QGP tomography through boosted objects

Liliana Apolinário (LIP)

Guilherme Milhano, Carlos Salgado and Gavin Salam (LIP, USC, CERN)

Work partially included in FCC-hh report arXiv:1605.01389

May 2017 INT Program INT-17-1b Workshop, Seattle, USA

HIC Probes: Road so far…

- What we measured so far? What properties can we assess?
	- ✦ Jet RAA, Jet energy loss (dijets, Z/Jet, photon/Jet), Missing p_T , ...
		- ✦ Average behaviours of in-medium showering, possible path-length dependence, amount of backreaction (?)…
	- Intra-Jet observables (Jet Shapes, Splitting Functions)
		- \rightarrow Intrinsic properties of QCD in the presence of hot and dense medium

HIC Probes: Road so far…

- What we measured so far? What properties can we assess?
	- Jet R_{AA}, Jet energy loss (dijets, Z/Jet, photon/Jet), Missing p_T , ...
		- ✦ Average behaviours of in-medium showering, possible path-length dependence, amount of backreaction (?)…
	- Intra-Jet observables (Jet Shapes, Splitting Functions)
		- ✦ Intrinsic properties of QCD in the presence of hot and dense medium

All of them are the integrated result over the whole medium evolution…

QGP Time Evolution

- Is it possible to assess different time intervals of the medium evolution?
	- ✦ Using sources of QCD particles that are delayed in time:
		- \div t + tbar \rightarrow b + bbar + W⁺ + W⁻ \rightarrow q + qbar + nu + mu
			- Hadronic W boson: probe of the medium
			- Leptonic W boson: tagging
		- Top lifetime at rest: \sim 0.15 fm/c
		- ✦ W boson lifetime at rest: ~0.10 fm/c

QGP Time Evolution

LHC (5.5 TeV) and FCC (39 TeV) centre-of-mass energies large enough to probe different timescales as a function of the probe p_T :

QGP Time Evolution

LHC (11 TeV) and FCC (39 TeV) centre-of-mass energies large enough to probe different timescales as a function of the probe p_T :

LHC (5.5 TeV)

FCC (39 TeV)

• assume 50% eniclency for two b-tags

Jet Quenching *•* assume no background

10% centrality *•* assume about 50% of cross section for 10% centrality

← Moreover, p boson hadronic decay is the natural setup to study of 5 fm/*c* – coherence effects; $\frac{1}{2}$ $\mathcal{L}_{\mathcal{A}}$ you can control the lifetime by selecting the pT of the top (or the top) enects: dover that time.

Medium able to "see" both particles Color correlation is broken Both particle emit independently Medium "sees" both particles as one single emitter Particles emit coherently $\theta_{q\bar{q}}$ $\theta_{r\perp}$ $\frac{1}{\Delta_{\rm med}}\sum_{\approx}^{\infty}\prod_{\rm exp}^{\infty}\prod_{\rm exp}^{\infty}$ length med ¹² *^Q*² *^s r*² med 1 (A two scale problem) length: L $\overline{\mathbf{b}}$ defined by $q\overline{q}$ • The decoherence paran $\Delta_{\rm med}^{\rm L} \approx 1 - \exp[-\frac{1}{12}\cos(\theta_{\rm end})]$ • *CDipole regime* $\overline{\text{Median}}$ $\overline{\theta_{q\bar{q}}}$ is t a \it{t} ticle $\hat{q}\theta_{q\bar{q}}^2$ A sensible value for \hat{q} is $\hat{q} = 4 \text{ GeV}^2/\text{ fm}$. If we translate that time) we get 2*/*3 *Mehtar-Tani, Salgado & Tywoniuk, 1205.5739*

$$
t_d = 0.31 \text{ fm} \times \dot{\theta}_{q\bar{q}}^{+2/3} \qquad \qquad
$$

^r qq¯ *^Q*¹

 length med ¹ med 1999 van de 1999 van d

• Hard scale:

Pictures

7 • CMS event display http://media4.s-nbcnews.com/j/ _new/101130-cern-RhoPhi-hugesalgerei-dolaGx120cuj20g)

• assume 50% eniclency for two b-tags

Jet Quenching *•* assume no background

10% centrality *•* assume about 50% of cross section for 10% centrality

← Moreover, p boson hadronic decay is the natural setup to study of 5 fm/*c* – coherence effects; $\frac{1}{2}$ $\mathcal{L}_{\mathcal{A}}$ you can control the lifetime by selecting the pT of the top (or the top) \mathbb{R}^n and exploiting time distribution of \mathbb{R}^n enects: dover that time.

