

NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD

U. van Kolck

Institut de Physique Nucléaire d'Orsay and University of Arizona

Supported by CNRS and US DOE

Outline

- QCD at Low Energies and the Lattice
- Nuclear Effective Field Theories
- EFT for Lattice Nuclei
- Outlook and Conclusion

Two goals of nuclear physics

- Nucleus as a laboratory: properties of the Standard Model and beyond
 - nuclear matrix elements for symmetry tests
 - reaction rates for nucleosynthesis
 - equation of state for stellar structure
 - variation of parameters for cosmology

"ab initio" methods, phenomenology, etc.

- Nucleus as the simplest complex system: quarks and gluons interacting strongly, yet exhibiting many regularities
 - QCD at large distances an unsolved part of the SM
 - tools for non-perturbative quantum (field) theories, e.g. cold atoms

TODAY

QCD

Lattice QCD

path integral solved with Monte Carlo methods, typically for unrealistically large quark masses

$$\cot \delta(\mathbf{E}) = \frac{4}{\sqrt{mEL}} \left[\pi \sum_{\mathbf{n}}^{|\mathbf{n}| < L/l} \frac{1}{(2\pi\mathbf{n})^2 - mEL^2} - \frac{L}{l} \right]$$

Lüscher '91

nucleon

$$1/m_{\pi} \cong 1.4 \text{ fm}$$

 $L \gg 1/m_{\pi}$

nuclear scattering

Lattice QCD + Effective Field Theory

Most general S matrix with given symmetries

Experimental and LQCD data

(m_π	140	300	510	805
(IVIEV)	Nucleus	[nature]	[10]	[7]	[8]
	n	939.6	1053	1320	1634
	р	938.3	1053	1320	1634
	^{2}n		$8.5 \pm 0.7 \ ^{+2.2}_{-0.4}$	7.4 ± 1.4	15.9 ± 3.8
	^{2}H	2.224	$14.5 \pm 0.7 \stackrel{+2.4}{_{-0.7}}$	11.5 ± 1.3	19.5 ± 4.8
	^{3}n				
	³ H	8.482	$21.7 \pm 1.2 {}^{+5.7}_{-1.6}$	20.3 ± 4.5	53.9 ± 10.7
	³ He	7.718	$21.7 \pm 1.2 {+5.7 \atop -1.6}$	20.3 ± 4.5	53.9 ± 10.7
	$^{4}\mathrm{He}$	28.30	$47\pm7~^{+11}_{-9}$	43.0 ± 14.4	107.0 ± 24.2
	$^{4}\mathrm{He}^{*}$	8.09	_		
	⁵ He	27.50	[10]	Yamazaki <i>et al.</i>	. '15
	⁵ Li	26.61	[7] Y	′amazaki <i>et al.</i> 'i	12
	⁶ Li	32.00	[8] E	Beane <i>et al.</i> '12	
		•			
		Beane e	<i>et al.</i> '13		
Berkowitz <i>et al.</i> 16		$a^{(1S_0)} =$	$2.33^{+0.19}_{-0.17}^{+0.27}_{-0.20}$ fm	$, r^{(1S_0)} = 1$	$.130^{+0.071}_{-0.077}$ $^{+0.059}_{-0.063}$ fm
- Beane	e et al	$a^{(^{3}S_{1})} =$	$1.82^{+0.14+0.17}_{-0.13-0.12}$ fm	$, r^{(^{3}S_{1})} = 0$	$.906^{+0.068}_{-0.075} + 0.068}_{-0.075}$ fm
in pr	ogress		I		-
-			<u>A</u> . <u>A</u> .		Real Property in
			All and a second s	The second secon	

Scales (MeV)

m_{N}	940	1050	1320	1630
$\sqrt{2m_N(m_\Delta-m_N)}$	750	800	900	800
m_{π}	140	300	500	800
$\sqrt{2m_N B_A / A} \left(A = 2 \mapsto 4 \right)$	$45 \mapsto 110$	$100 \mapsto 150$	$130 \mapsto 170$	$185 \mapsto 300$

 $Q \sim \aleph \equiv \sqrt{m_N B_2} < m_\pi \leq M_{QCD}$

Л

The Nuclear EFT Landscape

Extrapolation in pion mass

Pionful (Chiral) EFT

 $Q \sim m_{\pi} \ll M_{QCD}$

Another talk...

