

Status and Perspectives regarding hard probes from microscopic transport

Elena Bratkovskaya (GSI, Darmstadt & ITP, Uni. Frankfurt)

In collaboration with Taesoo Song, Hamza Berrehrah, Daniel Cabrera, Juan Torres-Rincon, Laura Tolos, Wolfgang Cassing, Jörg Aichelin and Pol-Bernard Gossiaux

INT Program INT-17-1b Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks

May 1 - June 8, 2017

Heavy quarks – open charm and beauty (D/Dbar, B/Bbar)

Dynamical description of hard probes

I. Modeling of time evolution of the ,medium' = system:

□ expanding fireball models ← assumption of global equilibrium

□ ideal or viscous hydrodynamical models ← assumption of local equilibrium

□ microscopic transport models ← full non-equilibrium dynamics!

II. Modeling of the interaction of the hard probes with the ,medium':

□ Fokker-Planck model, Langevin model ← transport coefficients

□ linear Boltzmann models ← cross sections

□ microscopic collision integral ← cross sections

	coupling	mass in gluon propagator	mass in external legs
1)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g} = 0$
2)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g} = m_{q,g}^{DQPM}$
3)	$\alpha(T)$	$\kappa = 0.2, m_D$	$m_{q,g} = 0$
4)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$
5)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = 0$
6)	$\alpha(Q^2)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$

Dynamical Models -> PHSD

The goal:

to describe the dynamics of charm quarks/mesons in all phases of HIC on a microscopic basis

The tool: PHSD approach

Degrees-of-freedom of QGP

✤ IQCD gives QGP EoS →

! need to be interpreted in terms of degrees-of-freedom

pQCD:

- weakly interacting system
- massless quarks and gluons

Thermal QCD = QCD at high parton densities:

- □ strongly interacting system
- massive quarks and gluons

Effective degrees-of-freedom

From SIS to LHC: from hadrons to partons

The goal: to study of the phase transition from hadronic to partonic matter and properties of the Quark-Gluon-Plasma on a microscopic level

need a consistent <u>non-equilibrium</u> transport approach

with explicit parton-parton interactions (i.e. between quarks and gluons)
explicit phase transition from hadronic to partonic degrees of freedom
IQCD EoS for partonic phase (,cross over' at μ_q=0)

□ Transport theory for strongly interacting systems: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{(x,p)}$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

QGP phase is described by

Dynamical QuasiParticle Model (DQPM)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

DQPM describes **QCD** properties in terms of **,resummed' single-particle Green's functions** (propagators) – in the sense of a two-particle irreducible (2PI) approach:

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$

gluon self-energy: $\Pi = M_g^2 - i2\Gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_g \omega$

(scalar approximation)

the resummed properties are specified by complex (retarded) self-energies which depend on temperature:

- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_a , M_a);

- the imaginary part describes the interaction width of partons (Γ_q, Γ_g)

space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density and the mean-field potential (1PI) for quarks and gluons (U_q, U_g)

Pl framework guarantees a consistent description of the system in- and out-of equilibrium on the basis of Kadanoff-Baym equations with proper states in equilibrium

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

<u>Properties</u> of interacting quasi-particles: massive quarks and gluons (g, q, q_{bar}) with Lorentzian spectral functions:

$$A_{i}(\omega,T) = \frac{4\omega\Gamma_{i}(T)}{\left(\omega^{2} - \overline{p}^{2} - M_{i}^{2}(T)\right)^{2} + 4\omega^{2}\Gamma_{i}^{2}(T)}$$
$$(i = q, \overline{q}, g)$$

Modeling of the quark/gluon masses and widths \rightarrow HTL limit at high T

The Dynamical QuasiParticle Model (DQPM)

$$A_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{\left(\omega^2 - \bar{p}^2 - M_i^2(T)\right)^2 + 4\omega^2\Gamma_i^2(T)}$$

➔ Broad spectral function of gluons and quarks

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM thermodynamics (N_f=3) and IQCD

Energy-momentum tensor $T_{\mu\nu} \rightarrow$ thermodynamics of QGP

→ fit to lattice (IQCD) results with 3 parameters:

□ entropy $s = \frac{\partial P}{dT}$ → pressure P □ energy density: $\epsilon = Ts - P$

> IQCD: Wuppertal-Budapest group Y. Aoki et al.. JHEP 0906 (2009) 088.

