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HIC Probes: Road so far…
✦ What we measured so far? What 

properties can we assess? 

✦ Jet RAA, Jet energy loss (dijets, Z/Jet, 
photon/Jet), Missing pT, … 

✦ Average behaviours of in-medium 
showering, possible path-length 
dependence, amount of back-
reaction (?)… 

✦ Intra-Jet observables (Jet Shapes, 
Splitting Functions) 

✦ Intrinsic properties of QCD in the 
presence of hot and dense 
medium
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HIC Probes: Road so far…
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QUARK-GLUON PLASMA

Deconfined state of quarks and 
gluons: 
➤ first few μs of our universe 
➤ first few fm/c of heavy-ion 

collisions 
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All of them are the integrated result 
over the whole medium evolution…

✦ What we measured so far? What 
properties can we assess? 

✦ Jet RAA, Jet energy loss (dijets, Z/Jet, 
photon/Jet), Missing pT, … 

✦ Average behaviours of in-medium 
showering, possible path-length 
dependence, amount of back-
reaction (?)… 

✦ Intra-Jet observables (Jet Shapes, 
Splitting Functions) 

✦ Intrinsic properties of QCD in the 
presence of hot and dense 
medium



QGP Time Evolution
✦ Is it possible to assess different time 

intervals of the medium evolution? 

✦ Using sources of QCD particles that 
are delayed in time: 

✦ t + tbar → b + bbar + W+ + W-→ q + 
qbar + nu + mu 

✦ Hadronic W boson: probe of the 
medium 

✦ Leptonic W boson: tagging 

✦ Top lifetime at rest: ~0.15 fm/c 

✦ W boson lifetime at rest: ~0.10 fm/c
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QGP Time Evolution
✦ LHC (5.5 TeV) and FCC (39 TeV) centre-of-mass energies large enough to 

probe different timescales as a function of the probe pT:
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QGP Time Evolution
✦ LHC (11 TeV) and FCC (39 TeV) centre-of-mass energies large enough to 

probe different timescales as a function of the probe pT:
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Jet Quenching
✦ Moreover, W boson hadronic decay is the natural setup to study 

coherence effects:
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Medium able to “see” both particles 
Color correlation is broken 

Both particle emit independently

Qs < θqqL

Medium “sees” both particles as 
one single emitter 

Particles emit coherently

Qs ~ θqqL

Saturation 
scale:

Decoherence a high gluon energies
(A two scale problem)
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HARD SCALES IN THE PROBLEM 

- a two scale problem!
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Qs:  characteristic momentum 
scale of the medium

Q2
s = q̂ L r? = �qq̄ L

Transport 
coefficient:: 

Medium 
length: L

top quarks and W’s have finite lifetime (and decay to jets)

➤ you can control the lifetime by selecting the pT of the top (or 
W) and exploiting time dilation 

➤ colour singlet qqbar from W doesn’t start interacting with 
medium right away — the q and qbar need to decohere
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top quark @ rest ~0.15 fm/c

W boson @ rest ~0.10 fm/c

Resolving the time structure of the quark-gluon plasma

with boosted top quarks

Liliana, Guilherme, Gavin and Carlos

July 18, 2016

Abstract

Abstract still to be written

1 Key formulas and numbers

FCC: 39 TeV, 30 nb�1, A = 208
LHC: 5.5 TeV, 10 nb�1, A = 208
Factors to consider

• assume 50% e�ciency for two b-tags

• assume no background

• assume about 50% of cross section for 10% centrality

• People typically assume a medium lifetime of 5 fm/c – but of course it gets quite
diluted over that time.

Decoherence time. Ref. [1] gives this without the leading numerical factors. With the
numerical factors we should have

td =

✓
3

q̂✓2qq̄

◆1/3

(1)

A sensible value for q̂ is q̂ = 4 GeV2/ fm. If we translate that just to units of distance (or
time) we get

td = 0.31 fm⇥ ✓�2/3
qq̄ (2)

Pictures

• CMS event display http://media4.s-nbcnews.com/j/MSNBC/Components/Photo/

_new/101130-cern-RhoPhi-huge.grid-6x2.jpg

1

q̂ is parameter of medium ⇠ 4GeV

2/fm

✓qq̄ is quark-antiquark opening angle

Mehtar-Tani, Salgado & Tywoniuk, 1205.5739

Mehtar-Tani, Salgado, Tywoniuk (2010-2011)  
Casalderrey-Solana, Iancu (2011)
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✦ Increase even more the time delay allowing to have a complete 
mapping of the QGP evolution: 

