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§ Transfer neutron to lj bound 
state fnlj(rn) 
• usually large momentum transfer
• Shape of proton sp(q) depends 

on l
• Analyzing powers depend on j
• Magnitude of  depends on 

spectroscopic factor Snlj

§ Higher-order corrections 
calculable (CRC, CCBA)

Traditional Role of (d,p) reactions
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§ Do not probe spectroscopic factors
§ Do probe partial widths and resonance energies

• These parameters come from R-matrix energies and reduced 
width amplitudes

§ Desirable to have (d,p) calculations from R-matrix 
parameters
• Is this possible?
• Can then predict n+target scattering not otherwise measurable
• But R-matrix values are surface and external features!

§ Note: L-dependence of sp(q) decreases for less bound 
neutrons, and hence for continuum neutrons
• Reduced magnitude of momentum transfers

Measuring resonances with (d,p)
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§ Work of TORUS collaboration (www.reactiontheory.org) 

§ Proposed: Mukhamedzhanov (PRC 84, 044616, 2011)

§ Developed for 1-step transfers:
• Escher et al., (PRC. 89, 054605, 2013)

• Escher et al., (J. Phys.: Conf. Ser. 403 012026, 2012)

§ Now applied to transfers from entrance deuteron 
channels including breakup in CDCC basis.

Propose to use:
Surface Transfer Operator 
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Applicable Examples of Resonances
§ Near single-particle resonances § Structured p-shell resonances
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§ Aim is to fit resonances in 
(d,p) cross sections in a 
region of the continuum.

§ We see many wide and 
narrow resonances, often 
overlapping.

§ Want to find neutron pole 
energies and partial widths, 
in entrance channel for (n,g)

Purpose of my transfer calculations
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§ Post matrix element in 1st order
Mdp

(post) = < fA
F cpF

(-) | DVp | φd cdA
(+) >

§ Prior matrix element in 1st order
Mdp

(prior) = < fA
F cpF

(-) | DVd | φd cdA
(+) >

§ Equivalent: Mdp
(post) = Mdp

(prior) because
• KE operators satisfy <fA

F(rn) | Tn + Tp |φd(r)> = 0
• Because fA

F(rn) → 0 at rn=0 and rn⇾ ∞ 

§ If the wave functions not zero, 
then get surface terms.

Post-prior equivalence in 1st order

overlap 
fA

F(rn) = 
< φA | φF >
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§ Define Mpost(a,b) & Mprior(a,b) with a < rn < b limits
§ General result:

Mpost(a,b) = Msurf(a) + Mprior(a,b) - Msurf(b)
where Msurf(ρ) = <fp(-) fn | | fd fd(+)>(r<ρ)

§ Previous slide used Msurf(0) = Msurf(∞) = 0

§ So, for any surface ρ:
from:   M = Mpost(0,ρ) + Mpost(ρ,∞) 
hence: M = Mpost(0,ρ) + Msurf(ρ) + Mprior(ρ,∞) 

Splitting the Transfer Matrix Element

THEORY OF DEUTERON STRIPPING: FROM SURFACE . . . PHYSICAL REVIEW C 84, 044616 (2011)

The overlap function is given by

IF
A (rnA) =

∑

jnAmjnA
mlnA

⟨JAMAjnAmjnA
|JF MF ⟩

× ⟨JnMnlnAmlnA
|jnAmjnA

⟩
×YlnAmlnA

(r̂nA)IAjnAlnA
(rnA). (18)

Here ⟨j1m1j2m2|j3m3⟩ is the Clebsch-Gordan coefficient, lnA

(mlnA
) is the orbital angular momentum (its projection) of the

relative motion of n and A, jnA (mjnA
) is the total angular

momentum (its projection) of n in the bound state F = (nA),
Ji(Mi) is the spin (its projection) of nucleus i, IF

AjnAlnA
(rnA) is

the radial overlap function, which is a real function [23], Ylm(r̂)
is the spherical harmonics, and r̂ = r/r is the unit vector. We
assume that only one value of lnA contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

