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Stable

Standard solar model

d+3H à 4He+n

d+3H à 4He+n+g3H+3H à 4He+2n

Fusion Technology

A	predictive	theory	of	light-nuclei	reactions	is	
essential	for	both	basic	and	applied	science

Life’s building blocks

What is the nature
of the nuclear force?

a+a+aà 12C+g a+12C à 16O+g
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Our	problem:	quantum	mechanical	scattering.
The	‘idealist’	and	the	‘pragmatic’	approach	
Ab	Initio	Theory

§ A	nucleon	degrees	of	freedom

§ ‘Realistic’	nucleon-nucleon	(NN)	and	
three-nucleon	(3N)	forces

§ Pauli	principle	treated	exactly

§ Extremely	difficult	multichannel	
scattering	problem
— Exactly	solvable	for	A	=	3,4								
— What	to	do	for	heavier	light	nuclei?

Few-Body	Model

§ Few	(3	or	4)	relevant	‘cluster’	d.o.f.

§ Structure	of	clusters	is	neglected

§ Effective	(optical)	potential	between	
core,	valence	and	target

§ Pauli	principle	approximated

§ Easier	to	solve,	more	widely	
applicable

target
core

valencer

R

r

R
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1) Reconstruct	the	interaction	
potential	between	a	projectile	
and	a	target	starting	from:

— Ab initio square-integrable wave	
functions	of	the	clusters

— ‘Realistic’	nucleon-nucleon	(NN)	
and	three-nucleon	(3N)	interactions

2) Solve	for	projectile-target	relative	
motion

At	low-energies,	when	only	a	few	reaction	
channels	are	open,	‘adiabatic’	two-step	solution	

E2<0

E1<0

E>0

Energy

r0


r

Overall interaction potential 
between projectile and target 

This	is	the	main	concept	behind	the	no-core	shell	model	with	continuum	approach	…
albeit	with	a	small	tweak	
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§ Seeks	many-body	solutions	in	the	form	of	a	generalized	cluster	expansion

§ Ab initio	no-core	shell	model	(NCSM):

— Clusters’	structure,	short	range

§ Resonating-group	method	(RGM):

— Dynamics	between	clusters,	long	range

1max += NN


r

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns

NCSM	
eigenstates

NCSM/RGM
continuous	states

Ab initio	no-core	shell	model	with	continuum	(NCSMC)



6
LLNL-PRES-727474

Discrete	and	continuous	variational amplitudes	are	
determined	by	solving	the	coupled	NCSMC	equations

§ Scattering	matrix	(and	observables)	from	matching	solutions	to	known	
asymptotic	with	microscopic	R-matrix on	Lagrange	mesh
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Discrete	and	continuous	variational amplitudes	are	
determined	by	solving	the	coupled	NCSMC	equations
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§ NCSMC	generalized	cluster	expansion:

§ These	are	translational	invariant basis	states,	describing	only	the	internal	motion

§ Note:	Here	the	target	and	projectile	are	both	translational	invariant	states

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns

NCSM	
eigenstates

NCSM/RGM
continuous	states

A	few	words	about	the	RGM	portion	of	the	basis
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Since	we	are	using	NCSM	eigenstates,	it	is	
convenient	to	introduce	HO	channel	states

§ Jacobi channel states in the harmonic oscillator (HO) space:

§ Notes:

• Formally, the coordinate space channel sates given by:

- I used the closure properties of HO radial wave functions

• Again: target and projectile are both translational invariant eigenstates  

- Works for the projectiles up to 4He

- Not practical if we want to describe reactions with p-shell targets!
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An	example:	the	RGM	norm	kernel	
for	nucleon-nucleus	channel	states	
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Treated exactly!
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Obtained in the model space!
(Short-range many-body 
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c.m.
motion

Define	Slater-Determinant	(SD)	channel	states	in	
which	the	target	is	described	by	a	SD	eigenstates
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c.m. motion

In	this	‘SD’	channel	basis,	translation-invariant	
matrix	elements	are	mixed	with	c.m.	motion	…

§ More in detail:

§ The spurious motion of the c.m. is mixed with the intrinsic motion

§ Expression is general: same for different A’s or different a’s
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c.m. motion

…	but	they	can	be	extracted	exactly	from	the	‘SD’	matrix	
elements	by	applying	the	inverse	of	the	mixing	matrix	

§ More in detail:

§ The spurious motion of the c.m. is mixed with the intrinsic motion

§ For non-scalar operators the mixing matrix becomes a bit more 
complicated but it is still possible to exactly remove the c.m. motion 
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§ Can	use	second	quantization	representation

