

NON-LOCAL OPTICAL POTENTIALS

Why we should care...

Filomena Nunes Michigan State University INT, 16 Mar 2017

Supported by: NNSA, NSF, DOE

Reaction theory for heavy exotic nuclei

FIG. 7. Computed ⁷Li(d,d)⁷Li differential cross sections in the c.m. frame at the deuteron scattering angle of 90° as function of the kinetic energy of deuterons in the laboratory system, compared to the experimental data of Ref. [39]. The three sets of theoretical curves correspond to calculations within the (d,⁷Li) NCSM-RGM (green dashed line), (d,⁷Li) + ⁹Be NCSMC (blue dash-dotted line), and (d,⁷Li) + (p,⁸Li) NCSM-RGM (red solid line) model spaces.

¹³²Sn(d,p)¹³³Sn
 ⁵⁹Cu(d,nγ)⁶⁰Zn*
 ⁹⁵Mo(d,pγ) ⁹⁶Mo*

PRC93, 054606 (2016)

Our starting point

- A complex many-body problem
- Scattering boundary conditions
- Importance of thresholds
- Large Coulomb interactions
- Specific clustering

d(132Sn,133Sn)p@5 MeV/u

1. reduction to few-body

- Reducing the many-body problem to a few-body problem introduces effective interactions.
- How does the original many-body Hamiltonian relate to the few-body Hamiltonian?

$$\mathcal{H}_{3B} = T_{\mathbf{r}} + T_{\mathbf{R}} + U_{nA} + U_{pA} + V_{np}$$

2. solving the few-body

Faddeev Formalism

$$(E - T_1 - V_{xc})\Psi^{(1)} = V_{xc}(\Psi^{(2)} + \Psi^{(3)}) (E - T_2 - V_{ct})\Psi^{(2)} = V_{ct}(\Psi^{(3)} + \Psi^{(1)}) (E - T_3 - V_{tx})\Psi^{(3)} = V_{tx}(\Psi^{(1)} + \Psi^{(2)})$$

CDCC, ADWA, etc, etc...

(this is another talk...)

3. determining V_{eff}

Currently our bipolar thinking:

- V_{eff} is effective interaction between N-A and should describe elastic scattering (global optical potential)
- V_{eff} is self energy of N+A system and can be extracted from many-body theories (microscopic optical potential)

3. microscopic V_{eff}

V_{eff} is self energy extracted from coupled-cluster CCSD

$$G(\alpha, \beta, E) = G^{(0)}(\alpha, \beta, E)$$

Ab-initio Hamiltonian: NN_{opt} + $\sum_{\gamma,\delta} G^{(0)}(\alpha,\gamma,E)\Sigma^*(\gamma,\delta,E)G(\delta,\beta,E)$. Basis: HO and Breggren Extend for convergence of potential.

3. microscopic V_{eff}

The effective interaction is non-local!

3. microscopic V_{eff}

 Non-locality is large, varying with R and E and non-Gaussian!

FIG. 8. Neutron s-wave optical potential at E=10 MeV plotted as $V(R + r_{\rm rel}/2, R - r_{\rm rel}/2)$ at fixed R = 1/2 fm. Here $N_{max} = 14$ and 50 discretized s-wave shells are included in the single-particle basis.

3. microscopic V_{eff}

n + ¹⁶O

 There remains an energy dependence!

 Absorption is small from E=0-10 MeV.

FIG. 11. Neutron s-wave imaginary volume integral $J_W(E)$ for several values of η . Calculations were performed at $N_{\text{max}} = 14$ with 50 discretized $s_{1/2}$ shells.

3. non-local phenomenological V_{eff}

$$U^{NL}(\mathbf{R}, \mathbf{R}') = \sum_{L} \frac{2L+1}{4\pi} \frac{g_L(R, R')}{RR'} P_L(\cos \theta)$$
$$g_L(R, R') = h_L(R, R') U_{WS}\left(\frac{1}{2}(R+R')\right)$$

$$h_L(R,R') = \frac{2i^L z}{\pi^{\frac{1}{2}}\beta} j_L(-iz) \exp\left(-\frac{R^2 + R'^2}{\beta^2}\right)$$
$$\approx \frac{1}{\pi^{\frac{1}{2}}\beta} e^{-\left(\frac{R-R'}{\beta}\right)^2} \quad \text{for } |z| \gg 1.$$

Perey and Buck (1962): only surface imaginary

V_V (MeV)	a_V (fm)	W_S (MeV)	a_S (fm)
71.00	0.65	15.00	0.47
U_{SO} (MeV)	a_{SO} (fm)	β (fm)	r_0 (fm)
7.18	0.65	0.85	1.22

Tian, Pang and Ma (2015): only surface imaginary

V_V (MeV)	a_V (fm)	r_V (fm)	W_S (MeV)	a_S (fm)	r_S (fm)	β (fm)
70.00	0.61	1.25	21.11	0.46	1.15	0.90
W_V (MeV)	a'_V (fm)	r'_V (fm)	U_{SO} (MeV)	a_{SO} (fm)	r_{SO} (fm)	/
1.39	0.55	1.17	9.00	0.59	1.10	/

3. non-local phenomenological V_{eff}

- Perey and Buck: best for E<20 MeV
- Tian, Pang, Ma: best for E>20 MeV
 - (volume absorption important)
- Joint analysis of low energy and high energy data indicates, for both PB and TPM, residual energy dependence is needed!

