

INT Program INT-17-1b Precision spectroscopy of QGP properties with jets and heavy quarks May 31st 2017

Quarkonium production in proton-nucleus collisions

Roberta Arnaldi INFN Torino

Quarkonium production in p-p (at LHC) p-A collisions (at both RHIC and LHC)

Preprope

INT Program INT-17-1b Precision spectroscopy of QGP properties with jets and heavy quarks May 31st 2017

quarkonium in pp, pA, AA

"vacuum" reference for AA, pA, genuine pp physics program

cold nuclear matter effects: shadowing/CGC, energy loss...

Nuclear modification factor:

$$R_{AA}^{J/\psi} = \frac{Y_{AA}^{J/\psi}}{\langle T_{AA} \rangle \sigma_{pp}^{J/\psi}}$$

Medium effects quantified comparing AA (pA) quarkonium yield with the pp cross section, scaled by a geometrical factor (from Glauber model)

no medium effects $\rightarrow R_{AA} = 1$ hot/cold matter effects $\rightarrow R_{AA} \neq 1$

hot matter effects: regeneration vs suppression

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks May 31st 2017

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks N

May 31st 2017

3

J/ψ production in pp collisions at LHC

Focussing just on LHC results...RHIC covered in Zebo's talk!

Quarkonium production now measured at LHC in many collision systems

√s(TeV)	2.76	5	7	8	13
рр	X	X	X	X	X

not exhaustive selection of results on:

- y, p_T differential cross sections Double ratios Non prompt J/ ψ fraction
- Self-normalized yields vs event multiplicity

Comparison between experiments

usually, good agreement between experiments in common kinematic regions \rightarrow no hint for significant discrepancies

Quarkonium p_{T} cross sections

 $p_{\rm T}$ range significantly extended by CMS and

NLO NRQCD describes prompt J/ ψ production FONLL describes non-prompt contribution, but gives slightly harder p_T spectra

6

Inclusive J/ψ production

ALICE inclusive J/ ψ production is described, down to zero p_{T} , by a sum of:

- (NLO) NRQCD for the prompt contribution at intermediate and high p_{T} NRQCD + CGC for prompt J/ ψ at low p_T
 - FONLL for J/ψ from B decay

Similar description holds for all the pp energies

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks 25

 $p_{_{T}}$ (GeV/c)

30

ψ (2S)/J/ ψ in pp

Ratio $\psi(2S)/\psi$ shows an increase towards high p_T , with no energy and no y-dependence

 $\psi(2S)/\psi$ is an interesting testing ground for models because of the error cancellation in both data and theory

B feed down contribution

Non-prompt fraction increases steadily, with p_T , from 10 to 60%, with no significant variation with y, and then saturates

No \sqrt{s} dependence is observed between 7 and 13TeV, while a difference is visible wrt lower energies

J/ψ production vs hadronic multiplicity

Increase of J/ψ yield with event multiplicity observed at 7 and 13 TeV

Stronger than linear increase, reaching up to 15 times the average J/ψ value, at a multiplicity of about 7 times the mean value

No significant energy dependence

Similar rise for open and closed charm (caveat: different p_T and y range)

J/ψ production vs hadronic multiplicity

- Models describe the lower multiplicity data, while they deviate at high multiplicity
- Models attribute the observed behavior to different underlying processes:
 - EPOS3 and PYTHIA: include MPI
- Kopeliovich: high multiplicities reached via contribution of higher Fock states
- Percolation: mimic MPI via interactions of colour sources with finite spatial extension