IF
AjnAlnA

(RnA)
rnA>RnA≈ CF

AjnAlnA
ilnA+1κnAh

(1)
lnA

(iκnArnA), (19)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function of the
first order, CF

AjnAlnA
is the ANC of the overlap function, and

κnA =
√

2µnAεnA is the bound-state wave number.
It is also useful to introduce the reduced-width amplitude

used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

γnAjnAlnA
=

√
RnA

2µnA

IF
AjnAlnA

(RnA)

=

√
RnA

2µnA

ilnA+1κnACF
AjnAlnA

h
(1)
lnA

(iκnARnA). (20)

Correspondingly, the reduced width is

γ 2
nAjnAlnA

= RnA

2µnA

[
IF
AjnAlnA

(RnA)
]2

= RnA

2µnA

(−1)lnA+1κ2
nA

[
CF

A jnAlnA
h

(1)
lnA

(iκnARnA)
]2

.

(21)

It is worth mentioning that, owing to the presence of the
channel radius RnA, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at rnA = RnA:

BnA = 1

h
(1)
lnA

(iκnARnA)

d
[
rnAh

(1)
lnA

(iκnArnA)
]

dr

∣∣∣∣
rnA=RnA

. (22)

Owing to Eq. (19), the amplitude M
DW(prior)
ext can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, rnA > RnA, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from rpA > RA, where RA is the radius
of nucleus A. If the adopted radius channel RnA is larger

than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential UN

pA and UN
dA and their difference UpA − UdA

are small. The Coulomb part UC
pA − UC

dA ≈ ZAe2Rd/(2R2
dA),

where Rd is the deuteron size and ZAe is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M

DW(post)
ext

[Eq. (14)] and, hence, to the total post form DWBA amplitude
MDW(post), comes from the surface integral MDW

S . Here and in
what follows all the amplitudes with the transition operator
←−
T − −→

T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable rnA, while over the second Jacobian
variable rpF we always keep the volume integral.

Now we express MDW
S in terms of the surface integral

over variable rnA and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T = TpF + TnA. TpF is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at rpF → ∞ the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ϕd (rpn) and the overlap function
IF
A (rnA). Hence, integrating by parts twice the integral over

rpF we obtain
〈
χ

(−)
pF IF

A

∣∣←−T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

=
〈
χ

(−)
pF IF

A

∣∣−→T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

= 0. (23)

Then MDW
S reduces to

MDW
S (kpF , kdA) =

〈
χ

(−)
pF IF

A

∣∣←−T nA − −→
T nA

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

.

(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

∫

r!R

drf (r)[←−T − −→
T ]g(r)

= − 1
2µ

∮

r=R

dS[g(r)∇rf (r) − f (r)∇rg(r)]

= − 1
2µ

R2
∫

d&r

[
g(r)

∂f (r)
∂r

− f (r)
∂g(r)
∂r

]

r=R

. (25)

Here dS = R2d&rr̂, where &r is the solid angle. Note that
the unit vector r̂ is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over rnA is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius RnA

and the external surface with the radius R
′

nA → ∞; that is,

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) + MDW

S∞
(kpF , kdA).

(26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA, while the second term is the surface integral taken
at rnA = R

′

nA → ∞. A negative sign in front of the first term

044616-5

Mukhamedzhanov (2011): 
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With Msurf(ρ) = <fp(-) fn | | fd fd(+)>(r<ρ)

§ Need to calculate matrix elements like: 

§ That is, functions & derivatives on the surface rn=ρ
§ Do this for partial waves, in reaction code 

FRESCO 

Evaluating the Surface Matrix Element

THEORY OF DEUTERON STRIPPING: FROM SURFACE . . . PHYSICAL REVIEW C 84, 044616 (2011)

The overlap function is given by

IF
A (rnA) =

∑

jnAmjnA
mlnA

⟨JAMAjnAmjnA
|JF MF ⟩

× ⟨JnMnlnAmlnA
|jnAmjnA

⟩
×YlnAmlnA

(r̂nA)IAjnAlnA
(rnA). (18)