— Matrix	elements	of	translational	operators	can	be	expressed	in	terms	
matrix	elements	of	density	operators	on	the	target	eigenstates

— E.g.,	the	matrix	elements	appearing	in	the	RGM	norm	kernel	for	nucleon-
nucleus	channel	states:			

Working	within	the	‘SD’	channel	basis	we	can	
access	reactions	involving	p-shell	targets

§ SD to Jacobi transformation is general and exact
§ Can use powerful second quantization representation

• Matrix elements of translational invariant operators can be expressed in 
terms of matrix elements of density operators on the target eigenstates

• For example, for a =a’ = 1

§ Given a, a’, matrix elements are also general (same for different A’s)
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Adopted	interactions:

§ NN:	potential	at	N3LO,	500	MeV	cutoff	
(by	Entem &	Machleidt)

§ NN+3N(500):	NN	plus	3N	force	at	N2LO,	
500	MeV	cutoff	(local	form	by	Navrátil)

§ NN+3N(400):	NN	plus	3N	force	at	N2LO,	
400	MeV	cutoff	(local	form	by	Navrátil)

§ N2LOsat	:	NN+3N	at	N2LO,	fitted	
simultaneously	(by	Ekström et	al.)

In	the	following	I	will	review	some	results

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ...

Chiral Effective Field Theory
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Neutron-4He scattering: a magnifying glass for 3N forces  
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§ 3N force enhances 1/2- ßà 3/2- splitting; essential at low energies! 

NCSMC

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. (2015)

6 billion 3N
matrix elements!
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Neutron-4He scattering: a magnifying glass for 3N forces  

Elastic scattering of neutrons on 4He

NN+NNN

§ 1/2- ßà 3/2- splitting sensitive to 3N force, strength of spin-orbit

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. (2015)
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We can reproduce the elastic scattering and recoil of 
protons off 4He based on chiral NN+3N(500) interactions

Proton elastic scattering

§ Used to characterize 1H and 4He impurities in materials’ surfaces

G. Hupin, S. Quaglioni, and P. Navratil, Phys. Rev. C 90, 061601(R) (2014)

Proton elastic recoil

NN+3N(500)
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Elastic scattering and recoil of deuterons off 4He

2H(a,d)4He elastic recoil 4He(d,d)4He elastic scattering

§ Narrow 3+ resonance not well described by NN+3N(500) force

G. Hupin, S. Quaglioni, and  P. Navratil, Phys. Rev. Lett. 114, 212502 (2015) 
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Opportunity	to	root	three-body	reaction	model	
in	ab	initio	many-body	framework	(F.	Nunes)

NN+3N(500)

Elastic	d-4He	Scattering

Three-Body	Model

§ 3	relevant	‘cluster’	d.o.f.

§ Structure	of	target	is	neglected

§ Effective	(optical)	potential	
between	nucleons	and	target

§ Pauli	principle	approximated

§ Expect	need	for	effective	3-body	
force	to	recover	ab	initio	results

Ab	initio	many-body
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What is more important in shaping energy spectra: the 
proximity to a breakup threshold or 3N-force effects?
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6Li vs. (4He+d)+6Li calculation

4He+d

§ The 6Li ground state lies 
only 1.47 MeV (compared 
to its absolute binding 
energy of nearly 32 MeV) 
below the 4He+d 
separation energy

§ To find answer, we 
compared energies 
obtained with and without 
the coupling of d+4He 
continuum states

G. Hupin, S. Quaglioni, and  P. Navratil, 
Phys. Rev. Lett. 114, 212502 (2015) 

It would be interesting to compare 
with symmetry-adapted NCSM
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6Li asymptotic D- to S-state ratio in d+4He configuration

§ In the NCSMC, bound state 
wave functions have (correct) 
Whittaker asymptotic – as 
opposed to traditional NCSM!

§ Asymptotic D- to S-state ratio 
(C2/C0) of 6Li g.s. in d+4He 
configuration 

• Not well determined, even 
as to its sign

• Our results do not support a 
near-zero value

6Li(g.s.) NCSMC Experiment

E [MeV] -32.01 -31.994

C0 [fm-1/2] 2.695 2.91(9) 2.93(15)

C2 [fm-1/2] -0.074 -0.077(18)

C2/C0 -0.027 -0.025(6)(10) 0.0003(9)

G. Hupin, S. Quaglioni, and  P. Navratil, 
Phys. Rev. Lett. 114, 212502 (2015) 

George & Knutson, 
PRC 59, 598 (1999):
Determination from

6Li-4He elastic 
scattering

K.D. Veal et al., 
PRL 81, 1187 (1998):
Determination from

(6Li,d) reactions
on medium-heavy 

targets.

