Heavy quark bound states in a quark-gluon plasma

Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks

> **ITP, Seattle May 3, 2017**

Jean-Paul Blaizot, IPhT- Saclay

A very nice idea….

The charmonium as a « non relativistic » system

$$
H = 2m_c + \frac{p_1^2}{2m_c} + \frac{p_2^2}{2m_c} + V(r)
$$

$$
V(r) = -\frac{\alpha}{r} + \sigma r
$$

Screening of binding forces in a quark-gluon plasma

Screened potential

$$
V(r) = -\frac{\alpha}{r}e^{-r/r_D(T)}
$$

Bound state exists for

$$
r_{D}\left(T\right)>r_{D}^{min}
$$

that is, for

$$
T < T_D
$$

A considerable experimental effort ….

Summary of early measurements (NA38,NA50)

(CERN, 2000)

What about RHIC ?

Y suppression

excited states are more 'fragile'…. findings in line with expectations….

A very nice idea….

a considerable experimental effort

but a very difficult many-body problem !

a large variety of theoretical approaches

-potential models

-spectral functions

-Euclidean correlators (lattice), maximum entropy techniques

-coupled channels

-path integrals

-open quantum systems

-effective field theory, non relativistic heavy quark effective theory

-strong coupling techniques

-etc

Which problem do we need to solve ?

-full dynamics, including plasma expansion

-dynamics of bound state formation (stationary states are not enough)

-dynamics of dissociation and recombination

WORK IN PROGRESS !

Results presented are based on

A. Beraudo, JPB, C. Ratti, NPA 806 (2008) 312 [arXiv: 0712.4394]

A. Beraudo, JPB, P. Faccioli and G. Garberoglio [arXiv: 1005.1245]

JPB, D. de Boni, P. Faccioli and G. Garberoglio, Nucl.Phys. A946 (2016) 49-88 [arXiv: 15003.03857] JPB, M. Escobedo-Espinosa, in preparation

Outline

Basic concepts

influence functional, complex potential, etc, (QED)

Some numerical results (QED)

QCD: new features

Dynamics

$$
H = H_Q + H_{med} + H_{int}
$$

Heavy quark

$$
H_Q = M \int d^3 \boldsymbol{r} \, \psi^{\dagger}(\boldsymbol{r}) \psi(\boldsymbol{r}) + \int d^3 \boldsymbol{r} \, \psi^{\dagger}(\boldsymbol{r}) \left(-\frac{\nabla^2}{2M} \right) \psi(\boldsymbol{r})
$$

linearly coupled to gauge field

$$
H_{int} = g \int d^3 \boldsymbol{r} \, \psi^{\dagger}(\boldsymbol{r}) \psi(\boldsymbol{r}) A_0(\boldsymbol{r})
$$

The hot plasma

$$
H_{med} = \int d^3r \,\xi^{\dagger}(\mathbf{r})h_0\,\xi(\mathbf{r}) + \frac{1}{2}\int d^3r d^3r' \hat{\rho}(\mathbf{r})\frac{g^2}{4\pi|\mathbf{r} - \mathbf{r}'|}\hat{\rho}(\mathbf{r}')
$$

of, respectively, the heavy quarks and antiquarks, and *p^j* , *p*¯*^j* the corresponding momenta. We shall denote collectively the coordinates by a 2*N* dimensional vector **Path integral formulation**

$$
(Q_f, t_f|Q_i t_i) = \int_{x(t_i)=Q_i}^{x(t_f)=Q_f} [\mathcal{D}x(t)] \exp\left[i \int_{t_i}^{t_f} dt \left(\frac{1}{2}M\dot{x}^2 - V(x)\right)\right]
$$

$$
P(Q_f, t_f | Q_i t_i) = \int_C [\mathcal{D}x(t)] \exp\left[i \int_C dt_C \left(\frac{1}{2}M\dot{x}^2 - V(x)\right)\right]
$$