> > s/T^3

400

T MeV

20

15

10

5

200

 $\mathbf{W}(\mathbf{T}) := \epsilon(\mathbf{T}) - \mathbf{3P}(\mathbf{T}) = \mathbf{Ts} - \mathbf{4P}$

DQPM gives a good description of IQCD results !

600

 ϵ/T^4

800

Mean-field potential for quasiparticles

Space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density:

$$V_p(T, \mu_q) = T_{q-}^{00}(T, \mu_q) + T_{q-}^{00}(T, \mu_q) + T_{\bar{q}-}^{00}(T, \mu_q)$$

space-like gluons space-like quarks+antiquarks

□ space-like energy density of quarks and gluons = ~1/3 of total energy density

$$F \sim M_j / E_j \nabla U_s(x) = M_j / E_j \ dU_s / d\rho_s \ \nabla \rho_s(x)$$
$$j = g, q, \bar{q} \qquad \Rightarrow \text{accelerates particles}$$

OP.M.

The Dynamical QuasiParticle Model (DQPM)

➔ Quasiparticle properties:

Iarge width and mass for gluons and quarks

DQPM matches well lattice QCD
DQPM provides mean-fields (1PI) for gluons and quarks as well as effective 2-body interactions (2PI)
DQPM gives transition rates for the formation of hadrons → PHSD

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

I. From hadrons to QGP:

□ Initial A+A collisions – as in HSD:

- string formation in primary NN collisions
- string decay to pre-hadrons (= new produced secondary hadrons:
 - *B* baryons, *m* mesons)

➔ ,flavor chemistry' from strings

□ Formation of initial QGP stage - if local energy density $\epsilon > \epsilon_c = 0.5$ GeV/fm³:

- I. Dynamical Quasi-Particle Model (DQPM) defines:
 - 1) properties of quasiparticles in equilibrium, i.e. masses $M_q(T)$ and widths $\Gamma_q(T)$ (T $\rightarrow \varepsilon$ by IQCD EoS)

2) ,chemistry' of ,initial state' of QGP: number of q, qbar, g

3) ,energy balance⁴ , i.e. the fraction of mean-field quark and gluon potentials U_q , U_g from the energy density ε

LUND string mode

II. Realization of the initial QGP stage from DQPM in the PHSD: by dissolution of pre-hadrons (keep ,leading' hadrons!) into massive colored quarks (and gluons) + mean-field energy

 $B \rightarrow qqq, \quad \widetilde{m} \rightarrow q\overline{q}, \quad (q\overline{q}) \Rightarrow g \quad \forall \quad U_q, U_g$

→ allows to keep initial non-equilibrium momentum anisotropy !

II. Partonic phase - QGP:

Propagation of quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM in self-generated mean-field potential for quarks and gluons U_q, U_g

□ EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)

□ (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

quasi-) elastic collisions:

 $\begin{array}{ll} q+q \to q+q & g+q \to g+q \\ q+\overline{q} \to q+\overline{q} & g+\overline{q} \to g+\overline{q} \end{array}$

 $\overline{q} + \overline{q} \to \overline{q} + \overline{q} \qquad g + g \to g + g$

 inelastic collisions: (Breit-Wigner cross sections)

$$\begin{cases} q + \overline{q} \to g \\ g \to q + \overline{q} \end{cases}$$

III. PHSD - basic concept

III. <u>Hadronization</u> (based on DQPM):

□ massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states - ,strings' (strings act as ,doorway states' for hadrons)

$$g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ (' string ')$$

 $q + q + q \leftrightarrow baryon \ (' string ')$

• Local covariant off-shell transition rate for q+qbar fusion \rightarrow meson formation: $dN^{q+\overline{q}\rightarrow m}$ $Tr_{j} = \sum_{j} \int d^{4}x_{j} d^{4}p_{j} / (2\pi)^{4}$

$$\frac{dIV}{d^4x d^4p} = Tr_q Tr_{\bar{q}} \,\delta^4(p - p_q - p_{\bar{q}}) \,\delta^4\left(\frac{x_q + x_{\bar{q}}}{2} - x\right) \,\delta(flavor, color)$$

 $\cdot N_q(x_q, p_q) \,N_{\bar{q}}(x_{\bar{q}}, p_{\bar{q}}) \cdot \omega_q \,\rho_q(p_q) \cdot \omega_{\bar{q}} \,\rho_{\bar{q}}(p_{\bar{q}}) \cdot |M_{q\bar{q}}|^2 \,W_m\left(x_q - x_{\bar{q}}, p_q - p_{\bar{q}}\right)$

□ $N_j(x,p)$ is the phase-space density of parton j at space-time position x and 4-momentum p □ W_m is the phase-space distribution of the formed ,pre-hadrons' (Gaussian in phase space) □ $|M_{qq}|^2$ is the effective quark-antiquark interaction from the DQPM

Strict 4-momentum and quantum number (flavour, color) conservation

IV. <u>Hadronic phase:</u> hadron-string interactions – off-shell HSD

QGP in equilibrium: Transport properties at finite (T, μ_q): η/s

Non-equilibrium dynamics: description of A+A with PHSD

118

Important: to be conclusive on charm observables, the light quark dynamics must be well under control!