✦ Stay in colourless singlet state during: td =

✓
12

q̂✓2qq̄

◆1/3



Available Time Scales
✦ Total delay time: 

✦ Boosted top lifetime + Boosted W lifetime + Decoherence Time
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⇒ Density medium increases by a factor 2, the total decay time decreases by 20%



Simple analysis to make a 
proof  of  principle



Simulation Parameters
✦ POWHEG (hard event) + PYTHIA 8 (parton shower)
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✦ 5.5 TeV/nucleon 

✦ Lint = 10 nb-1 

✦ A = 208 (Pb) 

✦ 0-10% centrality class 
(~42% of ttbar events)

✦ 39 TeV/nucleon 

✦ Lint = 30 nb-1 

✦ A = 208 (Pb) 

✦ 0-10% centrality class 
(~42% of ttbar events)

LHC - HL FCC

No HI background. 
No detector effects.



Cross-section
✦ Total cross-sections compatible with NLO CT14 calculations: 

✦ σttbar → qqbar + μν ~ 10 pb (LHC) and 1 nb (FCC)
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No significant distortion of the top pt spectrum from the jet reconstruction procedure
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Jet Reconstruction
✦ Event with at least:

15
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✦ 1 (isolated) muon, pT > 25 GeV, |η| < 2.5. 

✦ 2 b jets (assumed 70% efficiency each) 

✦ >= 2 non-b jets
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Jet Reconstruction
✦ Event with at least:

15
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Missing energy 
requirement?
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Jet Reconstruction
✦ Anti-kT jets with R = 0.3, pT > 30 GeV, |η| < 2.5. 

✦ Recluster with kT algorithm, R = 1.0 and decluster with dcut =  
(20GeV)2
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Jet Reconstruction
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Jet Reconstruction
✦ The W jet is taken to be the 2 non-b jets with the highest scalar pt 

sum; reconstructed W Mass < 130 GeV; 

✦ “Muonic” top is reconstructed assuming b-jet closest to muon (ATLAS 
1502.05923). 

✦ “Hadronic” Top Mass < 250 GeV
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Jet Quenching Model
✦ Very simplistic picture of jet quenching: 

✦ Jet-by-jet gaussian fluctuations as 1/√pt (normalized at 100 GeV)
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Jet Quenching Model
✦ Very simplistic picture of jet quenching: 

✦ Jet-by-jet gaussian fluctuations as 1/√pt (normalized at 100 GeV) 

✦ Z + Jet: Delta pT in [5-10%] (low pT) to [10-15%] (high pT)
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Figure 6: The mean value of the xJZ distribution as a function of the Z boson transverse mo-
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(right).



Jet Quenching Model
✦ Very simplistic picture of jet quenching: 

✦ Jet-by-jet gaussian fluctuations as 1/√pt (normalized at 100 GeV) 

✦ Z + Jet: Delta pT in [5-10%] (low pT) to [10-15%] (high pT) 

✦ Our model: 10% of energy loss to all coloured particles
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✦ Gaussian fit + linear offset

Reconstructed W Mass 
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Fitting region: 30 - 120 GeV
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Jet Mass with pT

✦ Statistical significance using a bootstrap analysis (~60 samples)
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Possible to distinguish 
quenched from 

unquenched jet masses
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Jet coherence
✦ To study jet coherence we 

applied 2 simple models: 

✦ “antenna”: energy loss 
applied to all colourful 
partons except the 
decay products of the 
hadronic W boson 

✦ “leading qqbar”: energy 
loss applied to all 
coloured partons 
except the leading 
qqbar from the decay 
of the hadronic W 
boson
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Absolute value of jet mass can give information 
on the “degree” of coherence of the system



✦ Finite lifetimes can be enhanced by boosting high-pT particles 
(top and W); 

✦ Together with a color singlet probe (W), it is possible to have 
an object that starts interacting with the medium in late times;
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✦ Finite lifetimes can be enhanced by boosting high-pT particles 
(top and W); 

✦ Together with a color singlet probe (W), it is possible to have 
an object that starts interacting with the medium in late times;

✦ Reconstructed masses clearly different with jet quenching : 

✦ Quenching scenarios (amount of energy) 

✦ Jet coherence/decoherence scenarios

✦ Can we go further? 

