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A very nice idea….



The charmonium as a « non relativistic » system



Screening of binding forces in a quark-gluon plasma 

Screened potential

Bound state exists for  

that is, for



A considerable experimental effort ….



Summary of early measurements (NA38,NA50)

(CERN, 2000)



What about RHIC ?



Y suppression

excited states are more ‘fragile’….

findings in line with expectations….



new results from ALICE

much improved statistics at forward rapidity and first results at 
mid-rapidity

indication of increase at midrapidity for very central collisions



A very nice idea….

but a very difficult many-body problem !

a considerable experimental effort



Which problem do we need to solve ?

a large variety of theoretical approaches 
-potential models

-spectral functions

-Euclidean correlators (lattice), maximum entropy techniques

-coupled channels

-path integrals

-open quantum systems

-effective field theory, non relativistic heavy quark effective theory

-strong coupling techniques

-etc

-full dynamics, including plasma expansion

-dynamics of bound state formation (stationary states are not enough)

-dynamics of dissociation and recombination
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Outline

Basic concepts 


influence functional, 

complex potential, 

etc, (QED)

Some numerical results (QED)

QCD: new features





Dynamics

Heavy quark

linearly coupled to gauge field

The hot plasma
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Because of high virtuality, the first process is limited to very short time and distance
(⇠ 1/M), but we are interested in the long time dynamics of the probes, which is
expected to be much longer than that of the dynamics of the plasma particles.
The second process is suppressed by a probability of the order of e�2M/T , where 2M
is the energy required to create two heavy fermions at rest. Having said that, our
model consists of a QED plasma made only of light fermions in which 2N heavy
fermions (N particles and N antiparticles) propagate. We consider only Coulomb
interactions between all fermions in the system. Magnetic interactions between the
slow heavy particles can be neglected in first approximation, therefore the rules of our
model consist in just not considering the magnetic interactions between the plasma
particles and between the heavy and light particles.

In the Colomb gauge r ·A = 0, the Hamiltonian of the system reads
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�i is a Dirac matrix, and ⇢
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+⇢q is the total charge density,
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for the heavy quarks (Q) and antiquarks ( ¯Q), respectively, and

⇢q(x) = g  †
(x) (x) (2.3)

for the plasma particles. We call qj and ¯

qj, with j = 1, · · · , N , the coordinates
of, respectively, the heavy quarks and antiquarks, and pj, ¯

pj the corresponding
momenta. We shall denote collectively the coordinates by a 2N dimensional vector
Q = (q

1

, · · · , qN , ¯q1

, · · · , ¯qN) .

2.1. Conditional probability
We are interested in the probability for a collection of pairs of heavy quarks to

be found at location Qf at time tf , given that they are at location Qi at time ti. We
denote this probability by

P (Qf , tf |Qi, ti) =
��
(Qf , tf |Qi, ti)

��2 . (2.4)
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Figure 1: The Keldysh contour C is the limit for & ! 0 of the more general complex-time contour
C(&). That is, C = lim&!0 C(&) = C1 [ C2 [ C3.

where x ⌘ (t,x), and K(x� y) represents the (instantaneous) Coulomb interaction:

K(x� y) = �(tx � ty)K(x� y), K(x� y) =

1

4⇡|x� y| .. (2.11)

We have also extended the definition of the density of heavy quarks, e.g, ⇢Q(t,x) =
g
PN

j=1

�(x� qj(t)). Note that

�r2

xK(x� y) = �(x� y). (2.12)

It is important to stress that the heavy particles do not take part in the thermal
average, and consequently they do not propagate along the imaginary time sector of
the Keldysh contour.