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

Experimental pA landscape

Facility	Experiment	System	√s _{NN} (GeV)	y _{cms} range	Data taking	
	NASO	p-Be Al Cu Ag W/ Ph	27	-0.4 <y<0.6< th=""><th>1996-</th></y<0.6<>	1996-	
CDC	NA30	p-be, Ai, Cd, Ag, W, Pb	29	-0.5 <y<0.5< td=""><td>2000</td></y<0.5<>	2000	
353	NAGO	p-Ro ALCUUD W Rh LL	17	0.3 <y<0.8< td=""><td>2004</td></y<0.8<>	2004	
	NAUU	p-be,Ai,Cu,iii,W,Pb,O	27	-0.1 <y<0.3< td=""><td colspan="2">2004</td></y<0.3<>	2004	
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5*< th=""><th>~1996</th></y<2.5*<>	~1996	
HERA HERA-B		p-C, Ti, W	42	-1.5 <y<0.8< th=""><th colspan="2">2002</th></y<0.8<>	2002	
ршс	PHENIX,	d-Au	200	-2.2 <y<2.4< th=""><th>>2003</th></y<2.4<>	>2003	
ппс	STAR	p-Al, Au	200	1.2< y <2.2	2015	
	ALICE			-4.46 <y<3.53< th=""><th></th></y<3.53<>		
	ATLAS		5020	-2.87 <y<1.94< th=""><th colspan="2" rowspan="3">2013 2016</th></y<1.94<>	2013 2016	
LHC	CMS	p-Pb	8016	-2.87 <y<1.93< th=""></y<1.93<>		
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""></y<4.0<></y<-2.5 		

a large wealth of data has been collected in pA/dA collisions, in parallel with QGP studies in heavy-ion collisions

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

May 3<u>1st 2017</u>

Experimental pA landscape

Facility	Experiment	System	√s _{NN} (GeV)	y _{cms} range	Data taking	
	NAFO		27	-0.4 <y<0.6< td=""><td>1996-</td><td></td></y<0.6<>	1996-	
SDC	NAJU	р-ве,ді,са,дд,т,го	29	-0.5 <y<0.5< td=""><td>2000</td><td></td></y<0.5<>	2000	
373	NAGO	p-Ro Al Cullo W Rb LL	17	0.3 <y<0.8< td=""><td>2004</td><td></td></y<0.8<>	2004	
	NAUU	p-be,Al,Cu,III,W,Pb,O	27	-0.1 <y<0.3< td=""><td>2004</td><td></td></y<0.3<>	2004	
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5*< td=""><td>~1996</td><td></td></y<2.5*<>	~1996	
HERA	HERA-B	p-C, Ti, W	42	-1.5 <y<0.8< td=""><td>2002</td><td></td></y<0.8<>	2002	
ршс	PHENIX,	NIX, d-Au		-2.2 <y<2.4< th=""><th>>2003</th><th></th></y<2.4<>	>2003	
ппс	STAR	p-Al, Au	200	1.2< y <2.2	2015	
	ALICE			-4.46 <y<3.53< td=""><td colspan="2"></td></y<3.53<>		
ATLAS			5020	-2.87 <y<1.94< td=""><td>2012</td><td></td></y<1.94<>	2012	
LHC	CMS	p-Pb	8016	-2.87 <y<1.93< td=""><td>2015</td><td></td></y<1.93<>	2015	
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td><td></td></y<4.0<></y<-2.5 		

Fixed target experiments: Data collected on several A targets

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

Experimental pA landscape

Facility	Experiment	System	√s _{NN} (GeV)	y _{cms} range	Data taking	
	NASO	p-Bo ALCU Ad W Pb	27	-0.4 <y<0.6< td=""><td>1996-</td><td></td></y<0.6<>	1996-	
CDC	NA30	p-be,Al,Cu,Ag,W,Fb	29	-0.5 <y<0.5< td=""><td>2000</td><td></td></y<0.5<>	2000	
373	NASO	p-Ro Al Cullo W/ Ph Ll	17	0.3 <y<0.8< td=""><td>2004</td><td></td></y<0.8<>	2004	
	NAUU	p-be,Al,Cu,iii,W,Pb,O	27	-0.1 <y<0.3< td=""><td>2004</td><td></td></y<0.3<>	2004	
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5*< td=""><td>~1996</td><td>ſ</td></y<2.5*<>	~1996	ſ
HERA	HERA-B	p-C, Ti, W	42	-1.5 <y<0.8< td=""><td>2002</td><td></td></y<0.8<>	2002	
ршс	PHENIX,	d-Au	200	-2.2 <y<2.4< td=""><td>>2003</td><td></td></y<2.4<>	>2003	
ппіс	STAR	p-Al, Au	200	1.2< y <2.2	2015	
	ALICE			-4.46 <y<3.53< td=""><td></td><td></td></y<3.53<>		
	ATLAS		5020	-2.87 <y<1.94< td=""><td>2012</td><td></td></y<1.94<>	2012	
LHC CMS		p-Pb	8016	-2.87 <y<1.93< td=""><td>2013</td><td></td></y<1.93<>	2013	
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td><td></td></y<4.0<></y<-2.5 		

