of broadening

STAR, nucl-ex/1702.01108 Intrajet Observables and Subjets

Jet shapes

- radial moment 'girth' g, longitudinal dispersion p_TD , difference leading - subleading p_T LeSub
- shapes in pp collisions at 7 TeV:

- constrain QCD calculations of small-R jets ('microjets': M. Dasgupta, F. Dreyer, G. Salam, G. Soyez hep-ph/1602.01110)

- validate MC simulations
- shapes in Pb-Pb probe of quenching of low-pT jets: characterise fragment distributions and are sensitive to medium induced changes of intra-jet momentum flow
- 'event-by-event' measure, sensitive to fluctuations
- infrared (& collinear) safe

$$LeSub = p_T^{lead, track} - p_T^{sublead, track}$$

LeSub=
$$p_T^{lead, track} - p_T^{sublead, track}$$

Jet shapes in Pb-Pb

- R=0.2, 40 < p_T^{jet} < 60 GeV/c, no leading constituent cut, fully corrected to charged particle level
- g shifted to smaller values compared to PYTHIA reference
 → indicates more collimated jet core

- larger p_TD in Pb-Pb compared to PYTHIA \rightarrow indicates fewer constituents in quenched jets (or 'less democratic' splitting)
- LeSub in Pb-Pb in good agreement with Pb-Pb: \rightarrow hardest splittings likely unaffected

Model comparison

trends reproduced by JEWEL

 \rightarrow indicates collimation through emission to large angles

'recoils off': no medium recoils partons in final state (note R=0.2)

ALI-PREL-101592

Subjets at LHC

- declustering and soft drop grooming to identify hard jet substructure
- subjet momentum balance

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$$

- in vacuum, $d\sigma/dz_g \sim$ splitting function
- CMS: strongest suppression for lower p_{Tj}^{jet} at high z_g

CMS PAS HIN 16-006

Subjets in STAR

- select dijet pairs matching to 'hard core' jets reconstructed with high constituent cut p_T^{const} > 2 GeV/c
- no suppression observed
- role of different kinematics, STAR selection bias, subjet ΔR cut ?

STAR, HP 2016

ALICE subjets

- charged jets, kt declustering
- subjettyness τ_N : how consistent is a jet with having N subjets
- τ_{2/τ_1} : no significant modification

$$\tau_{N} = \frac{\sum_{i=1}^{N} p_{T,i} Min(\Delta R_{i,1}, \Delta R_{i,2}, ..., \Delta R_{i,N})}{R_{0} \sum_{i=1}^{N} p_{T,i}}$$

ALICE, QM 2017

ALICE subjet ΔR

- subjet distance ΔR
- data uncorrected for det. effects and background fluctuations compared to PYTHIA embedded reference
- no significant modification observed relative to reference, full correction to particle level in progress

Jet Mass

Mass and virtuality

- invariant mass of jet constituents, related to virtuality of initial parton
- parton from hard scattering produced off-shell
- in vacuum: virtuality decreases at each emission
- in medium, virtuality can rise due to scatterings

 \rightarrow quenching observable

- soft constituents far from jet axis within cone → larger mass
- few hard constituents \rightarrow smaller mass

Results: Pb-Pb

• jet Mass in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV fully corrected for detector effects and background fluctuations via 2D unfolding

• small \sqrt{s} dependence is expected (quark / gluon composition)

ALICE,

nucl-ex / 1702.00804

• compare the ratio Pb-Pb / pPb to the ratio in PYTHIA at the 2 energies

$$\Re_{\sqrt{s}} = \frac{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}}}{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}}}$$

Ratio Pb-Pb / p-Pb

- slope indicates that Pb-Pb distribution is shifted towards smaller masses with respect to pPb
- overall small modification cancellations ?

ALICE, nucl-ex / 1702.00804

Model comparison

- data lies in between PYTHIA and JEWEL with 'recoils off'
- Q-PYTHIA and JEWEL with 'recoils on' produce too large mass

• Q-PYTHIA: radiative energy loss modelled by enhanced splitting functions (*N. Armesto, L. Cunqueiro, C. A. Salgado, hep-ph/0907.1014*)

Strangeness Production in Jets

Charged particle fragmentation

Z

Strangeness production in nuclear collisions

- Inclusive strangeness production in Pb-Pb: Baryon / Meson ratio enhanced
 - collective effects ?
 - parton recombination ?
 - jet fragmentation ?

 measurement of identified particles in jets helps to constrain hadronisation and energy loss scenarios

Strangeness in jets

 neutral strange particles reconstructed via decay topology ('V^{0'}):

 ${\sf K}^0_{\sf S} o {f \pi}^+ + {f \pi}^-$ (69.2%) ${\Lambda} o {\sf p} + {f \pi}^-$ (63.9%)

• V⁰ - jet matching

$$\sqrt{(\phi_{\mathsf{V}^0} - \phi_{\mathsf{jet,ch}})^2 + (\eta_{\mathsf{V}^0} - \eta_{\mathsf{jet,ch}})^2} < \mathsf{R}$$

- signal extraction via invariant mass
- corrections for efficiency, feed-down,
 UE background + fluctuations

$(\Lambda + \Lambda)/2K^{0}_{s}$ ratio in jets

• ratio in jets significantly lower than for inclusive hadrons

Strange particle spectra in jets

- spectra of K⁰_S and Λ particles in jets: more differential observable to increase sensitivity to potentially modified fragmentation
- K⁰s spectra in jets follow similar slope as predicted by PYTHIA simulations
- Λ shape different ? More reliable reference needed !

Summary

- LHC inclusive jet R_{AA} and recoil jet measurements at RHIC and LHC
- subjet momentum balance at LHC and RHIC
- jet shapes
- jet mass
- strange particles in jets

- Backup -

ALICE jet response

Phys. Lett. B 722 (2013) 262

trends reproduced by JEWEL jet quenching model

JEWEL: K.C. Zapp, F. Kraus, U.A. Wiedemann, JHEP 1303 (2013) 080

q/g fraction

Spousta, Cole, hep-ph/1504.06169

jet mass: pPb

- jet mass in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, charged jets with R=0.4
- overall well described by PYTHIA with some tension in the tails

Identified hadrons in heavy-ion collisions

- PID in reconstructed jets mitigates fragmentation biases
- enhanced sensitivity to medium effects measuring soft particles in jets

 note: medium effects likely strongest at scales of ~ medium Temperature (J.G. Milhano, K. C. Zapp, hep-ph/1512.0819, T. Renk, Phys. Rev. C 81, 014906, B. Mueller, hep-ph/1010.4258)

generalized angularities

Underlying event subtraction

- subtract underlying event contribution to K^{0}_{S} , Λ spectra in jets
- various methods with different sensitivity to acceptance, event plane correlations, presence of additional jets, ...
- apply a correction to account for background density fluctuations