The next step consists in eliminating the light fermion field in favor of Coulombic
field A

0

, satisfying the imaginary time (KMS) periodic boundary condition A
0

(0,x) =
A

0

(�i �,x). We follow closely here what was done in Ref. [4]. To this end, we use
the identity:
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where N ⇠ (det [r2

])

1
2 is a normalization constant. Using this identity, we can

4

Path integral formulation

V(x) = gA0(x)



P(Qf , t f |Qi, ti) =
R
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perform the Gaussian integrals over the light fermion fields
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and obtain the following, so far exact, expression for the conditional probability
(apart from a multiplicative constant):
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It is convenient to rewrite the integral over A
0

as the exponential of an effective
action, the so-called Feynman-Vernon (FV) influence functional [10]
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The exponential of the FV functional is the thermal average over the A
0

fluctuations
of the exponential factor that contains the linear interaction g⇢A

0

between the heavy
particles and the gauge field. This particular structure is a consequence of the fact
that the heavy quark is linearly coupled to the total field A

0

.
The path integral representation (2.14) follows directly from the Hamiltonian,

without any further approximation. On the other hand, the action S
2

contains a non-
local term describing the coupling between light fermions and photons. Its expansion
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in powers of A
0

gives rise to effective couplings to all orders in the coupling constant
g. In order to be able to compute the influence functional we need to introduce some
approximations. We do so by retaining only the terms up to quadratic order in the
coupling g in such expansion. The quadratic approximation is consistent with the
hard thermal loop (HTL) approximation that we are going to perform later on. In
this limit, the path integral over A

0

becomes Gaussian and can be easily carried out
and the phase �[Q] becomes

�[Q] =

g2

2

Z Z

C
d

4xd4y ⇢(x)�C(x� y)⇢(y) , (2.18)

where e ⇢ := ⇢
Q
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Q
(see eq.(2.2)) and �C(x�y) is the Coulomb correlation function

defined on the Keldysh contour, with inverse
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00
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There is a potential issue with the self interaction terms
The 1-loop longitudinal photon self-energy ⇧

C
00

is defined on the Keldish contour,
as well as the delta function �C(x� y) = �C(tx � ty) �(x� y). By looking at (2.18),
it might seem that the information about the imaginary part of the Keldysh contour
(C

3

) has disappeared. On the contrary, the information is not lost at all, it is encoded
in the Kubo-Martin-Schwinger (KMS) relations, which enable us to find important
relations satisfied by the Coulomb correlation function.
To this end, it is convenient to distinguish between the degrees of freedom pertaining
to the forward- and backward- propagating sectors of the Keldysh contours, i.e.

Q(tC) ! (Q

1

(t),Q
2

(t)) (2.20)
A

0
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0

(t,x), A2

0

(t,x)),

where tC denotes the curvilinear abscissa parametrizing the Keldysh contour, while
t 2 [0, tf ] denotes the physical time. The integration over the physical time is always
from 0 to tf . Using notation (2.20) for the photon correlation function we have

�ab(tx � ty) with tx 2 Ca , ty 2 Cb , a, b = 1, 2 , (2.21)

with the following Green’s functions defined on the real parts of the Keldysh contour:

�(x� y) ⌘ hT [A
0,1(x)A0,1(y) ]i ˜

�(x� y) ⌘ h eT [A
0,2(x)A0,2(y) ]i(2.22)

�

>
(x� y) ⌘ hA

0,1(x)A0,2(y) i �

<
(x� y) ⌘ hA

0,2(x)A0,1(y) i (2.23)

6

Path integral and influence functional

‘Integrate out’ the light particles and keep the quadratic part of the resulting 
action (HTl approximation)

= + · · ·+

�(x � y) ⌘ ihTC
⇥
A0(x)A0(y)

⇤i



17

Infinite mass limit

long time limit is determined by static response of plasma

‘Optical potential’

(single heavy quark)



Large time behaviour

has real and imaginary part (*)

(*first observed by M. Laine et al hep-ph/ 0611300)

Quark antiquark pair



The imaginary part of the effective potential

At large distance the 
imaginary part is twice 
the damping rate of the 
heavy quark

At short distance, 
interference produces 
cancellation: a small 
dipole does not “see” the 
electric field 
fluctuations.
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Physical content of the influence functional

Heavy quark potential (complex)

dissipation

� friction coefficient



Low frequency expansion
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Figure 1: The Keldysh contour C is the limit for & ! 0 of the more general complex-time contour
C(&). That is, C = lim&!0 C(&) = C1 [ C2 [ C3.
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the Keldysh contour.