PHSD provides a good description of ,bulk' observables (y-, p_T -distributions, flow coefficients v_n , ...) from SPS to LHC

Heavy quark/hadron production in p+p collisions

1) Momentum distribution of heavy quarks: Use ,tuned' PYTHIA event generator to reproduce FONLL (fixed-order next-to-leading log) results (R. Vogt et al.)

Beauty production in pp

T. Song et al., PRC 92 (2015) 014910, arXiv:1503.03039

Charm quark/hadrons production in p+p collisions

LHC

PHSI

8

12

A+A: charm production in initial NN binary collisions: probability $P = \frac{\sigma(c\overline{c})}{\sigma_{NN}^{inel}}$

□ The total cross section for charm production in p+p collisions $\sigma(cc)$

□ The energy distribution of binary NN collision including Fermi smearing

PRC 90 (2014) 051901; PRC90 (2014) 064906

Charm spatial diffusion coefficient D_s in the hot medium

• D_s for heavy quarks as a function of T for $\mu_q=0$ and finite μ_q assuming adiabatic trajectories (constant entropy per net baryon s/n_B) for the expansion

L. Tolos , J. M. Torres-Rincon, PRD 88 (2013) 074019 V. Ozvenchuk et al., PRC90 (2014) 054909

H. Berrehrah et al, PRC 90 (2014) 051901, arXiv:1406.5322

□ Differential elastic cross section for cq \rightarrow cq, bq \rightarrow bq for s^{1/2}=s₀^{1/2}+2GeV at 1.5T_c

DQPM - anisotropic angular distribution

Note: pQCD - strongly forward peaked → Differences between DQPM and pQCD : less forward peaked angular distribution leads to more efficient momentum transfer

Smaller number (compared to pQCD) of elastic scatterings with massive partons leads to a larger energy loss

! Note: radiative energy loss is NOT included yet in PHSD, it is expected to be small (at low p_T) due to the large gluon mass in the DQPM

H. Berrehrah et al, PRC 89 (2014) 054901; PRC 90 (2014) 051901; PRC90 (2014) 064906

D PHSD: if the local energy density $\varepsilon \rightarrow \varepsilon_c \rightarrow$ hadronization of heavy quarks to hadrons

T. Song et al., PRC 93 (2016) 034906

Dynamical hadronization scenario for heavy quarks :

Degeneracy factor : $g_M = 1$ for D, = 3 for D*=D*₀(2400)⁰, D*₁(2420)⁰, D*₂(2460)⁰⁺

1. D-meson scattering with mesons

L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, J. M. Torres-Rincon, Annals Phys. 326, 2737 (2011)

Model: effective chiral Lagrangian approach with heavy-quark spin symmetry

Interaction of D=(D⁰,D⁺,D⁺_s) and D^{*}=(D^{*0},D^{*+},D^{*+}_s) with octet (π ,K,Kbar, η)

2. D-meson scattering with baryons

Model: G-matrix approach: interactions of $D=(D^0,D^+,D^+_s)$ and $D^*=(D^{*0},D^{*+},D^{*+}_s)$ with nucleon octet $J^P=1/2^+$ and Delta decuplet $J^P=3/2^+$

Unitarized scattering amplitude → solution of coupled-channel Bethe-Salpeter equations:

$$T = T + VGT$$

→ Strong isospin dependence and complicated structure (due to the resonance coupling) of D+m, D+B cross sections!