 $V(x) = gA_0(x)$

*S*1[*Q, A*0] = *g* LUCN α ^{*, c*}, α , α ^{*j*} (*x*) α ^j (*x*) α ^j *C* \int int θ **Path integral and influence functional**

$$
P(Q_f, t_f|Q_i, t_i) = \int_C DQ e^{iS_0[Q]} e^{i\Phi[Q]}
$$

$$
e^{i\Phi[Q]} = \int DA_0 e^{-i \int_C d^4x g\rho(x)A_0(x)} e^{iS_2[A_0]}
$$

$$
\rho(x) = \sum_{j=1}^N (\delta(x - q_j(t) - \delta(x - \bar{q}_j(t)))
$$

integrate out' the light particles and keep the quadratic part of the resulting that the heavy quark is linearly coupled to the total field *A*0. ie líght partícles and keep the quadratíc p*l* action (HTI approximation) Interiorate out the light particles and been the quadratic part of the resulting coupling *g* in such expansion. The quadratic approximation is consistent with the **'Integrate out' the light particles and keep the quadratic part of the resulting action (HTl approximation)**

$$
S_2[A_0] = -\frac{1}{2} \int_c dx \left(A_0(x) \nabla^2 A_0(x) \right) - i \operatorname{Tr} \ln \left[i \gamma^{\mu} \partial_{\mu} - m - e \gamma^0 A_0(x) \right]
$$

$$
\frac{1}{2} \left(\frac{1}{2} \right)^{2} \
$$

⇤⇤ (2.13)

$$
\Phi[\mathbf{Q}] = \frac{g^2}{2} \iint_C d^4x d^4y \ \rho(x) \Delta_c(x - y) \rho(y)
$$

$$
\Delta(x - y) \equiv i \langle T_C [A_0(x) A_0(y)] \rangle
$$

Infinite mass limit (single heavy quark)

$$
G^{>}(t, \mathbf{r}) = \delta(\mathbf{r}) e^{-iMt} e^{iF(t)} \qquad F(t) = \frac{g^2}{2} \int_0^t dt' \int_0^t dt'' D(t' - t'', 0)
$$

long time limit is determined by static response of plasma $F(t) \simeq \frac{g^2}{2} t D(\omega = 0, \mathbf{r} = 0) \equiv -t V_{opt}$

'Optical potential'

$$
V_{\text{opt}} \equiv -\frac{g^2}{2} \int \frac{d\mathbf{q}}{(2\pi)^3} D(\omega = 0, \mathbf{q})
$$

= $\frac{g^2}{2} \int \frac{d\mathbf{q}}{(2\pi)^3} \left[\frac{1}{\mathbf{q}^2 + m_D^2} - \frac{1}{\mathbf{q}^2} - i \frac{\pi m_D^2 T}{|\mathbf{q}| (\mathbf{q}^2 + m_D^2)^2} \right]$
= $-\frac{\alpha}{2} m_D - i \frac{\alpha T}{2}$,

17

Quark antiquark pair

Large time behaviour $(t m_D \gg 1)$

$$
G(t, r_1 - r_2) \underset{t \to \infty}{\sim} \exp[-iV_{\text{eff}}(r_1 - r_2)t]
$$

 V_{eff} has real and imaginary part (*)

$$
V_{\text{eff}}(r_1 - r_2) \equiv g^2 \int \frac{dq}{(2\pi)^3} \left(1 - e^{iq \cdot (r_1 - r_2)}\right) D_{00}(\omega = 0, q)
$$

$$
= g^2 \int \frac{dq}{(2\pi)^3} \left(1 - e^{iq \cdot (r_1 - r_2)}\right) \left[\frac{1}{q^2 + m_D^2} - i \frac{\pi m_D^2 T}{|q|(q^2 + m_D^2)^2}\right]
$$

$$
= -\frac{g^2}{4\pi} \left[m_D + \frac{e^{-m_D r}}{r}\right] - i \frac{g^2 T}{4\pi} \phi(m_D r)
$$

(*first observed by M. Laine et al hep-ph/ 0611300)

The imaginary part of the effective potential

At large distance the **imaginary part is twice the damping rate of the heavy quark**