 $Q_s < \theta_{\text{NA}}$ Qs ~ θqqL scale: • The decoherence parameter ∂_{s} leading • $r_{\perp} < Q_{s}^{-1}$ (Dipole · The decoherence Decoherence time. Ref. [1] gives this without the leading \sum_{r} $r \geq 0^{-1}$ (Dipole) numerical factors we should have

Medium able to "see" both particles Color correlation is broken Both particle emit independently Medium "sees" both particles $\frac{1}{2}$ as $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ one single emitter Particles emit coherently length med ¹² *^Q*² *^s r*² med 1 (A two scale problem) length: L $\overline{\mathbf{b}}$ defined by $q\overline{q}$ coefficient: \hat{q} Medium t a \it{t} ticle $\begin{pmatrix} 3 \end{pmatrix}$ $\hat{q}\theta_{q\bar{q}}^2$

 $\frac{1}{\Delta_{\rm med}}\sum_{\approx}^{\infty}\prod_{\rm exp}^{\infty}\prod_{\rm exp}^{\infty}$ • The decoherence paran $\Delta_{\rm med}^{\rm L} \approx 1 - \exp[-\frac{1}{12}\cos(\theta_{\rm end})]$ A sensible value for \hat{q} is $\hat{q} = 4 \text{ GeV}^2/\text{ fm}$. If we translate that

• *CDipole regime* time) we get $t_d = 0.31 \text{ fm} \times \theta_{q\bar{q}}^{+2/3}$ \leftrightarrow Increase even more the time delay allowing to have a complete mapping of the QGP evolution:

Pictures \triangleleft Stay in colourless singlet state during: $t_d =$ (12)

7 • Hard scale: • CMS event display http://media4.s-nbcnews.com/j/ _new/101130-cern-RhoPhi-hugesalgerei-dolaGx120cuj20g) $\hat{q}\theta^2_{q\bar{q}}$

 $(Dipole regime)$

 $1/\overline{\beta}$ ransport

 $\frac{1}{3}$

 $\sqrt{\frac{1}{3}}$

^r qq¯ *^Q*¹

 length med ¹ med 1999 van de 1999 van d

 \hat{q} \uparrow

Mehtar-Tani, Salgado & Tywoniuk, 1205.5739

 $\overline{\theta_{q\bar{q}}}$ is

Available Time Scales

Total delay time:

✦ Boosted top lifetime + Boosted W lifetime + Decoherence Time

LHC (5.5 TeV)

FCC (39 TeV)

Available Time Scales

Total delay time:

✦ Boosted top lifetime + Boosted W lifetime + Decoherence Time

LHC (5.5 TeV)

FCC (39 TeV)

Available Time Scales

Total delay time:

✦ Boosted top lifetime + Boosted W lifetime + Decoherence Time

LHC (5.5 TeV)

FCC (39 TeV)

 \Rightarrow Density medium increases by a factor 2, the total decay time decreases by 20%

Simple analysis to make a proof of principle

Simulation Parameters

✦ POWHEG (hard event) + PYTHIA 8 (parton shower)

LHC - HL FCC

- ✦ 5.5 TeV/nucleon
- \triangleleft L_{int} = 10 nb⁻¹
- \div A = 208 (Pb)
- ✦ 0-10% centrality class (~42% of ttbar events)

- 39 TeV/nucleon
- $\div L_{\text{int}} = 30 \text{ nb}^{-1}$
- \div A = 208 (Pb)
- ✦ 0-10% centrality class (~42% of ttbar events)

No HI background. No detector effects.