Lovell, Bacq et al., in preparation (2017)

3. non-local phenomenological V_{eff}

- Strong energy dependence of local phenomenological potentials!
- Example Becchetti and Greenlees (1969)

Vv = 54 - 0.32E - 24(N - Z)/AWv = 0.22E - 1.6Ws = 13 - 0.25E - 12(N - Z)/A

We took 27 sets of data for elastic angular distributions: targets ⁴⁸Ca, ⁹⁰Zr and ²⁰⁸Pb energies 6-40MeV

Assume same Gaussian non-locality of either PB or TPM

Minimization results show no energy dependence is required for the real part

Lovell, Bacq et al., in preparation (2017)

3. non-local phenomenological V_{eff}

Both volume and surface absorption was considered:

$$W_v = dE + e$$

$$W_s = aE + b\frac{N-Z}{A} + c$$

• 5 parameter minimization of 27 elastic scattering data sets (error from covariant matrix – 1σ error bar)

Energy dependence in imaginary part of optical potential is required!!!

Lovell, Bacq et al., in preparation (2017)

4. non-locality in reactions

- Effect of non-locality?
- How to deal with non-locality?
- How to pin down non-locality?
- Is this a relevant question?

non-locality effect in transfer reactions

- Systematic study of effect of nonlocality in (d,p)
 - Titus et al., PRC89, 034609 (2014)
- Similar study with DOM interaction
 - Ross et al., PRC92, 044607 (2015)
- Inclusion of non-locality in adiabatic theories implemented
 - Titus et al. PRC 93, 014604 (2016)
- New reaction code NLAT
 - Titus et al., CPC 207, 499 (2016)
- Systematic study of effect of nonlocality in (d,n)
 - Ross et al., PRC 94, 014607 (2016)

non-locality effect on wavefunctions

BOUND STATES

- Fitted separation energy
- Reduction of strength in interior
- Increase of magnitude in asymptotics

SCATTERING STATES

- Fitted nucleon elastic scattering
- Reduction of strength in interior

THREE-BODY DEUTERON SCATTERING STATES

- Fitted nucleon elastic scattering
- Reduction of strength in interior
- Deuteron elastic no longer reproduced

non-locality effect in (d,p) with ADWA

⁴⁸Ca(d,p) at 10 MeV

non-locality effect in (d,p) with ADWA

¹³²Sn(d,p) at 50 MeV

non-locality effect in (d,p) with ADWA

Transfer cross sections: Nonlocal relative to local at first peak

	$E_{lab} = 10 \text{ MeV}$	$E_{lab} = 20 \text{ MeV}$	$E_{lab} = 50 \text{ MeV}$
$^{-16}\mathrm{O}(1d_{5/2})(d,p)$	27.2%	24.9%	22.3%
$^{16}\mathrm{O}(2s_{1/2})(d,p)$	15.5%	7.1%	20.7%
${ m ^{40}Ca}(d,p)$	48.5%	43.3%	4.8%
${}^{48}\mathrm{Ca}(d,p)$	19.4%	14.9%	41.9%
$^{126}\mathrm{Sn}(d,p)$	36.9%	33.6%	6.9%
$^{132}\mathrm{Sn}(d,p)$	25.7%	3.2%	-10.9%
$^{208}\mathrm{Pb}(d,p)$	52.5%	35.0%	64.8%

Low Energy

- General enhancement of cross section
- Proton channel most important
- Deuteron channel had a modest impact

High Energy

- Deuteron channel more important, specially for heavy targets
- Competition between effects of bound and scattering effects in proton channel.

non-locality effect in transfer reactions

- In general there are very few examples of (d,n) data out there
- Non-locality in optical potential can produce large differences in the angular distribution
- Neutron angular distributions can provide constrains
- Important to get the most forward angles!!!

non-locality effect: energy shift

N. K. Timofeyuk and R. C. Johnson, Phys. Rev. Lett. 110, 112501 (2013).
N. K. Timofeyuk and R. C. Johnson, Phys. Rev. C 87, 064610 (2013).

Energy shift does not provide a quantitative description of the effect of nonlocality: neither shape nor magnitude

Concluding remarks

Solving the few-body problem A lot of progress has been made and more developments are ongoing for (d,p) on heavy targets (another talk...)

Determining the effective interactions

Revival of microscopic interactions from ab-initio calculations Without artificial factors, all fall short in describing accurately elastic scattering From data, need both non-locality and energy dependence

Including non-locality

We understand non-locality affects transfer observables and know how to include it. How do we constrain it? Need guidance from microscopic theory

Thank you for your attention

MSU few-body group : Luke Titus*, Alaina Ross, Amy Lovell, Terri Poxon-Pearson, Jimmy Rotureau and Gregory Potel

Collaboration with **Pierre-Loic Bacq** and Pierre Capel (ULB)

Supported by: NNSA, NSF, DOE