✦ In theory, one can probe select timescales of the medium 
by using pT > pT,Cut



Time Dependent Energy Loss 
✦ Very simple model: W decay 

products lose energy as 

✦ ΔE/E = (!-t)/! * 0.1

25

! = Total medium lifetime 
t = “total” delay time  

(top + W + coh)

M
ed

iu
m

 D
en

si
ty

! (fm)t

At t, it decoheres



Time Dependent Energy Loss 
✦ Very simple model: W decay 

products lose energy as 

✦ ΔE/E = (!-t)/! * 0.1

25

! = Total medium lifetime 
t = “total” delay time  

(top + W + coh)

M
ed

iu
m

 D
en

si
ty

! (fm)t

At t, it decoheres

M
ed

iu
m

 D
en

si
ty

! (fm)t

Remaining hadronic particles lose 
always 10% of energy.



Time Dependent Energy Loss 
✦ Very simple model: W decay 

products lose energy as 

✦ ΔE/E = (!-t)/! * 0.1

25

! = Total medium lifetime 
t = “total” delay time  

(top + W + coh)

M
ed

iu
m

 D
en

si
ty

! (fm)t

At t, it decoheres

M
ed

iu
m

 D
en

si
ty

! (fm)t

M
ed

iu
m

 D
en

si
ty

! (fm)t

Remaining hadronic particles lose 
always 10% of energy.



✦ Reconstructed W Jet Mass: 

✦ “Antenna” model only:
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Time Dependent Energy Loss
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✦ Reconstructed W Jet Mass: 

✦ “Antenna” model only:

Time Dependent Energy Loss
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✦ Reconstructed W Jet Mass: 

✦ “Antenna” model only:

Time Dependent Energy Loss
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✦ Reconstructed W Jet Mass: 

✦ “Antenna” model only:

Time Dependent Energy Loss
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✦ Reconstructed W Jet Mass: 

✦ “Antenna” model only:

Time Dependent Energy Loss
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Depending on the chosen pT, the antenna may still lose some energy.  
Knowing the energy loss, it is possible to build the density evolution profile of the medium!

Top Pt (GeV)
0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e 
(fm

/c
)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

)-1 fm2 = 4 GeVqTotal delay time and std. dev (
Coherence Time
W decay Time
Top decay Time

)-1 fm2 = 1 GeVqTotal delay time (

 = 39 TeVs, b b - W+ W→ tt 

Reco Top Pt (GeV)
0 100 200 300 400 500 600 700 800 900

R
ec

o 
Je

t M
as

s 
(G

eV
)

64
66
68
70
72
74
76
78
80
82

 = 1.0 fm/cmτ  = 2.5 fm/cmτ  = 5.0 fm/cmτ

Unquenched Quenched

b b - W+ W→ tt 

 = 39 TeVs

0.65 0.74 0.94 1.18 1.5 2.02 2.5
Time (fm/c)



✦ Toy model to study the effect of “switching-off” the jet 
interaction for some time t; 

✦ Build up a picture of the density evolution: 

✦ [0.5 - 2.5] fm @ FCC 

✦ Main limitation: high statistics needed 



✦ Toy model to study the effect of “switching-off” the jet 
interaction for some time t; 

✦ Build up a picture of the density evolution: 

✦ [0.5 - 2.5] fm @ FCC 

✦ Main limitation: high statistics needed 

✦ How about at current accelerators? 

✦ LHC 5 TeV; LHC 11 TeV? 

✦ What would be the luminosity needed to probe a given time 
scale of the produced medium?



Available statistics at LHC and FCC

✦ Expected number of events: 

✦ LHC 11 TeV (L = 10 nb-1) and FCC 39 TeV (L = 30 nb-1)
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Statistics increase at least 10% when using minimum Top pt



Time scales for minimum Top pt

✦ Total delay time average value for Top pt vs minimum Top pt: 

✦ √s = 39 TeV (FCC)
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Timescales vs Luminosity
✦ Reconstructed W jet should have at least 100 events (statistical 

significance ∼ 1 GeV) above the estimated background 

✦ Fluctuations 1/√pt ; Energy Loss 10%; "m = 5.0 fm
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Timescales vs Luminosity
✦ Reconstructed W jet should have at least 100 events (statistical 
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Energy Configuration vs Timescale Sensitivity

Bound free pair production ~ Z7 

Lint ~ A2 

Should be possible to go to a 
lighter nuclei

*Preliminary*



Conclusions
✦ First proof-of-principle analysis of boosted objects in heavy-ions;
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Thank you!
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Jet Reconstruction Efficiency
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Bound Free Pair Production
✦ Cross-sections for 

electromagnetic 
processes in ultra-
peripheral 
collisions is very 
large: 

✦ Bound-free e-e+ 
pair production 
creates 
secondary 
beams of Pb81+ 
ions emerging 
from the 
collision point;
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J. Jowet, Initial Stages 2016

Easy to avoid the bound by going lighter! 
But lose nucleon-nucleon luminosity as A2.