The next step consists in eliminating the light fermion field in favor of Coulombic
field A

0

, satisfying the imaginary time (KMS) periodic boundary condition A
0

(0,x) =
A

0

(�i �,x). We follow closely here what was done in Ref. [4]. To this end, we use
the identity:

exp


� i

2

Z Z

C
d

4x d4y ⇢
tot

(x)K(x� y)⇢
tot

(y)

�
=

= N
Z

DA
0

exp


i

2

Z Z

C
d

4x d4y A
0

(x)K�1

(x� y)A
0

(y)� i

Z

C
d

4xA
0

(x)⇢
tot

(x)

�

where N ⇠ (det [r2

])

1
2 is a normalization constant. Using this identity, we can

4

P(Rf , t f |Ri, ti) =
R Rf

Ri
DR
R 0

0 DY e
R t f

ti
dtL(R,Y)

L(R,Y) = �i Y
⇣
MR̈ + �2 H(R)Ṙ � F(R)
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Equivalent langevin equation

h (R, t) i = 0

h k(R, t) m(R, t0) i = Hkm(R)�(t � t0)
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Non trivial noise 



Selected results
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Regularized Coulomb potential
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Diffusion constant
D = T

M�



tends to reduce its well). Therefore, a significant increase of the temperature would
bring to a great increment of the strength of the interactions between the heavy par-
ticles inside the Debye radius. This behaviour would be quite unexpected, therefore
we fix a T -independent cut-off, ⇤ = 4GeV, so that the only T -dependence of the
potential is hidden in the Debye mass. In Fig.5 and Fig.6 we show respectively the
T -dependence of the viscosity and the qq̄ potential energy.

0 0.2 0.4 0.6 0.8 1

0

�200

�400

�600

�800

�1000

x (fm)

�e
2

R
eV

(M
eV

)

T = 160MeV
T = 220MeV
T = 280MeV

Figure 6: The potential energy of a qq̄ pair as a function of the q-q̄ distance x for three different
temperatures and with ⇤ = 4 GeV.

4.2. One heavy quark-antiquark pair

Simulation of heavy quarks were already performed [28],[29] using first PYTHIA
pQCD event generation and Monte-Carlo Glauber calculation to initially produce
qq̄ pairs randomly placed in the QGP, and then the standard Langevin equation for
simulating the time evolution of the pairs.
Here we use a different procedure:

1. we randomly place the qq̄ pair in the thermal medium and the qq̄ radius is
randomly taken between 0 and the Debye radius rD . The relative initial velocity
of the quark and the antiquark is taken from a Maxwell distribution centered
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at the average value of typical quarkonia relative velocities (e.g. v2
0

⇠ 0.3 for
charmonium [7]);

2. we then simulate the pair using the Langevin equation (3.67) derived from the
underlying gauge theory.

As first step, we performed numerical simulations of eq.(3.67) for a single charm(c)-
anticharm(c̄) pair ( we used Mc = Mc̄ = 1.4GeV ) and for a single bottom(b)-
antibottom(¯b) pair (we took Mb = M

¯b = 4.2GeV ).
As a check of the Langevin dynamics, we found that the cc̄ pair follows a free Brown-
ian motion in the long-time limit (see the analytical result in (3.75)), i.e. the average
square c-c̄ distance tends to be a linear function of time as we let the system evolve.
In Fig.7 we show for clearness only the T = 200 MeV case, but this long-time Brow-
nian behaviour is common to all temperatures. This means that the charm and the
anticharm are practically uncorrelated after long times.
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300

t (fm/c)

hr
2 cc̄
i(

fm
2

)

T = 200 MeV

simulation

Brownian behaviour

Figure 7: Average square c-c̄ distance as a function of time. We see that the c-c̄ distance follows
the predicted long-time Brownian behaviour. Statistical errors are too small to be plotted.