à

uc (r) =CcW (kcr)
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With	the	same	NN+3N	forces,	we	can	also	make	
predictions	for	more	complex	transfer	reactions
§ Deuterium-Tritium	fusion

— Big	Bang	nucleosysthesis of	light	nuclei
— Fusion	research	and	plasma	physics

§ What	is	the	effect	of	spin	polarization	
on	the	reaction	rate?
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Can	ab initio	theory	explain	the	
phenomenon	of	parity	inversion	in	11Be?

Inverted 
compared 
to Expt.! 

Prediction!

NN (with 
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A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S.Q., and G. Hupin, Phys. Rev. Lett. 117, 242501 (2016)

11Be

Correct
ordering

+ A. Calci

J. Dohet-Eraly
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Phenomenologically	adjusted	NCSMC
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Can ab initio theory explain the 
photodisintegration of 11Be?

g

11Be

10Be

n

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S.Q., and G. Hupin, Phys. Rev. Lett. 117, 242501 (2016)
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Opportunity	to	arrive	at	a	more	realistic	
description	of	the	projectile	in	few-body	models

Semi-microscopic	model

§ Structure	of	target	is	still	neglected

§ Connection	to	ab	initio	many-body	
theory	for	the	projectile	

§ Ab	initio	wave	functions	(S-matrix)	of	
projectile	(see	talk	of	A.	Bonaccorso)

§ Effective	valence-core	interaction	
fitted	to	ab	initio	phase	shifts	(see	
talk	of P.	Capel)

target

r

R

Few-Body	Model

§ Few	(3	or	4)	relevant	‘cluster’	d.o.f.

§ Structure	of	clusters	is	neglected

§ Effective	(optical)	potential	between	
core,	valence	and	target

§ Pauli	principle	approximated

§ Easier	to	solve,	more	widely	
applicable

target
core

valencer

R



28
LLNL-PRES-727474

Solar neutrinos
En < 15 MeV

An artist's 
impression 

of the SNO 
detector.

Now	gradually	building	up	capability
to	describe	solar	pp-chain	reactions

3He(a,g)7Be	Astrophysical	S-factor

7Be

g4He (a)3He

J. Dohet-Eraly, P. Navrátil, S.Q., W. Horiuchi, and 
F. Raimondi, Physics Letters B 757, 430 (2016) 

The	3He(a,g)7Be	fusion	rate	is	
essential	to	evaluate	the	fraction	of	
pp-chain	terminations	resulting	in	
7Be	versus	8B	solar	neutrinos

§ Quantitative	comparison	still	
requires	inclusion	of	3N	forces	

SRG-N3LO NN

J. Dohet-Eraly
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Ab initio calculations simultaneously address 
many-body correlations and 3-cluster dynamics 

6He

Expt.

Expt.

Expt.

C. Romero-Redondo, S. Quaglioni, P.Navratil, and 
G. Hupin, Phys. Rev. Lett. 117, 222501 (2016)
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C. Romero

Borromean halos 
(dripline nuclei)

§ 6He	(=	4He+n+n),								
11Li	(=	9Li+n+n),																								
14Be	(=	12Be+n+n),	
…

§ Constituents	do	
not	bind	in	pairs!

§ 3-cluster	NCSMC
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Ab initio calculations simultaneously address 
many-body correlations and 3-cluster dynamics 

Borromean halos 
(dripline nuclei)

§ 6He	(=	4He+n+n),								
11Li	(=	9Li+n+n),																								
14Be	(=	12Be+n+n),	
…

§ Constituents	do	
not	bind	in	pairs!

§ 3-cluster	NCSMC

6He

+

C. Romero

C. Romero-Redondo, S. Quaglioni, P.Navratil, and 
G. Hupin, Phys. Rev. Lett. 117, 222501 (2016)
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Ab initio calculations simultaneously address 
many-body correlations and 3-cluster dynamics 

6He

Quantitative comparison still requires inclusion of 3N forces 
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§ Working	within	the	ab	initio	no-core	shell	
model	with	continuum	we	have	made	great	
strides	in	the	description	of	reactions	and	
exotic	nuclei

§ We	are	on	the	verge	of	predicting	Solar	
fusion	cross	sections	and	reaction	rates	for	
fusion	technology	from	chiral	NN+3N	forces

§ These	developments	are	also	allowing	to
further	expose	and	will	help	overcome	
deficiencies	in	chiral	NN+3N	forces

§ New	opportunities	to	forge	a	connection	
between	ab	initio	many-body	theory	and	
few-body	reaction	models	are	emerging

Conclusions	and	Prospects

target

r

R

Standard solar model
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