B-meson scattering in the hadron gas

L. Tolos and J. M. Torres-Rincon, Phys. Rev. D 88, 074019 (2013) J. M. Torres-Rincon, L. Tolos and O. Romanets, Phys. Rev. D 89, 074042 (2014)

➤ 200 hadronic channels → implemented in the PHSD

R_{AA} at RHIC: hadronic rescattering

Influence of hadronic rescattering:

Central Au+Au at s^½=200 GeV : N(D,D*) ~30 N(D,D*+m) ~56 collisions N(D,D*+B,Bbar) ~10 collisions

→ each D,D* makes ~ 2 scatterings with hadrons

❑ Hadronic rescattering moves R_{AA} peak to higher p_T !
❑ substantially increases v₂ at larger p_T

T. Song et al., PRC 92 (2015) 014910, arXiv:1503.03039

□ Transverse momentum gain or loss of charm quarks per unit time at mid-rapidity in 0-10 % central Au+Au collisions at 200 GeV

A considerable energy and transverse momentum loss happens in the initial stage of heavy-ion collisions, because the energy density is extremely large

Charm R_{AA} at LHC: PHSD vs ALICE

□ in PHSD the energy loss of D-mesons at high p_T can be dominantly attributed to partonic scattering

 \Box Shadowing effect suppresses the low p_T and slightly enhances the high p_T part of R_{AA}

□ Hadronic rescattering moves R_{AA} peak to higher p_{T;} increases v₂

D meson production is suppressed in 5.02 TeV PbPb collisions

R_{AA} from single electrons in d+Au @ 200 GeV

□ Cronin effect increases R_{AA} for p_T >1 GeV

T. Song et al., arXiv:1605.07887 [nucl-th]

R_{AA}^e and v₂^e from single electrons: beauty contribution

R_{AA} and v_2 vs p_T from single electrons in Au+Au @ 200 GeV

 Feed back from beauty contribution becomes dominant for p_T >3 GeV
Anti-shadowing enhancement of beauty

T. Song et al., arXiv:1605.07887 [nucl-th]

R_{AA}^e and v₂^e of single electrons from Au+Au at 62.4 GeV

□ PHSD: pp data on electron p_T spectra are well reproduced

□ PHENIX data on R_{AA}^e from single electrons from Au+Au at 62.4 GeV are not reproduced !

V2^e from single electrons from Au+Au at
62.4 GeV is in line with data

Azimuthal angular correlations: Q-Qbar

➔ Initial azimuthal angular correlation of QQbar pairs is completely washed out during the evolution of the heavy-ion collision, even in case they are assumed to be initially produced back-to-back (model study) mainly due to the transverse flow + interactions

T. Song et al., arXiv:1605.07887 [nucl-th]

□ PHSD provides a microscopic description of non-equilibrium charm dynamics in the partonic and hadronic phases

Partonic rescattering suppresses the high p_T part of R_{AA} , generates v_2

 \Box Hadronic rescattering moves R_{AA} peak to higher p_T , increases v_2

□ The structure of R_{AA} at low p_T is sensitive to the hadronization scenario, i.e. to the balance between coalescence and fragmentation

- Shadowing effects suppress R_{AA} at LHC at low transverse momenta, Cronin effect slightly increases R_{AA} above p_T >1 GeV
- □ The exp. data for the R_{AA} and v₂ at RHIC and LHC are described in the PHSD by QGP collisional energy loss due to the elastic scattering of charm quarks with massive quarks and gluons in the QGP phase
 - + by the dynamical hadronization scenario "coalescence & fragmentation"
 - + by strong hadronic interactions due to resonant elastic scattering of D,D* with mesons and baryons
- □ Feed back from beauty contribution for R_{AA}^{e} and v_{2}^{e} from single electrons for Au+Au at 200 GeV becomes dominant for p_{T} >3 GeV
- □ Initial azimuthal angular correlation of QQbar pairs is washed out during the evolution dominantly due to the transverse flow

Heavy quarks – hidden charm (J/ Ψ , χ , Ψ ')

1995-2008

HSD review on charm: O. Linnyk, E.B., W. Cassing, Int. J. Mod. Phys. E17 (2008) 1367-1439

Historical reminder

2015

T. Song et al., arXiv:1503.03039 PRC 93 (2016) 034906, etc. IST

I.-II. Scenarios for charmonium suppression in A+A

I. QGP threshold melting

[Satz et al'03]

Quarkonium dissociation temperatures:

state	$\mathrm{J}/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
T_d/T_c	2.10	1.16	1.12

Dissociation energy density $\epsilon_d \sim 2 (T_d/T_c)^4$

II. Comover absorption
+ recombination by D-Dbar annihilation
[Gavin & Vogt, Capella et al.`97]:

charmonium absorption by low energy inelastic scattering with ,comoving' mesons (m= π , η , ρ ,...):