However, we are interested in studying the dynamics of the heavy particles during
the time for which the plasma is present. It is believed that the quark-gluon plasma
lasts for ⌧

qgp

⇠ 10 fm/c, therefore we focus our attention on the average q-q̄ distance
( h rqq̄ i ) for times t  ⌧

qgp

. For charmonium states we studied the behaviour of J/ 
( 1S), �c ( 1P) and  0 ( 2S), whereas we considered only the ⌥ ( 1S) bottomonium
state. In principle we can not talk about bound states since the heavy particles are
here treated classically.
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Figure 8: Average quarkonia (charmonia and bottomonia) radius as a function of time. The shaded
part indicates the region in which the charmonia radii are smaller than the Debye radius rD .
Statistical errors are too small to be plotted.

not have an initial J/ with �E � 550 MeV. This is due to the fact that the depth
of the q-q̄ potential decreases when the temperature goes up (see Fig.6), therefore in
the next section we will estimate the melting temperature of J/ by using a different
procedure.
In the last graph of Fig.8 we also compare the �c , J/ and ⌥ behaviours at T = 280

MeV. We see that the average b¯b pair is far more strongly correlated than the cc̄ pair,
and the ⌥ radius remains small ( h r

⌥

i  rD ) for a relatively long time (as compared
to ⌧qgp ). Infact, we will see in the next section that the melting temperature of the
⌥ ( 1S) state is T > 600 MeV, as predicted from lattice potential model studies. It is
evident from the curves representing the �c state that initially this charmonium state
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Figure 9: On the left: Comparison between h rcc̄ i of �c states that become J/ (⇡ 41% ) and those
that do not decay (⇡ 59% ). On the right: Same comparison for  0 .

Charmonia lifetimes (fm/c) without feed-down

T (MeV) 160 190 220 280

J/ & ⌧qgp & ⌧qgp 4.9± 0.2 2.8± 0.2

�c 1.6± 0.1 1.6± 0.1 1.5± 0.1 1.6± 0.1

 

0 0.7± 0.1 0.5± 0.1 0.1± 0.1 0

Table 3: Average charmonia lifetime in the quark-gluon plasma. We did not take into account the
contributions to �c and  0 lifetimes from their feed-down process. We also write ⌧J/ & ⌧qgp when
the J/ survives for a time interval longer than the duration of the QGP.

28

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

1.2

t (fm/c)

hr
cc̄
i(

fm
)

T = 160 MeV

rD = 0.426 fm

(40� 43)% of �c

(57� 60)% of �c

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

1.2

t (fm/c)
hr

cc̄
i(

fm
)

T = 160 MeV

rD = 0.426 fm

(12� 14)% of  

0

(86� 88)% of  

0
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Charmonia lifetimes (fm/c) without feed-down

T (MeV) 160 190 220 280

J/ & ⌧qgp & ⌧qgp 4.9± 0.2 2.8± 0.2

�c 1.6± 0.1 1.6± 0.1 1.5± 0.1 1.6± 0.1

 

0 0.7± 0.1 0.5± 0.1 0.1± 0.1 0

Table 3: Average charmonia lifetime in the quark-gluon plasma. We did not take into account the
contributions to �c and  0 lifetimes from their feed-down process. We also write ⌧J/ & ⌧qgp when
the J/ survives for a time interval longer than the duration of the QGP.
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Figure 10: Average total energy of a system of 10 charm and anticharm in thermal equilibrium as
a function of temperature. Simulations were performed in a periodic cubic box of side 4 fm and
statistical errors are again too small to be plotted.

quark as a function of their distance.
The nearest antiquark distribution of an ideal gas of N quarks and antiquarks is

P ideal

qq̄ (r) =
3

a

⇣r
a

⌘
2

✓
1�

⇣r
a

⌘
3

1

N

◆N�1

N�1' 3

a

⇣r
a

⌘
2

e�(r/a)
1
3 ,

where a =

⇣
3

4⇡⇢

⌘
1/3

and ⇢ =

N
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)

1/3a ⇡ 1.15 fm.
We notice that this peak appears also in the distribution Pqq̄ of our interacting sys-
tem in Fig.11. Nevertheless, at low tempeartures, there is also a relevant peak at
shorter distance, pointing out the presence of highly correlated states. As expected
from Fig.10, the last peak disappears at T > 280 MeV.
From Fig.11 we can also infer that a correlated cc̄ pair has a maximum radius of

approximately 0.3 fm, which is indeed similar to the values of the Debye screening
length in this range of temperature.