Here ⟨j1m1j2m2|j3m3⟩ is the Clebsch-Gordan coefficient, lnA

(mlnA
) is the orbital angular momentum (its projection) of the

relative motion of n and A, jnA (mjnA
) is the total angular

momentum (its projection) of n in the bound state F = (nA),
Ji(Mi) is the spin (its projection) of nucleus i, IF

AjnAlnA
(rnA) is

the radial overlap function, which is a real function [23], Ylm(r̂)
is the spherical harmonics, and r̂ = r/r is the unit vector. We
assume that only one value of lnA contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

IF
AjnAlnA

(RnA)
rnA>RnA≈ CF

AjnAlnA
ilnA+1κnAh

(1)
lnA

(iκnArnA), (19)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function of the
first order, CF

AjnAlnA
is the ANC of the overlap function, and

κnA =
√

2µnAεnA is the bound-state wave number.
It is also useful to introduce the reduced-width amplitude

used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

γnAjnAlnA
=

√
RnA

2µnA

IF
AjnAlnA

(RnA)

=

√
RnA

2µnA

ilnA+1κnACF
AjnAlnA

h
(1)
lnA

(iκnARnA). (20)

Correspondingly, the reduced width is

γ 2
nAjnAlnA

= RnA

2µnA

[
IF
AjnAlnA

(RnA)
]2

= RnA

2µnA

(−1)lnA+1κ2
nA

[
CF

A jnAlnA
h

(1)
lnA

(iκnARnA)
]2

.

(21)

It is worth mentioning that, owing to the presence of the
channel radius RnA, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at rnA = RnA:

BnA = 1

h
(1)
lnA

(iκnARnA)

d
[
rnAh

(1)
lnA

(iκnArnA)
]

dr

∣∣∣∣
rnA=RnA

. (22)

Owing to Eq. (19), the amplitude M
DW(prior)
ext can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, rnA > RnA, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from rpA > RA, where RA is the radius
of nucleus A. If the adopted radius channel RnA is larger

than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential UN

pA and UN
dA and their difference UpA − UdA

are small. The Coulomb part UC
pA − UC

dA ≈ ZAe2Rd/(2R2
dA),

where Rd is the deuteron size and ZAe is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M

DW(post)
ext

[Eq. (14)] and, hence, to the total post form DWBA amplitude
MDW(post), comes from the surface integral MDW

S . Here and in
what follows all the amplitudes with the transition operator
←−
T − −→

T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable rnA, while over the second Jacobian
variable rpF we always keep the volume integral.

Now we express MDW
S in terms of the surface integral

over variable rnA and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T = TpF + TnA. TpF is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at rpF → ∞ the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ϕd (rpn) and the overlap function
IF
A (rnA). Hence, integrating by parts twice the integral over

rpF we obtain
〈
χ

(−)
pF IF

A

∣∣←−T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

=
〈
χ

(−)
pF IF

A

∣∣−→T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

= 0. (23)

Then MDW
S reduces to

MDW
S (kpF , kdA) =

〈
χ

(−)
pF IF

A

∣∣←−T nA − −→
T nA

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

.

(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

∫

r!R

drf (r)[←−T − −→
T ]g(r)

= − 1
2µ

∮

r=R

dS[g(r)∇rf (r) − f (r)∇rg(r)]

= − 1
2µ

R2
∫

d&r

[
g(r)

∂f (r)
∂r

− f (r)
∂g(r)
∂r

]

r=R

. (25)

Here dS = R2d&rr̂, where &r is the solid angle. Note that
the unit vector r̂ is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over rnA is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius RnA

and the external surface with the radius R
′

nA → ∞; that is,

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) + MDW

S∞
(kpF , kdA).