Pionless EFT

$$Q \sim \aleph \sim \sqrt{m_N B_2} \ll m_\pi \sim M$$

- degrees of freedom: nucleons
- symmetries: Lorentz, P, T

$$\mathcal{L}_{EFT} = N^{+} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{N}} \right) N - \frac{C_{0}}{2} N^{+} N N^{+} N - \frac{D_{0}}{6} N^{+} N N^{+} N N^{+} N$$
$$+ N^{+} \frac{\nabla^{4}}{8m_{N}^{3}} N - \frac{C_{2}}{4} N^{+} N \nabla^{2} N^{+} N + \dots \qquad \left(\begin{array}{c} \text{omitting} \\ \text{spin, isospin} \end{array} \right)$$
$$O = \left(\frac{O}{m_{N}} \right)$$
non-relativistic

• expansion in: $\frac{Q}{M} = \begin{cases} Q/m_N & \text{non-relativistic} \\ Q/m_{\pi}, \cdots & \text{multipole} \end{cases}$

Universality: first orders apply also to neutral atoms

$$m_{\pi} \rightarrow 1/l_{vdW}$$
 where $V(r) = -\frac{l_{vdW}^4}{2m_{at}r^6} + \dots$

Bedaque, Hammer + v.K. '99 '00 Bedaque, Braaten + Hammer '01

$$V_{ij} = \sum_{s=0}^{1} \left\{ C_{0(s)} \,\delta\left(\vec{r}_{i} - \vec{r}_{j}\right) + C_{2(s)} \left[\nabla^{2} \delta\left(\vec{r}_{i} - \vec{r}_{j}\right) + \dots \right] + \dots \right\}$$

$$V_{ijk} = V_{ijk} = D_{0} \,\delta\left(\vec{r}_{i} - \vec{r}_{j}\right) \delta\left(\vec{r}_{j} - \vec{r}_{k}\right) + \dots$$

$$V_{ijkl} = E_{0} \,\delta\left(\vec{r}_{i} - \vec{r}_{j}\right) \delta\left(\vec{r}_{j} - \vec{r}_{k}\right) \delta\left(\vec{r}_{k} - \vec{r}_{j}\right) + \dots$$

$$V_{ijkl} = E_{0} \,\delta\left(\vec{r}_{i} - \vec{r}_{j}\right) \delta\left(\vec{r}_{j} - \vec{r}_{k}\right) \delta\left(\vec{r}_{k} - \vec{r}_{j}\right) + \dots$$

$$V_{ijkl} = V_{ijkl} = E_{0} \,\delta\left(\vec{r}_{i} - \vec{r}_{j}\right) \delta\left(\vec{r}_{j} - \vec{r}_{k}\right) \delta\left(\vec{r}_{k} - \vec{r}_{j}\right) + \dots$$

$$V_{ijkl} = V_{ijkl} + \dots$$

$$V_{ijkl} + \dots$$

$$V_{ijkl} = V_{ijkl} + \dots$$

$$V_{ijkl} +$$

Regularization (arbitrary)		$\delta(\vec{r}_i - \vec{r}_j) \rightarrow \delta_{\Lambda}(\vec{r}_i - \vec{r}_j)$ e.g. local Gaussian regulator $\delta_{\Lambda}(\vec{r}) = \frac{\Lambda^3}{8\pi^{3/2}} \exp(-\Lambda^2 \vec{r}^2/4)$								
Solution	$H_A^{(0)} \left \Psi_A^{(0)} \right\rangle = E_A^{(0)} \left \Psi_A^{(0)} \right\rangle$ $E_A^{(1)} = \left\langle \Psi_A^{(0)} \left H_A^{(1)} \right \Psi_A^{(0)} \right\rangle$									
Renorma (essent	<i>etc.</i> lization [·] ial)	$\begin{bmatrix} C_{0(0,1)} \\ D_0 (I) \\ etc. \end{bmatrix}$,(∧) ₁ ∖) ·	fitted to fitted to	o two tw o one th	vo-body ree-bo	v dato dy do	a, <i>e.g.</i> atum, e	a _{NN(0,1)} 2.g. a _{nd(1/}	(2)
<i>A</i> = 2	equivale v.K. '99	ent to - 9	effec pseuc bound	ctive-ra dopoter dary co	nge exp ntial ndition	pansio at orig	n gin	Bethe Fermi Bethe	'49 '37 + Peierls	'35
<u>A≥3</u>	not <i>just</i> the effective-range expansion: includes many-body forces!									

