neutron capture rates and *r*-process nucleosynthesis

Rebecca Surman University of Notre Dame

INT Program INT-17-1a: Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart

Seattle, Washington 15 March 2017

r-process nucleosynthesis

r-process nucleosynthesis

solar system *r*-process residuals

r-process nucleosynthesis: core-collapse supernovae?

NS mergers

Dots: model stars

r-process elements in metal-poor stars: new evidence

Ji+2016

ultrafaint dwarf (UFD) galaxies can account for low-metallicity enrichment

electromagnetic signatures of merger events

observations of a macronova candidate

compact object mergers: gravitational waves

LIGO collaboration

compact object mergers: environments for element synthesis

cold/mildly heated prompt ejecta

compact object mergers: environments for element synthesis

ejecta from the accretion disk

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

figure by M Mumpower

masses beta-decay rates beta-delayed neutron emission probak neutron capture rates

fission rates fission product distributions neutrino interaction rates

Mumpower, Surman, McLaughlin, Aprahamian 2016

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

2012 Atomic Mass Evaluation

figure by M Mumpower

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

impact of upcoming mass measurements

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

Neutron capture (Kadonis)

figure by M Mumpower

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

Neutron Number

Proton Number

sensitivity study review: Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86 (2016) 86

Infinitution

masses beta-decay rates beta-delayed neutron emission neutron capture rates

fission rates fission product distributions neutrino interaction rates

HF neutron capture rate calculations

$$\sigma^{\mu}_{n,\gamma}(E) \bigotimes \sum_{J^{\pi}} (2J+1) \frac{T^{\mu}_{n}(J^{\pi})T_{\gamma}(J^{\pi})}{T_{tot}(J^{\pi})}$$

Nuclear physics ingredients:

- neutron separation energies
- optical potential
- level densities
- gamma strength functions

TALYS neutron capture rates

We used Talys 1.6

-Range of T = 0.0001-10 GK -Range of Z = 8-100

Optical Model

- Koning-Delaroche
- JLM

Nuclear Level Density (LD)

- Constant Temperature matched to the Fermi Gas model (CT+BSFG)
- Back-shifted Fermi Gas model (BSFG)
- Generalized Superfluid model (GSM)
- Hartree-Fock using Skyrme force (HFS)
- Hartree-Fock-Bogoliubov (Skyrme force)
 +combinatorial method (HFBS-C)

y-ray Strength Functions (GSF)

- Kopecky-Uhl generalized Lorentzian (KU)
- Hartree-Fock BCS (HF-BCS)
- Hartree-Fock-Bogolyubov (HFB)
- Modified Lorentzian (Gor-ML)

Calculations by S. Nikas, G. Perdikakis (CMU) in collaboration with M. Beard, M. Mumpower, R. Surman

example: ¹⁶⁵Eu Proton Number (Z) slide from S. Nikas 0.5 0.1 (a) Neutron Number (N) Reaction rates for Eu-165 M. Mumpower et Reaction Rate {cm^3/(s*mol)} Bruslib al. 2015 Reaclib 10⁵ E 10^{3} T(GK)

example: ¹⁶⁵Eu -> variations of LD and GSF

Reaction rates for Europium-165

R Surman Notre Dame INT-17-1a

example: ¹⁶⁵Eu -> variations of LD and GSF

Reaction rates for Europium-165

Nikas, Perdikakis, Beard, Mumpower, Surman, in preparation

Y(A)

example: ¹⁶⁵Eu -> energy binning

Reaction rates for Europium-165

example: ¹⁶⁵Eu -> energy binning

Reaction rates for Europium-165

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

fission rates fission product distributions neutrino interaction rates

summary

The origin of the heaviest elements in the *r*-process of nucleosynthesis has been one of the greatest mysteries in nuclear astrophysics for decades.

Evidence from a variety of directions increasingly points to neutron star mergers as the primary source of main *r*-process elements. A merger *r* process may depend more sensitively on neutron capture rates than 'standard' $(n,\gamma)-(\gamma,n)$ equilibrium *r*-process scenarios.

Neutron capture rates have few experimental constraints far from stability, and different HF approaches can disagree by orders of magnitude. Advances in experiment (transfer reactions, nuclear resonance fluorescence, β -Oslo method) and reaction theory are therefore crucial for reducing neutron capture rate uncertainties and producing precise *r*-process predictions.