Collider experiments usually p vs a single beam specie

forward and backward y range might be covered

Roberta Arnaldi

Precision spectroscopy of QGP properties with jets and heavy quarks

How charmonium is studied in pA?

Varying the amount of nuclear matter crossed by cc pair e.g. studying J/ψ production vs. A or centrality

Selecting the kinematics of quarkonium states

e.g. selecting events where the resonance is formed inside or outside the nucleus

Comparing the behavior of different resonances

$$\mathbf{1} \sigma_{J/\psi}^{pA} = \sigma_{J/\psi}^{pp} A e^{-\langle \rho L \rangle \sigma_{abs}}$$

the larger σ_{abs} , the more important the CNM effects

 $\alpha = 1$ \rightarrow no nuclear effects $\alpha \neq 1$ \rightarrow nuclear effects

$$\begin{array}{c} \hline \mathbf{3} \quad R_{J/\psi}^{pA} = \frac{\sigma_{J/\psi}^{pA}}{A \sigma_{J/\psi}^{pp}} \end{array}$$

(2) $\sigma_{I/\psi}^{pA} = \sigma_{I/\psi}^{pp} \overline{A^{\alpha}}$

R_{pA}= 1 → no nuclear effects R_{pA} ≠ 1 → nuclear effects

 σ_{abs} and α are "effective" quantities which quantify the size of CNM effects

Results from SPS

A significant reduction of charmonium yields per NN collision is observed

reduction interpreted as due to "nuclear absorption" of the cc pair in medium

stronger absorption for the less bound state $\psi(2S)$ at mid-y

Nucleus crossing time comparable or larger than charmonium formation time: → fully formed resonances traverse the nucleus

Fitting with
$$\sigma_{J/\psi}^{pA} = \sigma_{J/\psi}^{pp} \cdot A \cdot e^{-\langle \rho L \rangle \sigma_{abs}}$$

 $\sigma_{abs} J/\psi = 4.5 \pm 0.5 \text{ mb}$ $\sigma_{abs} \psi(2S) = 8.3 \pm 0.9 \text{ mb}$

May 31st 2017

J/ψ as a function of x_F

Compilation of J/ ψ results obtained in several fixed target experiments

 J/ψ yield in pA is modified with respect to pp collisions, with a strong kinematic dependence

- $\bullet \alpha$ strongly decreases with x_{F}
- for a fixed x_F , CNM are stronger at lower \sqrt{s}

May 31st 2017

J/ψ as a function of x_F

Precision spectroscopy of QGP properties with jets and heavy quarks

Compilation of J/ ψ results obtained in several fixed target experiments

Roberta Arnaldi

 J/ψ yield in pA is modified with respect to pp collisions, with a strong kinematic dependence

- α strongly decreases with x_F
- for a fixed x_F , CNM are stronger at lower \sqrt{s}

Theoretical description over the full x_F range still difficult!

pA-dA data taking at RHIC

Several collision systems and energy investigated at RHIC:

Significant improvements: STAR

 \rightarrow dimuon trigger with MTD, enhancing J/ ψ and Υ capabilities PHENIX

 \rightarrow VTX and FVTX improving tracking and vertexing

M_{1,*1}. [GeV/c²]

lyl<0.5, p_{T,\u03c9}>0 GeV/o N_{u(20)}=87, S/B=1:5.3

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks May 31st 2017

pA data taking at LHC

PPb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

ALICE and LHCb data are collected with two beam configurations: p-Pb and Pb-p, with $\Delta y = 0.465$

pA results from RHIC and LHC

All quarkonium states have been extensively studied in pA (dA) collisions

			J/ψ				ψ (2 S)				Υ	
	рТ	У	centrality	multip.	рТ	У	centrality	multip.	рТ	У	centrality	multip
		√s _{NN} = 5.02 TeV										
ALICE	x	x	X	x	x	x	x		x	x		
ATLAS	x	x	X	x	x	x	x	x	x	x	x	x
CMS	x	x		x	x	x						x
LHCb	x	x			x	x			x	x		
		√s _{NN} = 200 GeV										
PHENIX	x	x	x			x	x	x		x		
STAR	x	x	x							x		

pA results from RHIC and LHC

Analysis of the pA data at $\sqrt{s_{NN}} = 8.16$ TeV still at the beginning...

			J/ψ				ψ(2S)				Ŷ	
	рТ	У	centrality	multip.	рТ	У	centrality	multip.	рТ	у	centrality	multip
				√s _{NN} = 8.16 TeV								
ALICE	x	x										
ATLAS												
CMS												
LHCb	x	x										

May 31st 2017

$J/\psi R_{pA}$ at RHIC

 $J/\psi R_{pA}$ shows a slightly increasing trend towards high p_T

Shadowing models predicts R_{pA} slightly higher than unity

→ Is there room for other CNM effects on top of shadowing?

$J/\psi R_{pA}$ at RHIC

 $J/\psi R_{pA}$ shows a slightly increasing trend towards high p_T

Shadowing models predicts R_{pA} slightly higher than unity

Data seems to allow the inclusion of an additional contribution, as the cc break up in medium, on top of shadowing

$J/\psi R_{pA}$ at RHIC: pAu vs dAu

 $R_{\rm dAu}$ pattern is consistent, within uncertainties, with $R_{\rm pAu}$ at the same energy

→ (rather) similar CNM effects in pAu and dAu

→but R_{dA} may be increasing faster with p_T (at $p_T \sim 3.5$ -5GeV, significance is 1.4 σ)

$J/\psi R_{dAu}$ at RHIC

 R_{dAu} shows a p_{T} and y dependent trend:

- CNM effects are stronger at low p_T
- R_{dAu} approaches unity at high p_T
- CNM effect are more sizeable at forward-y

Models based on shadowing + ccbar breakup describe R_{dAu} , except for central collisions and negative y

Global Scale Uncertainty 8.6%

EK\$98 σ_{abs} = 4.2 mb

J/ψ in d+Au at√s_{MM}=200 GeV

Centrality 0-20%

Centrality 60-88%

Precision spectroscopy of QGP properties with jets and heavy quarks Roberta Arnaldi

prompt and non-prompt J/ ψ at LHC

prompt and non-prompt J/ ψ are separated through 2D fit to mass and pseudo-proper decay time

LHCb-PAPER-2017-014

Roberta Arnaldi

Precision spectroscopy of QGP properties with jets and heavy quarks

Fraction of J/ψ from B

Fraction of J/ψ from B can be evaluated as

 $F_B = \frac{\sigma_{non \ prompt \ J/\psi}}{\sigma_{prompt \ J/\psi} + \sigma_{non \ prompt \ J/\psi}}$

Similar $p_{\rm T}$ dependence in pp, pPb and Pbp

 $F_{\rm B}$ increases from 10% at low $p_{\rm T}$ up to 40-60% at high $p_{\rm T},$ with a weak y dependence

$$J/\psi R_{pA}$$
 at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

$J/\psi R_{pA}$ vs rapidity: theory comparison

Good agreement between ALICE and LHCb data Results described by models based on shadowing and/or energy loss

Size of theory uncertainties (mainly shadowing) still limits a more quantitative comparison