So far we have discussed the correlations between particles for different values of
temperature, but what happens when the pair dissociates? Does regeneration of
charmonium occur, as suggested from LHC and RHIC data? If regeneration takes
place, do particles recombine more easily at low or high temperature?
To address these questions we evaluate the recombination times for the pairs as a
function of the temperature, that is the average time needed for a quark (antiquark)
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Charmonia lifetimes (fm/c) without feed-down

T (MeV) 160 190 220 280

J/ & ⌧qgp & ⌧qgp 4.9± 0.2 2.8± 0.2

�c 1.6± 0.1 1.6± 0.1 1.5± 0.1 1.6± 0.1

 

0 0.7± 0.1 0.5± 0.1 0.1± 0.1 0

Table 2: Average charmonia lifetime in the quark-gluon plasma. We did not take into account the
contributions to �c and  0 lifetimes from their feed-down process. We also write ⌧J/ & ⌧qgp when
the J/ survives for a time interval longer than the duration of the QGP.

4.3. Many heavy quark-antiquark pairs

Now we consider a system of N > 1 heavy quarks and antiquarks and study the
following quantities:

• the average energy of the system as a function of the temperature;

• the probability distribution Pqq̄ of the nearest antiquark from a given quark as
a function of the quark-antiquark distance;

• the recombination times of the qq̄ pairs as a function of the temperature and
of the number of pairs;

• the probability distribution of the recombination times for some values of the
temperature;

• the fraction of surviving pairs as a function of time for some values of temper-
ature and number of initial pairs.

We saw that for the N = 1 case the heavy quark and antiquark pair is more
correlated at low temperatures and, as temperature increases, we obtain a sequential
charmonia suppression. Accordingly, Fig.10 shows that the average energy in thermal
equilibrium of a system of many charm and anticharm ( 10 in this case) tends to the
one of the ideal monoatomic gas

E
gas

=

3

2

(2N)KBT , (4.87)
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Figure 11: The figure shows the nearest antiquark distribution as a function of the quark-antiquark
distance. This probability is computed in the following way: one looks at some intermediate
time (once thermal equilibrium is reached), then from each quark one computes the distance from
each antiquark and select the nearest one. The distance from such an antiquark will be binned.
Simulations were performed for a system of 10 cc̄ pairs in a cubic box of side 4 fm, with periodic
boundary conditions.

to form a pair, once the quark (antiquark) moves away from the previous antiquark
(quark) partner. In this calculation we did not take into account the contribution
coming from the “non-interacting” events, that is a quark passing close to an anti-
quark without forming an actual pair. In order to do that, we performed simulations
of a non-interacting system with a constant (space-independent) viscosity (the one-
particle viscosity) and calculated the normalized distribution P

free

(t) of the time
intervals t in which a charm and an anticharm stay inside a sphere of radius 0.3 fm.
Then, for each temperature, the minimum lifetime of a real pair in the interacting
system has been chosen to be the time ⌧ for which the sum from ⌧ to infinity of the
probability distribution of the “pair” lifetimes in the non-interacting system is less
than 1% :

X

t�⌧

P
free

(t) < 1% . (4.88)

This way only real pairs, that is pairs formed because of the interactions, contribute
to the recombination times. Moreover, since the small lifetimes typical of �c and
 

0 are automatically discarded by this procedure, we implicitly consider only J/ 
regeneration. Nevertheless, here we are not interested in discriminating different
bound states, we want to focus just on the mechanism of charmonium regeneration.
As one can see on the left of Fig.12, the outcome for a system of 10 charm and
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approximately when T > 280 MeV, being hEcc̄i � E
gas

. 200 MeV (typical binding
energy of �c ) at T = 280 MeV. This points out that the interactions betweeen charm-
anticharm particles become negligible in the region T > 280 MeV, and therefore
practically no cc̄ pairs are present on average in thermal equilibrium. On the other
hand, the interactions between the particles become important at lower temperatures
and, as a consequence, the average energy of the system is lower than the ideal gas
one at the same temperature.
This result can be interpreted in the following way: the forces between the particles
are screened over the Debye screening length, therefore the interactions between
particles come into play only when particles are close to each other ( rqq̄ < rD ), and
one expects particles to be closer at low temperatures, for which the thermal energy
could be not enough to dissociate a cc̄ pair. This interpretation is also confirmed by