Cross-section

Total cross-sections compatible with NLO CT14 calculations:

 $\sigma_{ttbar \rightarrow qqbar + \mu v}$ ~ 10 pb (LHC) and 1 nb (FCC)

LHC (5.5 TeV)

FCC (39 TeV)

No significant distortion of the top pt spectrum from the jet reconstruction procedure

Cross-section

Total cross-sections compatible with NLO CT14 calculations:

 $\sigma_{ttbar \rightarrow qqbar + \mu v}$ ~ 10 pb (LHC) and 1 nb (FCC)

No significant distortion of the top pt spectrum from the jet reconstruction procedure

Cross-section

Total cross-sections compatible with NLO CT14 calculations:

 $\sigma_{ttbar \rightarrow qqbar + \mu v}$ ~ 10 pb (LHC) and 1 nb (FCC)

Number of expected reconstructed events

Cross-section

Enough statistics up to Top pt = [700-900] GeV

- ✦ Event with at least:
	- 1 (isolated) muon, $p_T > 25$ GeV, $|\eta| < 2.5$.
	- ✦ 2 b jets (assumed 70% efficiency each)
	- \geq 2 non-b jets

- ✦ Event with at least:
	- 1 (isolated) muon, $p_T > 25$ GeV, $|\eta| < 2.5$.
	- ✦ 2 b jets (assumed 70% efficiency each)
	- \geq 2 non-b jets

- ✦ Event with at least:
	- 1 (isolated) muon, $p_T > 25$ GeV, $|\eta| < 2.5$.
	- ✦ 2 b jets (assumed 70% efficiency each)
	- \geq 2 non-b jets

- ✦ Event with at least:
	- 1 (isolated) muon, $p_T > 25$ GeV, $|\eta| < 2.5$.
	- ✦ 2 b jets (assumed 70% efficiency each)
		- \geq 2 non-b jets

- ✦ Event with at least:
	- 1 (isolated) muon, $p_T > 25$ GeV, $|\eta| < 2.5$.
	- ✦ 2 b jets (assumed 70% efficiency each)
		- \ge = 2 non-b jets

- \rightarrow Anti-k_T jets with R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$.
	- Recluster with k_T algorithm, R = 1.0 and decluster with dcut = $(20GeV)^2$

- \rightarrow Anti-k_T jets with R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$.
	- Recluster with k_T algorithm, R = 1.0 and decluster with dcut = $(20GeV)^2$

- \rightarrow Anti-k_T jets with R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$.
	- Recluster with k_T algorithm, R = 1.0 and decluster with dcut = $(20GeV)^2$

- \rightarrow Anti-k_T jets with R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$.
	- Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (20GeV)2

Reclusters with larger R and find sub-jets with $p_{T,rel}$ > $\sqrt{d_{\text{cut}}}$

- \rightarrow Anti-k_T jets with R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$.
	- Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (20GeV)2 top-decay-product merging prob (R=0.3) at fcc39 PbPb

- The W jet is taken to be the 2 non-b jets with the highest scalar p_t sum; reconstructed W Mass < 130 GeV;
- ✦ "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

- The W jet is taken to be the 2 non-b jets with the highest scalar p_t sum; reconstructed W Mass < 130 GeV;
- ✦ "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

Top reconstructed with the wrong b-jet

- The W jet is taken to be the 2 non-b jets with the highest scalar p_t sum; reconstructed W Mass < 130 GeV;
- ✦ "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

Top reconstructed with the right b-jet

Jet Quenching Model

Very simplistic picture of jet quenching:

Jet-by-jet gaussian fluctuations as $1/\sqrt{pt}$ (normalized at 100 GeV)

Jet Quenching Model

Very simplistic picture of jet quenching:

- Jet-by-jet gaussian fluctuations as $1/\sqrt{pt}$ (normalized at 100 GeV)
- \div Z + Jet: Delta p_T in [5-10%] (low p_T) to [10-15%] (high p_T)

CMS-PAS-HIN-15-013 (Average momentum imbalance Z + Jet)

Jet Quenching Model

Very simplistic picture of jet quenching:

- Jet-by-jet gaussian fluctuations as $1/\sqrt{pt}$ (normalized at 100 GeV)
- Z + Jet: Delta p_T in [5-10%] (low p_T) to [10-15%] (high p_T)
- Our model: 10% of energy loss to all coloured particles

Jet Mass with pT

Statistical significance using a bootstrap analysis (~60 samples)

Possible to distinguish quenched from unquenched jet masses

Jet coherence

- To study jet coherence we applied 2 simple models:
	- "antenna": energy loss applied to all colourful partons except the decay products of the hadronic W boson
	- ✦ "leading qqbar": energy loss applied to all coloured partons except the leading qqbar from the decay of the hadronic W boson

Absolute value of jet mass can give information on the "degree" of coherence of the system

- \rightarrow Finite lifetimes can be enhanced by boosting high-p_T particles (top and W);
- Together with a color singlet probe (W), it is possible to have an object that starts interacting with the medium in late times;
- \rightarrow Finite lifetimes can be enhanced by boosting high-p_T particles (top and W);
- Together with a color singlet probe (W) , it is possible to have an object that starts interacting with the medium in late times;

Reconstructed masses clearly different with jet quenching :

- Quenching scenarios (amount of energy)
- Jet coherence/decoherence scenarios
- \rightarrow Finite lifetimes can be enhanced by boosting high-p_T particles (top and W);
- Together with a color singlet probe (W), it is possible to have an object that starts interacting with the medium in late times;

Reconstructed masses clearly different with jet quenching :

- Quenching scenarios (amount of energy)
- Jet coherence/decoherence scenarios

Can we go further?

In theory, one can probe select timescales of the medium by using $p_T > p_{T,\text{Cut}}$

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
	- \triangle \triangle E/E = $(\tau$ -t)/ τ * 0.1

- τ = Total medium lifetime
	- t = "total" delay time $(top + W + coh)$

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
	- \triangle \triangle E/E = $(\tau$ -t)/ τ * 0.1

Remaining hadronic particles lose always 10% of energy.

- τ = Total medium lifetime
	- t = "total" delay time $(top + W + coh)$

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
	- $\triangle E/E = (\tau-t)/\tau * 0.1$

Remaining hadronic particles lose always 10% of energy.

 τ = Total medium lifetime

```
t = "total" delay time 
(top + W + coh)
```


Depending on the chosen p_T , the antenna may still lose some energy.

Knowing the energy loss, it is possible to build the density evolution profile of the medium!

- ✦ Toy model to study the effect of "switching-off" the jet interaction for some time t;
	- Build up a picture of the density evolution:
		- $[0.5 2.5]$ fm @ FCC
	- Main limitation: high statistics needed
- Toy model to study the effect of "switching-off" the jet interaction for some time t;
	- Build up a picture of the density evolution:
		- $[0.5 2.5]$ fm @ FCC
	- **Main limitation: high statistics needed**

- How about at current accelerators?
	- LHC 5 TeV; LHC 11 TeV?
	- ✦ What would be the luminosity needed to probe a given time scale of the produced medium?

Available statistics at LHC and FCC

Expected number of events:

LHC 11 TeV (L = 10 nb⁻¹) and FCC 39 TeV (L = 30 nb⁻¹)

LHC (11 TeV)

FCC (39 TeV)

Available statistics at LHC and FCC

Expected number of events:

LHC 11 TeV (L = 10 nb⁻¹) and FCC 39 TeV (L = 30 nb⁻¹)

LHC (11 TeV)

FCC (39 TeV)

Statistics increase at least 10% when using minimum Top pt

Time scales for minimum Top pt

Total delay time average value for Top pt vs minimum Top pt:

 \sqrt{s} = 39 TeV (FCC)

Top pt bins

Minimum Top pt

Timescales vs Luminosity

- Reconstructed W jet should have at least 100 events (statistical significance ∼ 1 GeV) above the estimated background
	- Fluctuations 1/ $\sqrt{\text{pt}}$; Energy Loss 10%; τ_{m} = 5.0 fm

Energy Configuration vs Timescale Sensitivity

Timescales vs Luminosity

- Reconstructed W jet should have at least 100 events (statistical significance ∼ 1 GeV) above the estimated background
	- Fluctuations 1/ $\sqrt{\text{pt}}$; Energy Loss 10%; τ_{m} = 5.0 fm

Energy Configuration vs Timescale Sensitivity

✦ First proof-of-principle analysis of boosted objects in heavy-ions;

- ✦ First proof-of-principle analysis of boosted objects in heavy-ions;
- Study of top quarks and their decays has a unique potential to resolve the time dimension in jet-quenching studies of the QGP.