(26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA, while the second term is the surface integral taken
at rnA = R

′

nA → ∞. A negative sign in front of the first term

044616-5
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The overlap function is given by

IF
A (rnA) =

∑

jnAmjnA
mlnA

⟨JAMAjnAmjnA
|JF MF ⟩

× ⟨JnMnlnAmlnA
|jnAmjnA

⟩
×YlnAmlnA

(r̂nA)IAjnAlnA
(rnA). (18)

Here ⟨j1m1j2m2|j3m3⟩ is the Clebsch-Gordan coefficient, lnA

(mlnA
) is the orbital angular momentum (its projection) of the

relative motion of n and A, jnA (mjnA
) is the total angular

momentum (its projection) of n in the bound state F = (nA),
Ji(Mi) is the spin (its projection) of nucleus i, IF

AjnAlnA
(rnA) is

the radial overlap function, which is a real function [23], Ylm(r̂)
is the spherical harmonics, and r̂ = r/r is the unit vector. We
assume that only one value of lnA contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

IF
AjnAlnA

(RnA)
rnA>RnA≈ CF

AjnAlnA
ilnA+1κnAh

(1)
lnA

(iκnArnA), (19)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function of the
first order, CF

AjnAlnA
is the ANC of the overlap function, and

κnA =
√

2µnAεnA is the bound-state wave number.
It is also useful to introduce the reduced-width amplitude

used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

γnAjnAlnA
=

√
RnA

2µnA

IF
AjnAlnA

(RnA)

=

√
RnA

2µnA

ilnA+1κnACF
AjnAlnA

h
(1)
lnA

(iκnARnA). (20)

Correspondingly, the reduced width is

γ 2
nAjnAlnA

= RnA

2µnA

[
IF
AjnAlnA

(RnA)
]2

= RnA

2µnA

(−1)lnA+1κ2
nA

[
CF

A jnAlnA
h

(1)
lnA

(iκnARnA)
]2

.

(21)

It is worth mentioning that, owing to the presence of the
channel radius RnA, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at rnA = RnA:

BnA = 1

h
(1)
lnA

(iκnARnA)

d
[
rnAh

(1)
lnA

(iκnArnA)
]

dr

∣∣∣∣
rnA=RnA

. (22)

Owing to Eq. (19), the amplitude M
DW(prior)
ext can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, rnA > RnA, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from rpA > RA, where RA is the radius
of nucleus A. If the adopted radius channel RnA is larger

than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential UN

pA and UN
dA and their difference UpA − UdA

are small. The Coulomb part UC
pA − UC

dA ≈ ZAe2Rd/(2R2
dA),

where Rd is the deuteron size and ZAe is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M

DW(post)
ext

[Eq. (14)] and, hence, to the total post form DWBA amplitude
MDW(post), comes from the surface integral MDW

S . Here and in
what follows all the amplitudes with the transition operator
←−
T − −→

T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable rnA, while over the second Jacobian
variable rpF we always keep the volume integral.

Now we express MDW
S in terms of the surface integral

over variable rnA and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T = TpF + TnA. TpF is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at rpF → ∞ the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ϕd (rpn) and the overlap function
IF
A (rnA). Hence, integrating by parts twice the integral over

rpF we obtain
〈
χ

(−)
pF IF

A

∣∣←−T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

=
〈
χ

(−)
pF IF

A

∣∣−→T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

= 0. (23)

Then MDW
S reduces to

MDW
S (kpF , kdA) =

〈
χ

(−)
pF IF

A

∣∣←−T nA − −→
T nA

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

.

(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

∫

r!R

drf (r)[←−T − −→
T ]g(r)

= − 1
2µ

∮

r=R

dS[g(r)∇rf (r) − f (r)∇rg(r)]

= − 1
2µ

R2
∫

d&r

[
g(r)

∂f (r)
∂r

− f (r)
∂g(r)
∂r

]

r=R

. (25)

Here dS = R2d&rr̂, where &r is the solid angle. Note that
the unit vector r̂ is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over rnA is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius RnA

and the external surface with the radius R
′

nA → ∞; that is,

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) + MDW

S∞
(kpF , kdA).

(26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA, while the second term is the surface integral taken
at rnA = R

′

nA → ∞. A negative sign in front of the first term

044616-5
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§ In DWBA (1st order), find surface term as:
Msurf(ρ) = Mpost(0,ρ) - Mprior(0,ρ) 

§ Look at bound states and resonances.
• See if convergence to breakup states is easier?