Figure 8: Average total energy of a system of 10 charm and anticharm in thermal equilibrium as
a function of temperature. Simulations were performed in a periodic cubic box of side 4 fm and
statistical errors are again too small to be plotted.

the analysis of the probability distribution Pqq̄ of the nearest antiquark from a given
quark as a function of their distance.
The nearest antiquark distribution of an ideal gas of N quarks and antiquarks is
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anticharm is that the recombination time increases almost linearly with the temper-
ature, starting from a value of t

rec

= (62.9 ± 2.5) fm at T = 160 MeV and reaching
a value of t

rec

= (185.5± 6.8) fm at T = 280 MeV.
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Figure 12: On the left: Average recombination time as a function of temperature. On the right:
Probability of recombination times for three values of temperatures. The quark-antiquark distance
has been chosen to be less or equal to 0.3 fm for the quark-antiquark configuration to be considered
a pair. Both simulations were performed with a system of 10 cc̄ pairs in a cubic box of side 4 fm,
with periodic boundary conditions.

Therefore, one deduces that a greater number of “collisions” between quarks and
antiquarks is needed at high temperatures than at low temperatures before forming
a pair.
Another important result comes out from the graph on the right of Fig.12. We no-
tice that, for the relevant time scale of the quark-gluon plasma ( ⌧

qgp

⇠ 10 fm/c),
recombinations occur with the same frequency at each time, i.e. there is not any
characteristic time scale for recombinations.
Because of this important fact, even if the standard errors of the graph on the left
of Fig.12 are small (because of the large statistics), the standard deviations are of
the same order of the recombination times, pointing out that regenerations of pairs
appear at any time scale. In an expanding system, like the real QGP, this result
could likely change, since particles increase their mutual distances while the system
is expanding.
However, in both an expanding or a constant-volume system one expects the recom-
bination time to go up when the number of particles decreases. This is indeed the
pattern shown in Fig.13, in which we see that the average recombination time is in
good approximation inversely proportional to the number of charm and anticharm.
In order to quantify the recombination and suppression effects occuring in the sys-
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with periodic boundary conditions.

Therefore, one deduces that a greater number of “collisions” between quarks and
antiquarks is needed at high temperatures than at low temperatures before forming
a pair.
Another important result comes out from the graph on the right of Fig.12. We no-
tice that, for the relevant time scale of the quark-gluon plasma ( ⌧
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⇠ 10 fm/c),
recombinations occur with the same frequency at each time, i.e. there is not any
characteristic time scale for recombinations.
Because of this important fact, even if the standard errors of the graph on the left
of Fig.12 are small (because of the large statistics), the standard deviations are of
the same order of the recombination times, pointing out that regenerations of pairs
appear at any time scale. In an expanding system, like the real QGP, this result
could likely change, since particles increase their mutual distances while the system
is expanding.
However, in both an expanding or a constant-volume system one expects the recom-
bination time to go up when the number of particles decreases. This is indeed the
pattern shown in Fig.13, in which we see that the average recombination time is in
good approximation inversely proportional to the number of charm and anticharm.
In order to quantify the recombination and suppression effects occuring in the sys-
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Figure 13: Average recombination time as a function of the number N of charm and anticharm
in the usual cubic box for two values of temperature. We see that trecN ⇡ ⇣

�1 , where ⇣ is the
temperature-dependent recombination rate. We want to stress again that these are average values
with relatively small standard errors (because of the large statistics). The standard deviations
from the average values are of the same order of the recombination times though, indicating that
recombinations take place both at short and long times.

tem, we studied the fraction of surviving J/ (and ⌥) particles as a function of time.
From Fig.14 one notices that, as predicted by Fig.13, recombination events are more
frequent in a system with a great number of q-q̄ particles.
This is because the fraction of surviving pairs grows with the number of particles,
being the decay and regeneration rates of the qq̄ pairs independent of the number of
particles.
We also see that, on average, there are more surviving pairs in a low temperature
system. This is due to the fact that the decay rate � decreases along with the temper-
ature, whereas the recombination rate ⇣ increases. Moreover, an equilibrium value of
the number of surviving pairs is reached more quickly in a high temperature system
with many heavy quarks and antiquarks. The fact that we reach an equilibrium
value for the number of qq̄ survivors at long times means that there is a chemical
potential associated to the number of heavy pairs.