- First proof-of-principle analysis of boosted objects in heavy-ions;
- Study of top quarks and their decays has a unique potential to resolve the time dimension in jet-quenching studies of the QGP.
- But it is needed a sufficiently large sample of t tbar \rightarrow q qbar μ v
	- Sensitivity to the longer timescales given by the high- p_t tail
	- ✦ At the LHC, with currently planned luminosity, this analysis is barely possible… But with higher centre-of-mass energy and/or a significant increase in the luminosity it should be possible to study the evolution of the QGP over the first couple of fm/c.

- First proof-of-principle analysis of boosted objects in heavy-ions;
- Study of top quarks and their decays has a unique potential to resolve the time dimension in jet-quenching studies of the QGP.
- But it is needed a sufficiently large sample of t tbar \rightarrow q qbar μ v
	- Sensitivity to the longer timescales given by the high- p_t tail
	- ✦ At the LHC, with currently planned luminosity, this analysis is barely possible… But with higher centre-of-mass energy and/or a significant increase in the luminosity it should be possible to study the evolution of the QGP over the first couple of fm/c.
- On going work: identify lighter nuclei with sufficient in-medium path length for quenching.

- First proof-of-principle analysis of boosted objects in heavy-ions;
- Study of top quarks and their decays has a unique potential to resolve the time dimension in jet-quenching studies of the QGP.
- But it is needed a sufficiently large sample of t tbar \rightarrow q qbar μ v
	- Sensitivity to the longer timescales given by the high- p_t tail
	- ✦ At the LHC, with currently planned luminosity, this analysis is barely possible… But with higher centre-of-mass energy and/or a significant increase in the luminosity it should be possible to study the evolution of the QGP over the first couple of fm/c.
- On going work: identify lighter nuclei with sufficient in-medium path length for quenching.

Backup Slides

Communication

TANKA

Jet Reconstruction Efficiency

Bound Free Pair Production

- Cross-sections for electromagnetic processes in ultraperipheral collisions is very large:
	- ← Bound-free e^{-e+} pair production creates secondary beams of Pb⁸¹⁺ ions emerging from the collision point;

J. Jowet, Initial Stages 2016

 \mathcal{L}_{2}

G. Baur et al, Phys. Rept. 364

 (2002) 359

Radial wave function of $1s_{1/2}$ state of hydrogen-like atom in its rest frame

Pair production $\propto Z_1^2 Z_2^2$

$$
R_{10}(r) = \left(\frac{Z_1}{a_0}\right)^{1/2} 2 \exp\left(-\frac{Z_1 r}{a_0}\right)
$$

$$
\Rightarrow W(0) \sqcap Z^{3/2} \implies |W(0)|^2 \sqcap
$$

 $\Rightarrow \Psi(0) \Box Z_1^{3/2} \Rightarrow |\Psi(0)|^2 \Box Z_1^3$

Cross section for Bound-Free Pair Production (BFPP) (various authors) $Z_1 + Z_2 \rightarrow (Z_1 + e^{-})_{15, \text{cm}} + e^{+} + Z_2$ has very strong dependence on ion charges (and energy) $\sigma_{\rm pp} \propto Z_1^5 Z_2^2 [A \log \gamma_{\rm CM} + B]$ \propto Z⁷ $\left[\text{Alog}\gamma_{CM} + \text{B}\right]$ for $Z_1 = Z_2$ Total cross-section $\Box Z_2^2 Z_1^5$ 0.2 b for Cu-Cu RHIC \approx 114 b for Au-Au RHIC 281 b for Pb-Pb LHC

> Easy to avoid the bound by going lighter! But lose nucleon-nucleon luminosity as A^2 .