Pionless EFT

- ✓ reproduces effective range expansion
- ✓ explains Thomas collapse from improper renormalization
- ✓ explains correlations (Phillips, Tjon lines) from proper renormalization
- generates Efimov states and its descendants as consequence of (approximate) discrete scale invariance
- ✓ gives approximate Wigner SU(4) invariance

but

- applies only at momenta below pion mass
- has unknown reach in terms of nucleon number

Extrapolation in nucleon number

 $m_{\pi} \ll M_{QCD} \begin{bmatrix} \text{Pionful EFT} \\ \text{Pionless EFT} \end{bmatrix} m_{\pi} \sim M_{QCD}$

+ any "exact" "ab initio" method

That is,

 truncate EFT expansion at desired order
 solve Schrödinger equation for low A at fixed cutoff (exactly for LO, subLOs in perturbation theory)
 fit LECs to selected *lattice* input
 solve Schrödinger equation for larger A
 repeat steps 2-4 at other cutoffs
 obtain observables at large cutoffs

Experimental and LQCD data

		m_{π}	140	300	510	805
		Nucleus	[nature]	[10]	[7]	[8]
	Γ	n	939.6	1053	1320	1634
10 nionless fit:		р	\$ 938.3	1053	1320	1634
		^{2}n		$8.5 \pm 0.7 \ ^{+2.2}_{-0.4}$	7.4 ± 1.4	15.9 ± 3.8
$m_N, C_{0(0)},$		^{2}H	* 2.224	$14.5 \pm 0.7 {}^{+2.4}_{-0.7}$	11.5 ± 1.3	19.5 ± 4.8
		^{3}n				
$C_{0(1)}, D_0$		^{3}H	* 8.482	$21.7 \pm 1.2 {}^{+5.7}_{-1.6}$	20.3 ± 4.5	53.9 ± 10.7
Stetcu Barrett + v K '06		³ He	7.718	$21.7 \pm 1.2 {}^{+5.7}_{-1.6}$	20.3 ± 4.5	53.9 ± 10.7
	L	$^{4}\mathrm{He}$	* 28.30	$47\pm7~^{+11}_{-9}$	43.0 ± 14.4	107.0 ± 24.2
		$^{4}\mathrm{He}^{*}$	8.09			
		⁵ He	27.50	[10] Y	'amazaki <i>et al.</i>	'15
		⁵ Li	26.61	[7] Yamazaki <i>et al.</i> '12		2
		⁶ Li	32.00	0 [8] Beane <i>et al.</i> '12		

•••

Stetcu, Barrett + v.K. '06

Pionless EFT: LO

(parameters fitted to d, t, α ground-state binding energies)

Barnea, Contessi, Gazit, Pederiva + v.K. '13 Kirscher, Barnea, Gazit, Pederiva + v.K. '15 Contessi, Lovato, Pederiva, Roggero, Kirscher + v.K. '17

Experimental and LQCD data

Ab initio methods employed

- □ Effective-Interaction Hyperspherical Harmonics (EIHH) Barnea et al. '00' 01
 - hyperspherical coordinates: hyperradius + 3A-4 hyperangles
 - \checkmark model space: hyperangular momentum $K \leq K_{max}$
 - ✓ wavefunction: expanded in antisymmetrized spin/isospin states
 - ✓ effective interaction: Lee-Suzuki projection to subspace "in medium"
 - ✓ extrapolation: $K_{max} \rightarrow \infty$
- Refined Resonating Group Method (RRGM)
- \checkmark wavefunction: expanded in overcomplete basis of Gaussians in all cluster channels
- ✓ Kohn-Hulthen variational approach minimizing reactance matrix
- ✓ convergence (heavier channels, higher partial waves, Gaussian set) tested
- Auxiliary-Field Diffusion Monte Carlo (AFDMC)