J/Ψ+m <-> D+Dbar Ψ'+m <-> D+Dbar χ_c+m <-> D+Dbar

Scenarios for charmonium suppression in A+A

The comover absorption scenario is qualitatively consistent with exp. data (for In+In and Pb+Pb) at SPS energies

QGP threshold melting is not supported by data

[Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

J/Ψ suppression in Au+Au at RHIC: Pre-hadronic interaction scenario

 \Box In the comover scenario the J/ Ψ suppression at mid-rapidity is stronger than at forward rapidity, unlike the PHENIX data

□ In the prehadronic interaction scenario the J/ Ψ rapidity distribution has the right shape like the PHENIX data => can describe the RHIC data at s^{1/2}=200 GeV for Au+Au at mid- and forward-rapidities simultaneously

→ evidence for non-hadronic nature of the interactions → sQGP

Charmonium suppression in A+A

5. J/ψ production in HIC (in progress)

Talk by Taesoo Song (INT Workshop, 1st week)

based on Taesoo Song, Joerg Aichelin, E.B., arXiv:1705.00046

J/ψ production in p+p collisions

Sudden approximation

- $\Phi = J/\psi(1S)$, $\chi_c(1P)$, $\psi'(2S)$
- $\lim_{t\to\infty} \langle \Phi(t) | c\bar{c}(-t) \rangle \approx \langle \Phi | c\bar{c} \rangle$: sudden approximation
- $|\langle \Phi | c \bar{c} \rangle|^2 \sim \text{Wigner function, Phys.Rev. C94 (2016) 034901}$

$$\begin{split} \Phi^W_{\rm S}(\mathbf{r},\mathbf{p}) &= 8 \frac{D}{d_1 d_2} \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right], \\ \Phi^W_{\rm P}(\mathbf{r},\mathbf{p}) &= \frac{16}{3} \frac{D}{d_1 d_2} \left(\frac{r^2}{\sigma^2} - \frac{3}{2} + \sigma^2 p^2\right) \\ &\times \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right], \end{split}$$

$$r = r_c - r_{\bar{c}}$$
$$p = \frac{p_c - p_{\bar{c}}}{2}$$

D : degeneracy of Φ d₁ : degeneracy of c d₂ : degeneracy of anti-c $\sigma \sim$ radius of Φ

pp: comparison with ALICE data

we use the same charmonia radii as at RHIC

AA: without any nuclear matter effect

- 1. Charmonium production from two different charm quark pairs (mixing) enhances total J/ψ
- 2. According to lattice QCD, the radii of charmonia increase (weakly binding) at high T. It suppresses total J/ψ

Jet quenching and angular correlations in A+A

Historical reminder

New exp. data: φ-η angular correlations

Fig. 1. (Color on-line) Preliminary associated particle distributions in $\Delta \eta$ and $\Delta \phi$ with respect to the trigger hadron for associated particles with 2 GeV/ $c < p_T^{assoc} < p_T^{trig}$ in 0-12% central Au+Au collisions. Two different trigger p_T selections are shown: $3 < p_T^{trig} < 4$ GeV/c (upper panel) and $4 < p_T^{trig} < 6$ GeV/c (lower panel). No background was subtracted.

FIG. 2: (color online) Per-trigger correlated yield with $p_T^{trig} > 2.5 \text{ GeV/c}$ as a function of $\Delta \eta$ and $\Delta \phi$ for \sqrt{s} and $\sqrt{s_{_{NN}}}=200 \text{ GeV}$ (a) PYTHIA p+p and (b) PHOBOS 0-30% central Au+Au collisions. (c) Near-side yield integrated

near

I: High p_T particle correlations in HSD vs. STAR data

HSD vs. STAR:

away side structure is suppressed in Au+Au collisions in comparison to p+p, however, HSD doesn't provide enough high p_T suppression to reproduce the STAR Au+Au data

•near-side ridge structure is NOT seen in HSD!

V. Konchakovski et al., Phys. Rev. C82 (2010) 037902

II: Intermediate p_T particle correlations in HSD vs. PHOBOS data

HSD vs. PHOBOS:

[•]away side structure is suppressed in Au+Au collision in comparison to p+p, however, HSD doesn't provide enough high p_T suppression to reproduce the PHOBOS Au+Au data

•near-side ridge structure is NOT seen in HSD!

Jet suppression: Perspectives within PHSD

adronic phase

Findings: □ Hadronic interactions give ½ of suppression of the far-side jets! QGP interaction is needed !

Microscopic description of jet suppression by propagation via partonic and hadronic medium

Study of the medium responds

Thank you!