30

Rapidity dependence of $J/\psi R_{pA}$

CMS: high p_T

Mid-y R_{pA} for high $p_T J/\psi$ is slightly higher than unity

Shadowing implementations tend to underestimate the size of CNM effects

ALICE maximum p_T reach at mid y is 10GeV/c \rightarrow R_{pA} , significantly smaller than the CMS one, reflects the p_T coverage

ALICE: low p_T

$p_{\rm T}$ dependence of J/ $\psi R_{\rm pA}$

 $p_{\rm T}$ coverage extended up to 20 GeV/c in Run2

p-going: R_{pA} increases with p_T
 Pb-going : R_{pA} rather constant

The strong J/ ψ suppression observed in Pb-Pb data at high p_{T} cannot be due to CNM effects

Roberta Arnaldi

Precision spectroscopy of QGP properties with jets and heavy quarks May 31st 2017

$p_{\rm T}$ dependence of J/ $\psi R_{\rm pA}$: theory comparison

$J/\psi R_{pA}$ at high p_T

 $R_{\rm pA}$ of high $p_{\rm T}$ prompt J/ ψ shows

- values slightly higher than unity at mid and backward rapidity
- hint for stronger CNM effects at the edges of the y domain

forward

May 31st 2017

backward

$J/\psi R_{pA}$ at high p_T

Different shadowing implementations describe the data trend (even if slightly at the lower edge)

May 31st 2017

35

Comparison among experiments

Compilation of results from different experiments shows

- Good compatibility in close rapidity ranges
- Broad p_T coverage from 0 to 30 GeV/c

Pattern confirms strongest CNM effects at low p_T and forward y

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

Comparison among experiments

Same decreasing trend towards low pT observed also at mid-rapidity

May 31st 2017

R_{pA} of non-prompt J/ ψ

Agreement between 5.02 and 8.16TeV results Small CNM effects on non-prompt J/ ψ Overall agreement with FONLL+EPS09NLO

Complementary y range covered by ATLAS, CMS and LHCb (but a different p_T range)
 Consistent ATLAS and CMS results
 no y dependence for high p_T non-prompt J/ψ

May 31st 2017

R_{pA} of non-prompt J/ ψ

complementary LHCb and CMS results

High p_T non-prompt J/ ψ show negligible CNM effects

weak p_T dependence, significant only in the LHCb domain, where it reaches 30%

39

May 31st 2017

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

ψ (2S) as a function of x_F

Being more weakly bound than the J/ ψ , the ψ (2S) is an interesting probe to have further insight on the charmonium behaviour in pA

 ψ (2S) production is modified by CNM effects depending on its kinematic

mid-y $\psi(2S)$ suppression stronger than J/ ψ one, (x_F~0): \rightarrow break-up of fully formed resonance traversing the nucleus

charmonium formation time < crossing time

suppression becomes roughly identical → dominated by energy loss

charmonium formation time>crossing time

Experiment	√s (GeV)	τ (fm/c)	
NA50/60	17-27	0.29-0.34	$\tau - \underline{\langle L \rangle}$
E866	38.8	0.28-0.02	$c_c(\beta_Z \gamma)$
HERA-B	41.6	0.28-0.003	

McGlinchey, Frawley, Vogt PRC 87 054910

May 31st 2017

Roberta Arnaldi

Precision spectroscopy of QGP properties with jets and heavy quarks

ψ (2S) in pA collisions

\blacksquare at RHIC and LHC energies, $\psi(2S)$ suppression stronger than the J/ ψ one

unexpected because time spent by the cc pair in the nucleus (τ_c) is shorter than charmonium formation time (τ_f)

→ break up of the fully formed resonance in the nuclear medium should not play a role

	√s (GeV)	τ (fm/c)
PHENIX	200	fw-y: 0.0035 bck-y: 0.28
ALICE	2760	fw-y: 10 ⁻⁴ -10 ⁻⁵ bck-y: 3-7 10 ⁻²

McGlinchey, Frawley, Vogt PRC 87 054910

May 31st 2017

shadowing and energy loss, almost identical for J/ ψ and ψ (2S), do not account for the different suppression

ψ (2S) in pA collisions at RHIC

\blacksquare at RHIC and LHC energies, ψ (2S) suppression stronger than the J/ ψ one

Suppression is more important at backward-y

Final state effects needed to explain the behaviour

May 31st 2017

ψ (2S) RpA at LHC

Stronger $\psi(2S)$ suppression with respect to the J/ ψ one, mainly: at backward rapidity

at the low(est) p_T

Backward-y: size of $\psi(2S)$ suppression rather similar between ALICE and CMS Forward-y: suppression is more important in the ALICE p_T range Comparison with models in the high p_T range would be interesting!