- Schmidt + Fantoni '99
- integral equation for evolution of wavefunction in imaginary time τ in terms of Green's function (diffusion)
- two- and more-body operators linearized by auxiliary fields (Hubbard-Stratonovich transformation)
- trial wavefunction probed stochastically with weight given by the Green's function
- \checkmark lowest-energy state with symmetries projected onto as $\tau \rightarrow \infty$

Hoffmann '86

1400

1600

 $m_{\pi} = 140 \text{ MeV}$ -

1200

-1.4

-1.6

400

600

800

1000

Λ [MeV]

cutoff variation 2 to 14 fm⁻¹

Neutron-deuteron scattering: quartet

	π EFT	₹E	EFT
$m_{\pi} [\text{MeV}]$	140	510	805
$^4a_{\rm nD}$ [fm]	5.5 ± 1.3	2.3 ± 1.3	1.6 ± 1.3
	experiment [79]	LQ	2CD
$^4a_{\rm nD}$ [fm]	6.4 ± 0.020	?	?

for all masses ⁴a

$$u_{nD} = \mathcal{O}(1/k_{pn})$$

$$k_{pn} = \sqrt{4m_N B_D/3}$$

deuteron break-up threshold

Kirscher, Barnea, Gazit, Pederiva + v.K. '15

Barnea, Contessi, Gazit, Pederiva + v.K. '13 Kirscher, Barnea, Gazit, Pederiva + v.K. '15

$$+\frac{1}{4}\sum_{i< j} \Big[3C_{10}(\Lambda) + C_{01}(\Lambda) + (C_{10}(\Lambda) - C_{01}(\Lambda)) \bar{\sigma}_{i} \cdot \bar{\sigma}_{j} \Big] e^{-\Lambda^{2} r_{ij}^{2}/4} + \sum_{i< j< k} \sum_{cyc} D_{1}(\Lambda) \tau_{i} \cdot \tau_{j} e^{-\Lambda^{2} (r_{ij}^{2} + r_{jk}^{2})/4} \Big]$$

Kirscher, Barnea, Gazit, Pederiva + v.K. '15

Neutron-deuteron scattering: doublet

Phillips correlations at various pion masses

Kirscher, Barnea, Gazit, Pederiva + v.K. '15

Alpha Particle

• no excited states for A = 2,3,4

• no ³n droplet

m_{π}	140	140	300	510	805	805
Nucleus	[nature]	[23]	[10]	[7]	[8]	[4]
n	939.6	939.0 *	1053	1320	1634	1634 *
р	938.3	939.0	1053	1320	1634	1634
^{2}n			$8.5 \pm 0.7 \ ^{+2.2}_{-0.4}$	7.4 ± 1.4	15.9 ± 3.8	$15.9 \pm 3.8 *$
^{2}H	2.224	2.224 *	$14.5 \pm 0.7 \stackrel{+2.4}{_{-0.7}}$	11.5 ± 1.3	19.5 ± 4.8	$19.5 \pm 4.8 *$
^{3}n	_					< 12.1
^{3}H	8.482	8.482 *	$21.7 \pm 1.2 {}^{+5.7}_{-1.6}$	20.3 ± 4.5	53.9 ± 10.7	$53.9 \pm 10.7 *$
$^{3}\mathrm{He}$	7.718		$21.7 \pm 1.2 {}^{+5.7}_{-1.6}$	20.3 ± 4.5	53.9 ± 10.7	53.9 ± 10.7
$^{4}\mathrm{He}$	28.30	28.30 *	$47\pm7~^{+11}_{-9}$	43.0 ± 14.4	107.0 ± 24.2	89 ± 36
$^{4}\mathrm{He}^{*}$	8.09	10 ± 3	[23	' 1 Stetcu <i>et al '</i> (י רא	< 43.2
⁵ He	27.50		[10]	98 ± 39		
⁵ Li	26.61		[7]	98 ± 39		
⁶ Li	32.00	23 ± 7	[8]	122 ± 50		
			<u>ل</u> 41	Barnea et al. '13	3	

predictions

A Scene from Program INT-16-1

- --- Effective field theorist: (nonchalant) Pionless EFT works pretty well for light nuclei.
- --- Esteemed nuclear theorist: (doubtful) But has it been applied to a *real* nucleus?
- --- EFTst: (stunned)

...