§ Calculate all terms of 
M = Mpost(0,ρ) + Msurf(ρ) + Mprior(ρ,∞) 

Preliminary Estimates of Magnitudes
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Internal, surface, external contributions – 90Zr(d,p) at Ed=11 MeV

Observations
• Surface term dominant at 6-8 fm
• Small interior contributions 
• Small exterior contributions 
• Surface term does not produce the 

whole cross section

M = M(post)(0,a) + M(surf)(a) + M(prior)(a,∞)

The surface term is dominant, but 
contributions from the interior and 
exterior terms remain.

Escher, Thompson, Mukhamedzhanov, JPCS (2012).

11

Peak cross section relative to full calculation

asymptotic quantitiesmodel dependence

91Zr gs 
(5/2+)

91Zr 1st (1/2+)

int-post

surf

ext-prior
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The surface contribution – 90Zr(d,p) at Ed=11 MeV

12

Peak cross section relative to full calculation

• Cross sections depend on surface radius
• The surface term is dominant, but corrections remain

91Zr gs 
(5/2+)

91Zr 1st (1/2+)

int-post

surf

ext-prior

Angular cross section – Surface term only

Escher et al, PRC 89, 
054605 (2014)
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Numerical tests of the formalism (DWBA) – 48Ca(d,p) at Ed=13, 19.3, 56 MeV

13

Calculations for
49Ca 1st (1/2-) give

similar results

Peak cross section relative to full calculation

19.3 MeV

49Ca gs (3/2-)

56 MeV

13 MeV

int-post

surf

ext-prior

Angular cross section – Surface term only

Angle [deg]

Surface term 
approximation 
improves with 

decreasing 
energy

Es
ch

er
et

 a
l, 

PR
C

 (2
01

4)
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Surface formalism for DWBA – resonance states

Total post matrix element for b + B ≠ n + A example:

14

Surface formulation

M = M(post)(0,a)
+ Msurf(a) 
+ M(prior)(a,∞)

d+A è p + (n+A)

b+B

f(G1/2, [A-1], IAF): 
contribution hopefully small

b + B = n + A
b + B ≠ n + A
b + B = n + A
b + B ≠ n + A
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The oxygen case - 20O at Ed=21 MeV

15

Peak cross section relative to full calculationAngular cross section – Surface term only

surf
ext-prior

Surface at ~5 fm 
approximately 
reproduces 
measurement.

21O @ 4.77 MeV (3/2+)

21O @ 6.17 MeV (3/2+)

int-post

Escher et al, PRC 89, 054605 (2014)



Lawrence Livermore National Laboratory LLNL-PRES-673281
16

Resonances – 90Zr at Ed=11 MeV

16

Peak cross section relative to full calculationAngular cross section – Surface term only

• Results similar to bound-state cases
• Surface term dominant at larger radii
• Interior/exterior terms still contribute

int-post

surf

ext-prior

91Zr 
f7/2 resonance

Angle [deg]

Escher et al, PRC 89, 054605 (2014)
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The surface formalism: can we save it? 20O at Ed=21 MeV

21O d3/2 resonance
at 2.364 MeV

• reducing the surface radius 
• adding prior-exterior contribution

21O d3/2 resonance
at 0.964 MeV

Angular cross section at smaller radius Angular cross section at peak radius
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Extension of the formalism to include breakup

CDCC (Continum-discretized coupled 
channels)

• Approximate treatment of 3-body problem
• Describes breakup of deuteron

• Successfully used for describing data
• Currently revisited via comparison with 

Fadeev

DWBA matrix element

M(post) = M(post)(0,a) + M(surf)(a) + M(prior)(a,∞)

CDCC matrix element

M(post) = M(post)(0,a) + M(surf)(a)
M(prior)(a,∞) = 0 (is included in breakup)