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

ψ (2S) in pA collisions at LHC

Suppression is stronger in central collisions

May 31st 2017

Clear evidence for a stronger ψ (2S) suppression, wrt J/ ψ , at backward rapidity

QGP+hadron resonance gas (Rapp) or comover (Ferreiro) models describe the stronger $\psi(2S)$ suppression

ψ (2S) in pA at RHIC and LHC

Under the assumption that the $\psi(2S)$ is suppressed by final state effects, RHIC and LHC results can be compared in terms of comoving particle densities

Largest comoving particle density reached at LHC, at backward-y

Backward-y RHIC data reach a similar comoving particle density as forward LHC

Double ratio decreases, increasing the comoving particle density \rightarrow Consistent with the ψ (2S) break-up in final state interactions

ψ (2S) in pA at RHIC and LHC

Relative J/ ψ and ψ (2S) suppression is studied as a function of the crossing times

Within uncertainties a scaling between RHIC and LHC is observed

At backward-y, where the largest $\tau_{\rm c}$ are reached, a decreasing trend is observed

→ Even if the quarkonium formation time is larger than τ_c , is a fraction of the cc pairs hadronizing inside the nucleus?

At forward-y, $\tau_c << \tau_f$ by 2-3 order of magnitude.

→ In principle no final state effects related to cold nuclear matter can play a role, only comover interaction

May 31st 2017

Υ in pA and dA at RHIC

 Υ (1S+2S+3S) measured in both pA and dA

- Large uncertainties for R_{dAu} prevent a clear understanding of the Υ y-evolution
- Need for bb break-up in nucler matter not obvious

New STAR R_{pA} (~0.8), with improved precision wrt R_{dAu} , suggest cold nuclear matter effects on $\Upsilon(1S+2S+3S)$ at mid-y

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

RpA Y(1S) at LHC

Wide y coverage explored by ALICE, ATLAS and CMS

 p_T dependence not conclusive so far

ALICE and LHCb compatible within uncertainties, but LHCb values systematically larger

Hint for a stronger $\Upsilon(1S)$ suppression at forward-y in ALICE data, while mid- and backward-y is compatible with no modification

 $R_{pA} \Upsilon(1S)$ at LHC

0.6

0.4

0.2

CEM+EPS09 NLO (Vogt, arXiv:1301.3395 and priv.comm.)

cms

Eloss (Arleo et al., JHEP 1303 (2013) 122):

ELoss + EPS09 NLO

ELoss

At backward-y, models tend to be closer to LHCb measurement, while they overestimate the ALICE R_{pA}

Excited Υ states

ATLAS suggests no difference between excited and ground states, even is still compatible with CMS within uncertainties

Excited bottomonium states are more suppressed than the ground state already in pA collisions

 → Similar initial state effects for all the Y states
 → Suggestive of final state effects at play on 2S and 3S states?

Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

Excited Υ states

Suppression increases with event multiplicity, but with a different trend depending on the adopted estimator

Larger number of particles produced with ground state or suppression of excited states?

Self normalized ratios vs event activity

Increase of the self-normalized yields vs event activity

Compatible trends observed by ATLAS and CMS

Precision spectroscopy of QGP properties with jets and heavy quarks Roberta Arnaldi

Conclusions

Several quarkonium states now accessible with high precision in p-A and d-A

Interplay of shadowing and energy loss describes J/ψ and Υ production in p-Pb Stronger suppression observed on $\psi(2S)$ due to QGP-like effects in pA

Many new results still to come....

May 31st 2017