At short distance, interference produces cancellation: a small dipole does not "see" the electric field fluctuations.

this limit, the path integral over *A*⁰ becomes Gaussian and can be easily carried out and the phase [*Q*] becomes **Physical content of the influence functional**

$$
\Phi[\mathbf{Q}] = \frac{g^2}{2} \iint_C d^4x d^4y \ \rho(x) \Delta_c(x-y) \rho(y)
$$

$$
\Delta(x - y) \equiv i \langle T_C [A_0(x) A_0(y)] \rangle
$$

 $V(x) \sim \Delta_{11}(\omega = 0, x)$ $V(\lambda) = \Delta \prod(\omega - 0, \lambda)$

Heavy quark potential (complex)

D(*x*) ~ $\Delta_{12}(\omega = 0, x)$ ~ Im*V*(*x*) or dissipation

$$
\frac{g^2}{2MT} \left. \frac{\partial^2 D}{\partial x_i \partial x_j} \right|_{x=0} = \delta_{ij} \gamma \qquad \gamma \qquad \text{friction coefficient}
$$

Low frequency expansion

$$
P(R_f, t_f | R_i, t_i) = \int_{R_i}^{R_f} DR \int_0^0 DY e^{\int_{t_i}^{t_f} dt \mathcal{L}(R, Y)}
$$

$$
\mathcal{L}(R, Y) = -i Y \Big(M \ddot{R} + \frac{\beta}{2} \mathcal{H}(R) \dot{R} - \mathbf{F}(R) \Big) - \frac{1}{2} Y \mathcal{H}(R) Y
$$

$$
\mathbf{F}(R) \sim \nabla \text{Re} V(R) \qquad \mathcal{H}_{ij} \sim \frac{\partial^2 D}{\partial x_i \partial x_j} \Big|_{x=0}
$$

Equivalent langevin equation

$$
M\ddot{R} = -\frac{\beta}{2} \mathcal{H}(R)\dot{R} + \mathbf{F}(R) + \Psi(R, t)
$$

$$
\mathcal{H}_{ij} \sim \frac{\partial^2 D}{\partial x_i \partial x_j}\Big|_{x=0} \qquad \mathbf{F}(R) \sim \nabla \text{Re}V(R)
$$

 $\langle \Psi(R, t) \rangle = 0$

 $\langle \Psi_k(R, t) \Psi_m(R, t') \rangle = \mathcal{H}_{km}(R) \delta(t - t')$

Non trivial noise

Selected results

Regularized Coulomb potential

Diffusion constant

T

 $M\gamma$

$path of the 1 (see $n+1$ also be$ Potential (real part) - charmonium

Sequential suppression

• the probability distribution of the recombination times for some values of the **10 pairs in plasma**

could be not enough to dissociate a *confirmed by the confirmed by the confirmed* by the confirmed by t **Probability distribution of distance to nearest neighbor**

$$
P_{q\bar{q}}^{\text{ideal}}(r) = \frac{3}{a} \left(\frac{r}{a}\right)^2 \left(1 - \left(\frac{r}{a}\right)^3 \frac{1}{N}\right)^{N-1} \stackrel{N \gg 1}{\simeq} \frac{3}{a} \left(\frac{r}{a}\right)^2 e^{-(r/a)^{\frac{1}{3}}}
$$

ature, starting from a value of *t*rec = (62*.*9 *±* 2*.*5) fm at *T* = 160 MeV and reaching a value of *the convention of the state state* state s **Recombination time**

a value of *t*rec = (185*.*5 *±* 6*.*8) fm at *T* = 280 MeV. **Distribution of recombination times**

Dissociation/recombination

 $T = 190$ MeV, 10 initial pairs

Evolution of population of bound states is well described by a simple rate equation

10 initial pairs

Extension to QCD

Much of the previous discussion goes through

New random force, dependent on color

Subtle interplay between color and coordinate space dynamics

'Separate' treatment of binding potential and 'imaginary part' seems required

Stay tuned : JPB, M. Escobedo-Espinosa, in preparation