CDCC extension of R-matrix formalism
• Simultaneous calculation of breakup and 

transfer cross sections
• Exterior term included in breakup, 

convergence issues removed
• More peripheral, reduce interior 

contribution
• Surface term dominant
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Derivatives of products of 2 wfns
So
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The projection of this onto the angular parts of the exit channels of Eq. (10) gives
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10 Transfer source term and operators

The transfer source term of Eq. (19) is

Ssurf

�↵

(R0) = = �
Z

dr0
~2⇢2
2µ

n

�(r0�⇢)
D
Y
�
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@
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D
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7 Transfer Kernels: Derivative terms

The derivative terms from Eq. (19) are

ŜD
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(35)

The partial derivative @/@r0 here is keeping R

0 and b
r

0 constant. As r0 varies, we must note that
not only do the magnitudes r,R change, but also their angles r̂, R̂ since

r = pr0 + qR0 and R = Pr

0 +QR

0 (36)

from eq. (28). This implies that the spherical harmonics Y
L

(R̂)Y
`

(r̂) will be coupled to adjacent
quantum numbers L± 1 and/or `± 1.

To evaluate these changes in angular momentum, we use the solid harmonic expansion

Y m

`

(\a+ b) =
p
4⇡

`X

n=0

nX

�=�n

c(`, n)
a`�nbn

|a+ b|`Y
m��

`�n
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where r
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⌘ pr0+ qR0 is the place whereat the derivative is to be evaluated. For this, only the n = 0
and 1 terms in eq. (37) contribute. We find (with a = r

0
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using coupled operators in the notation of Bohr & Mottelson, Vol. 1, section 1A-5c).

The n = 0 term is derived starting with eq. (37):
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Source term complete for r,R wfns
Using Eq. (66), this is
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For the evaluation of this source term as in Eq. (21), I need to calculate the non-local kernels
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The term with Y
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(R0, R) will correspond the last line of Eq. (69), and X
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the rest of the expression. That is,
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For the evaluation of this source term as in Eq. (21), I need to calculate the non-local kernels
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The are the channel-defining Clebsch-Gordon coefs.
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§ As           , transfer couplings are still non-local
§ With A, B, C as non-local operators, the transfer-

channel exit equation is 

§ More complicated than standard transfers, 
because of derivative 

Implementation

Ssurf

�

(R0) = �~2⇢2
2µ

n


@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

�D
Y
�

(R̂0, r̂0)
��� 

CDCC

(R, r)
E

r

0
=⇢

Z
dR̂0

Z
dr̂0 �(r0�⇢) = 8⇡2⇢

2abRR0

�����
u=(⇢

2�a

02
R

2
+b

02
R

02
)/(2abRR

0
)

R

0, r

0

R

0 6= R

0

15

12 Calculating the A, B and C kernels
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§ Definition  
§ Parameterization: (N-pole case)

§ From          , get S-matrix          and wf
by usual theory, for every energy

§ Then exit channel eqn, for continuous     is

R-matrix continuum parameterisation

12 Calculating the A, B and C kernels
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�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

Note that A, B, C and       are independent of exit energy      .

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

Note that the A, B and C kernels, as well as incident-channel wfn u
↵

, are independent of exit energy
E

�

.

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

14

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The N -pole expansion is

R(e
�

) =
NX

p=1

�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

Note that the A, B and C kernels, as well as incident-channel wfn u
↵

, are independent of exit energy
E

�

.

14



Lawrence Livermore National Laboratory LLNL-PRES-673281
30

Interior-post + Surface-term
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Conclusions
Surface formalism for studying resonances with (d,p):

• Uses successful R-matrix ideas to emphasize asymptotic 
properties of the wave function 

• Separation into interior and exterior leads to a surface term which 
can be expressed in terms of familiar R-matrix parameters, thus 
providing spectroscopic information

• Our DWBA and CDCC studies show surface term is dominant; 
and dependence on model for nuclear interior is reduced.

• The surface term alone is not sufficient to describe transfer 
reactions, corrections are required

• Within a CDCC implementation (which includes breakup effects) 
the exterior is already included: not needed for transfer operator.
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