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Chiral EFT

Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz (2007)
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EFT for nuclear vibrations

EFT for deformed nuclei

Pion-less EFT

(not pictured: halo EFT)



Models rule!
• Bohr Hamiltonian
• General collective model
• Interacting boson model

Recently: ab initio computation of 
rotational bands in p & sd-shell 
nuclei [Caprio, Maris, Vary (2013); 
Dytrych et al (2013); Jansen et al 
(2014); Bogner et al (2014)]

Rotors: E(4+)/E(2+) = 10/3
Vibrators: E(4+)/E(2+) = 2

EFTs for heavy nuclei



Quadrupole degrees of freedom describe spins and parity of low-energy spectra

Nuclear rotation: emergent breaking of 
rotational symmetry of SO(3) à SO(2);
EFT based on nonlinear realization 
(Nambu-Goldstone)  of SO(3)

Nuclear vibration: EFT based on 
linear realization (Wigner / Weyl) 
of SO(3)

Two paradigms: vibrations and rotations



EFT for nuclear vibrations
à Toño Coello’s talk earlier in this program

EFT for nuclear vibrations
[Coello Pérez & TP 2015, 2016] 

Spectrum and B(E2) transitions of 
the harmonic quadrupole oscillator

Challenge: While spectra of certain 
nuclei appear to be harmonic, B(E2) 
transitions do not.

Garrett & Wood (2010): “Where are 
the quadrupole vibrations in atomic 
nuclei?”   

Bohr Hamiltonian,
IBM, …



EFT for nuclear vibrations

EFT ingredients:
• quadrupole degrees of 

freedom
• breakdown scale around 

three-phonon levels
• “small” expansion parameter: 

ratio of vibrational energy to 
breakdown scale: ω/Λ ≈ 1/3

• Uncertainties show 68% DOB intervals from truncating higher EFT orders 
[Cacciari & Houdeau (2011); Bagnaschi et al (2015); Furnstahl, Klco, Phillips & 
Wesolowski (2015)]
• Expand observables according to power counting
• Employ “naturalness” assumptions as log-normal priors in Bayes’ 

theorem
• Compute distribution function of uncertainties due to EFT truncation
• Compute degree-of-believe (DOB) intervals.

ω

Λ break



Uncertainty quantification

Linear combinations of LECs 
enter observables. LECs are 
random, but with EFT 
expectations, i.e. log-normal 
distributed. Making 
assumptions about these 
distributions then allows one 
to quantify uncertainties. The 
assumptions can be tested.



Hamiltonian

LO Hamiltonian
𝑂(𝜔)

NLO correction

𝑂(
𝜔%

Λ')

with

“Small” expansion parameter



EFT result: sizeable quadrupole matrix 
elements are natural in size

In the EFT, the quadrupole operator 
is also expanded:

Subleading corrections are sizable:



Rhodium as a proton coupled to ruthenium
Silver as a proton (hole) coupled to palladium (cadmium)

Ag
Rh

Focus on odd-mass nuclei 
with spin-1/2 ground states



Fermion coupled to vibrating nucleus 
Approach follows halo EFT [Bertulani, Hammer, van Kolck (2002); Higa, 
Hammer, van Kolck (2008); Hammer & Phillips (2011); Ryberg et al. (2014)], and 
particle-vibrator models [de Shalit (1961); Iachello & Scholten (1981); Vervier
(1982);…]

Two new LECs 
enter at lowest 
interesting order 

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)



Coupling a spin ½ fermion to vibrations

Number operator

Spin

Coupling to vibrator (based on empirically small splittings)

Hamiltonian



Single LEC Q1 fit to all data with EFT weighting.

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)

Static E2 moments (in eb)



E2 transition strengths

Results in Weisskopf units. A single LEC Q0 enters.

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)



Correlations between static quadrupole 
moments

Data for the 102Ru /103Rh, 106Pd /107Ag, and 108Pd /109Ag systems are shown as 
diamonds, triangles, and circles, respectively.



Magnetic moments: Relations between even-
even and even-odd nuclei

Results in nuclear magnetons.
At LO, one new LEC enters to describe the magnetic moments 
in the odd-mass neighbor

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)



Rotors: E(4+)/E(2+) = 10/3
Vibrators: E(4+)/E(2+) = 2

EFT for deformed nuclei: rotations

EFT
[TP (2011); Weidenmüller & 
TP (2014);  Coello Pérez & TP 
(2015)]



Nonlinear realization of rotational symmetry
[ follows Weinberg 1967; Coleman, Callan, Wess & Zumino 1969]

Spontaneous breaking of rotational symmetry: Nambu-Goldstone modes 
parameterize the coset SO(3)/SO(2) ~ S2, i.e. the two sphere

[TP & Weidenmüller; Phys. Scr. 91 (2016) 053004]

Comments: 
• Further degrees of freedom 

in the tangential plane can 
be added to the tangential 
plane

• Addition of monopole field 
yields nuclei with nonzero 
ground-state spins



Emergent symmetry breaking

Finite system cannot exhibit spontaneous symmetry breaking

Instead: Emergent symmetry breaking [Yannouleas & Landman 2007]

Infinite system: Hilbert spaces with different orientations (of the 
nucleus) are inequivalent. No rotation, i.e. no unitary transformation 
can connect states in inequivalent Hilbert spaces

Finite system: Hilbert spaces with different orientations are connected 
by a rotation: Zero mode, i.e. purely time-dependent “Nambu-
Goldstone field” has to be added; amplitudes of this mode can be large.