What the hell is a *real* nucleus? When we did deuteron we were told triton was more like a real nucleus. When we did triton we were told it's the alpha particle that's a real nucleus. Now you tell me the alpha particle is *not* a real nucleus?

--- ENTst: (didactic)

No, you need to show saturation for a real nucleus like ¹⁶O.

--- EFTst: (outraged)

But we have shown saturation for triton and alpha particle! It's due to the three-body force, so ¹⁶O will saturate.

--- ENTst: (jaded) I believe it when I see it.

$H^{(0)} = -$	$-\frac{1}{2m_N}\sum_i \nabla_i^2$				Contessi, Lovato, Pederiva, Roggero, Kirscher + v.K. '17
$+\sum_{i < j} \left[C_1 \right]$	$(\Lambda) + C_2(\Lambda)\bar{\sigma}_i$	$\cdot \vec{\sigma}_{j} \left] e^{-\Lambda^{2} r_{ij}^{2}/4} + \right]$	$\sum_{i < j < k} \sum_{cyc} D_0(\Lambda) e^{i k C t}$	$-\Lambda^2 \left(r_{ij}^2 + r_{jk}^2\right) / 4$	
Λ	$m_{\pi} = 140 \text{ MeV}$	$m_{\pi} = 510 \text{ MeV}$	$m_{\pi} = 805 \text{ MeV}$	= ⁴ Ho	
2 fm ⁻¹	-23.17 ± 0.02	-31.15 ± 0.02	-88.09 ± 0.01		
4 fm^{-1}	-23.63 ± 0.03	-34.88 ± 0.03	-91.40 ± 0.03		
6 fm ⁻¹	-25.06 ± 0.02	-36.89 ± 0.02	-96.97 ± 0.01		
8 fm ⁻¹	-26.04 ± 0.05	-37.65 ± 0.03	-101.72 ± 0.03		
$\rightarrow \infty$	$-30^{\pm 0.3 (sys)}_{\pm 2 (stat)}$	$-39^{\pm 1}_{\pm 2}(\text{sys})$	$-124^{\pm 3}_{\pm 1}$ (sys)	within previous	
Exp.	-28.30		11 (000	error bar	
LQCD	—	-43.0 ± 14.4	-107.0 ± 24.2		

in good agreement with previous calculations experiment

> indistinguishable from four-alpha threshold; if anything, too much saturation...

Λ	$m_{\pi} = 140 \text{ MeV}$	$m_{\pi} = 510 \text{ MeV}$	$m_{\pi} = 805 \text{ MeV}$
2 fm ⁻¹	-97.19 ± 0.06	-116.59 ± 0.08	-350.69 ± 0.05
4 fm ⁻¹	-92.23 ± 0.14	-137.15 ± 0.15	-362.92 ± 0.07
6 fm ⁻¹	-97.51 ± 0.14	-143.84 ± 0.17	-382.17 ± 0.25
8 fm ⁻¹	-100.97 ± 0.20	-146.37 ± 0.27	-402.24 ± 0.39
$\rightarrow \infty$	$-115^{\pm 1}_{\pm 8}(\text{sys})_{\pm 8}(\text{stat})$	$-151^{\pm 2}_{\pm 10}$ (sys)	$-504^{\pm 20}_{\pm 12}$ (sys)
Exp.	-127.62	_	_

16

Alpha-particle clusterization

Contessi, Lovato, Pederiva, Roggero, Kirscher + v.K. '17

Single-nucleon point densities

Contessi, Lovato, Pederiva, Roggero, Kirscher + v.K. '17

imaginary-time diffusion of a single walker

What next?

- > NLO Bazak *et al.*, in progress
- > Other A

≻ ...

- > hypernuclei
- > Chiral EFT at lower m_{π} (when available)

Conclusion

- EFT is constrained *only* by symmetries and thus can be matched onto lattice QCD
- EFT allows controlled extrapolations of lattice results in nucleon number (and pion mass), including reactions!
- First, proof-of-principle calculations carried out at $m_{\pi} \approx 500, 800$ MeV with Pionless EFT
- World at large pion mass *might* be just a denser version of ours