The rate equation describing the time evolution of the number of surviving qq̄ pairs
N(t) is (see also [27])

dN(t)

dt
= ��N(t) + ⇣Nq(t)Nq̄(t) , (4.89)

where ⇣ = ⇣(T ) is the recombination rate, � = �(T ) is the decay rate (or ther-
mal width) and Nq (Nq̄ ) is the number of free heavy quarks (antiquarks) in the
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Figure 14: Fraction of surving pairs as a function of time for three different temperatures. At t = 0
all the qq̄ pairs ( 2, 10 or 50 ) are formed. Bottom right: Comparison between the fraction of surving
J/ and ⌥ for a system of 10 c-c̄ and b-b̄ respectively. Simulations were performed in a periodic
cubic box of side 4 fm.
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all the qq̄ pairs ( 2, 10 or 50 ) are formed. Bottom right: Comparison between the fraction of surving
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We also see that, on average, there are more surviving pairs in a low temperature
system. This is due to the fact that the decay rate � decreases along with the temper-
ature, whereas the recombination rate ⇣ increases. Moreover, an equilibrium value of
the number of surviving pairs is reached more quickly in a high temperature system
with many heavy quarks and antiquarks. The fact that we reach an equilibrium
value for the number of qq̄ survivors at long times means that there is a chemical
potential associated to the number of heavy pairs.

The rate equation describing the time evolution of the number of surviving qq̄ pairs
N(t) is (see also [27])

dN(t)

dt
= ��N(t) + ⇣Nq(t)Nq̄(t) , (4.89)

where ⇣ = ⇣(T ) is the recombination rate, � = �(T ) is the decay rate (or ther-
mal width) and Nq (Nq̄ ) is the number of free heavy quarks (antiquarks) in the
plasma. Equation (4.89) together with the initial condition N(t = t

0

) = N
0

,
Nq̄(t0) = Nq(t0) = 0 can be analytically solved. Then, the solution for the frac-
tion of surviving pairs reads

N(t)

N
0

=

1� �
⌦

tanh

�
⌦

2

(t� t
0

)

�

1 +

�
⌦

tanh

�
⌦

2

(t� t
0

)

� , t � t
0

, (4.90)

where we called ⌦ ⌘ p
�(�+ 4⇣N

0

) and used the fact that Nq(t) = Nq̄(t) =

(N
0

�N(t)) in our simulations.
Looking at Fig.14, one sees that there is a typical time t

0

. 1 fm for the initial
charmonia needed to start dissolving, or also, the time needed for the bound states
to “feel” the action of the thermal medium. From the last graph of Fig.14 we also see
that this “activation” time is larger for bottomonium than charmonium ( t

0

⇡ 4 fm).
This is essentially due to the fact that the bottomonium pair, because of its large
mass, needs much more collisions with the particles of the thermal medium than the
ones required by charmonium in order to change its relative kinetic energy.
Having said that, we would like to find the values of the decay and regeneration rates
by fitting our data using eq.(4.90). As shown on the left of Fig.15, we obtain a really
nice fit of data with the same recombination rates ⇣ = 1/(N

0

t
rec

) previously derived
from Fig.12 and Fig.13.
In the case of Fig.15 we have ⇣(T = 160MeV) = (1.6 ± 0.1) · 10�3 c/fm, ⇣(T =

190MeV) = (1.0 ± 0.1) · 10�3 c/fm and ⇣(T = 220MeV) = (7.4 ± 0.5) · 10�4 c/fm.
The values of the decay rate � obtained from the fit of eq.(4.90) are listed in Tab.4,
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Evolution of population of bound states 
 is well described by a simple rate equation



Extension to QCD



Much of the previous discussion goes through

New random force, dependent on color

Subtle interplay between color and coordinate space 
dynamics

'Separate' treatment of binding potential and 'imaginary 
part' seems required

Stay tuned : JPB, M. Escobedo-Espinosa, in preparation