Low-lying modes in finite systems: [Gasser & Leutwyler 1988; 
Hasenfratz & Niedermayer 1993]

Field theory of (anti)ferromagnet as example of SO(3)àSO(2):   
[Leutwyler 1987; Roman & Soto 1999; Hofmann 1999; Bär, Imboden & 
Wiese 2004;  Kämpfer, Moser & Wiese 2005]



EFT for deformed nuclei

E. A. Coello Pérez and TP, Phys. Rev. C 92, 014323 (2015)

Strength of quadrupole transitions Ii à Ii – 2 in ground-state band 
(Clebsch-Gordan coefficient divided out)

Spectrum of ground-state band 

At leading order: EFT reproduces well known results from phenomenological 
models (e.g. Variable Moment of Inertia, Mikhailov theory…)
EFT provides us with insight in scale of parameters in expansion of observables



EFT: expansion parameter & naturalness
Expansion 
parameter:
Erot / Evib

Natural 
LECs:  
spectrum

Natural 
LECs:  
transitions

le
ss

 r
ig

id
  r

ot
or

Molecules

Rotational nuclei

Transitional nuclei

Natural sizes as 
expected!

E. A. Coello Pérez and TP, Phys. Rev. C 92, 014323 (2015)



EFT works well for a wide range of rotors

ξ/ω = 0.18

ξ/ω = 0.06ξ/ω = 0.005
Bohr & Mottelson (1975):
“The accuracy of the present 
measurements of E2-matrix 
elements in the ground-state 
bands of even even nuclei is in 
most cases barely sufficient to 
detect deviations from the 
leading-order intensity relations.”

ξ/ω = 0.1



Unexpected oscillatory patterns in 
supposedly “good” rotors 168Er, 174Yb

168Er: B(E2) for 6+ à 4+ very difficult to 
understand. 
174Yb: B(E2) for 8+ à 6+ difficult to 
reconcile with 4+ à 2+.

Theoretical uncertainty estimates relevant.

Based on results for molecules, 
well-deformed nuclei, and 
transitional nuclei, EFT 
suggests that a few transitions 
in text-book rotors could merit 
re-measurement.

ξ/ω = 0.10

ξ/ω = 0.05



In-band transitions [in e2b2] are LO, inter-band transitions are NLO. Effective theory is 
more complicated than Bohr Hamiltonian both in Hamiltonian and E2 transition 
operator. EFT  correctly predicts strengths of inter-band transitions with natural LECs.

[E. A. Coello Pérez and TP, Phys. Rev. C 92, 014323 (2015)]

Challenge: weak interband transitions 
(example: 154Sm)



EFT in harmonic oscillator basis

Motivation: optimize and generate interactions in basis of computation

• A finite harmonic oscillator basis exhibits IR and UV cutoffs; 
indistinguishable from a spherical cavity at low momenta; Lüscher-
like extrapolation formulas for many observables [Stetcu, Barrett & van 
Kolck (2007); Coon et al. (2012); Furnstahl, Hagen & TP (2012); …] 

• Computation of scattering phase shifts directly in the oscillator basis
[Heller & Yamani (1974); Bang et al. (2000); Shirokov et al. (2004)]

• Formulate EFT directly in the oscillator basis [Haxton & Song (2000); 
Stetcu, Barrett & van Kolck (2007); Tölle, Hammer & Metsch (2011)] 

• Discrete momentum eigenstates from diagonalization of p2 for DVR in 
oscillator basis [Binder et al., PRC 93, 044332 (2016)] 



Extrapolations in finite Hilbert spaces

Radiative capture: 
• from continuum to bound state
• Convergence depends on bound-state momentum 

and is slower than energy convergence

Acharya et al, arXiv:1608.04699  
à Phys. Rev. C 95, 031301 (2017)

Corrections to capture 
cross sections ~ 1%, even 
when integrating out to 
30 fm. 
[Girlanda et al. PRL 2010]  



Eigenfunctions and eigenvalues of p2

k

Eigenfunctions of p2

for l=0, N=10, and 
ℏ𝝎 = 10 MeV.
Vertical lines are 
eigenvalues k𝜇l .

For a partial wave l in a Hilbert space with energies up to (2N+l)ℏ𝝎, the 
eigenvalues k𝜇l

2 of p2 are the roots of the associated Laguerre polynomial 
LN+1

l+1/2.

The eigenfunctions of p2 are a DVR (discrete variable representation). 

DVRs see: [Harris, Engerholm, & Gwinn (1965); Light, Hamilton, & Lill (1985); 
Baye & Heenen (1986); Littlejohn et al. (2002); Bulgac & McNeil Forbes (2013).]



Pionless EFT for A>4

• A>4 nuclei explored only very recently [Kirscher et al. 2010; 
Lensky, Birse & Walet 2016; Contessi et al. 2017]

• Used as tool to compute finite nuclei from lattice QCD 
input (at unphysical pion masses, though)

• At LO, 16O is not bound with respect to decay into four 𝛼
particles [Contessi et al. 2017] 

Here: 
• Nonperturbative NLO 
• Interaction as IR improved DVR in N=8 shells
• Increase kinetic energy until convergence is reached
• Compute 4He, 16O, and 40Ca 



Preliminary results

Bansal, Binder, Ekström, Hagen, and TP (in preparation)



• EFT for nuclear vibrations

• Anharmonic vibrations consistent with data within uncertainties

• Sizable quadrupole moments and transitions where models yield null 
result 

• Predictions for M1 and E2 moments and transitions

• EFT for deformed nuclei

• LO recovers Bohr Hamiltonian

• EFT explains weak interband transitions

•IR extrapolations

• Lüscher-like formulas for energies, radii, quadrupole moments, 
transitions, radiative capture reactions

•Pion-less EFT

• Bound 16O, 40Ca in nonperturbative NLO for cutoffs 200 < Λ < 700 MeV

Summary


