Connecting fundamental models with nuclear reaction evaluations

G. P. A. Nobre National Nuclear Data Center Brookhaven National Laboratory *Workshop at Institute for Nuclear Theory, March 13-17, 2017*

Nuclear Reactions: A Symbiosis between Experiment, Theory and Aplications

a passion for discovery

Summary

- What is a reaction evaluation?
- **Importance of predictive theory in reaction evaluations**
	- **Extrapolation**
	- Compensation of errors
- Soft-rotor optical potential applied to Iron evaluations
- Coupled-channels on interpolated Optical Potentials
	- Adiabatic principle: Separation of degrees of freedom
	- Rare-earth angular distributions
- **Reaction observables from microscopic transition** densities/potentials for nucleon-nucleus reactions
	- **Reaction cross sections**
	- Total cross sections
	- Angular distributions

Summary

- What is a reaction evaluation?
- Importance of predictive theory in reaction evaluations
	- **Extrapolation**
	- Compensation of errors
- Soft-rotor optical potential applied to Iron evaluations 1
- Coupled-channels on interpolated Optical Potentials 2
	- Adiabatic principle: Separation of degrees of freedom
	- Rare-earth angular distributions
- Reaction observables from microscopic transition densities/potentials for nucleon-nucleus reactions 3
	- **Reaction cross sections**
	- Total cross sections
	- Angular distributions

The Nuclear Data Community is the link between basic science and applications

Nuclear Science Community

- ✦ Experiments
- ✦ Theory

Nuclear Data **Community**

- ✦Compilation
- ✦Evaluation
- ✦Dissemination
- ✦Archival

Application **Community** needs data:

- ✦ Complete
- ✦ Organized
- ✦ Traceable
-

Reaction evaluations

- Goal: Provide best cross sections (integrated/differential)
- Used in applications: Nuclear power, astrophysics, medical isotope production, national security...
- Sub-libraries: neutron, proton, decay, ...
- Analysis of experimental data
	- Conflicting sets
	- Always be incomplete
- Modeling fills gaps
- Validation (integral testing)
	- Critical assemblies
	- Normally only one quantity is measured
	- Compensation of errors
	- Examples: minor Iron isotopes, Cromium issue in steel, etc.

Soft-Rotator Model (SRM)

Brookhaven Science Associates

 \mathbf{Q}

- SRM used to obtain a dispersive OP: Fe evaluation
- Collective models are normally assumed either pure rotational or vibrational
- **However, "centrifugal" forces in some rotating nuclei lead** to displacement of nuclear matter within the nucleus
- Vibration within deformed matter: "Softness" parameter
- **Applied to light, medium, and heavy nuclei, which are not** pure vibrational nor pure rotors

$$
R_{i}(\theta', \varphi') = R_{0i} \left\{ 1 + \sum_{\lambda = 2,4,6,8} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}
$$

+ $R_{0i} \beta_{20} \left[\frac{\delta \beta_{2}}{\beta_{20}} \cos \gamma + \cos \gamma - 1 \right] Y_{20}(\theta') + R_{0i} (\beta_{20} + \delta \beta_{2}) \frac{\sin \gamma}{\sqrt{2}} [Y_{22}(\theta', \varphi') + Y_{2-2}(\theta', \varphi')]$
+ $R_{0i} \beta_{3} \cos \eta Y_{30}(\theta') + R_{0i} \beta_{3} \frac{\sin \eta}{\sqrt{2}} [Y_{32}(\theta', \varphi') + Y_{3-2}(\theta', \varphi')].$

 $1132(0, \psi)$ + $13-2(0, \psi)$.

Prediction of collective levels for 54,56,58Fe

FIG. 1. Comparison of the experimental and predicted level schemes for the ⁵⁶Fe nucleus.

PRC 87, 054611 (2013) NDS 118 (2014) 191-194

10

LABORATO

Cross Section (barns)

A more fundamental model lends reliability when there is little data available (or none whatsoever).

13

All data for ⁵⁸Fe 10^{2} 10² Cross Section (barns) Cross Section (barns) 1 10^{-2} 58Fe(n,total) 2000 Bao 58Fe(n,elas)∖ 1987 Trofimov 58Fe(n,n') 1987 Trofimov 10-4 58Fe(n,2n) 1985 Trofimov 58Fe(n,g) 1980 Allen 58Fe(n,p) 1980 Allen 58Fe(n,p*) • 1978 Beer 1991 Viennot 1978 Garg 10-6 ◆ 1988 Habbani 1978 Beer 1978 Beer ◆ 1985 Bahal 1976 Doil'nitsyn 1981 Klochkovaan Lan 10⁻² 10⁻¹ 10 10 10² 14 **Brookhaven Science Associates** Incident Energy (MeV)

Development of an Optical Model Potential in the rare-earth region

Motivation :

- Why seek an optical potential for the rare-earth region?
	- Lack of existing regional OP's for deformed nuclei
	- Recent work shows scattering from highly deformed nuclei is near adiabatic limit \rightarrow deforming a spherical global potential may be suitable with only minor modifications

We deform the Koning-Delaroche spherical global potential and couple g.s. rotational band

Development of an Optical Model Potential in the rare-earth region

Motivation :

- Why seek an optical potential for the rare-earth region?
	- Lack of existing regional OP's for deformed nuclei
	- Recent work shows scattering from highly deformed nuclei is near adiabatic limit \rightarrow deforming a spherical global potential may be suitable with only minor modifications

We deform the Koning-Delaroche spherical global potential and couple g.s. rotational band

17NATIONAL LABORA

18NATIONAL LABOR.

Calculations done in rare-earths region

- CC calculations deforming spherical Koning-Delaroche OP
	- Full imaginary part of KD
	- Adiabatic limit
	- Experimental deformations
	- Coupled to g.s. rotational band

$$
R(q) = R_0 \underbrace{a}_{\stackrel{\circ}{\theta}} + \underbrace{\stackrel{\circ}{\Theta}}_{f} D_f Y_{f,0}(q) \underbrace{\stackrel{\circ}{\Theta}}_{g}
$$

- Used EMPIRE code (Direct reaction part calculated by ECIS)
- 34 nuclei: ^{162,163,164}Dy, ^{166,167,168,170}Er, ¹⁵³Eu, ^{155,156,157,158,160}Gd, 177,178,179,180Hf, ¹⁶⁵Ho, 175,176Lu, 152,154Sm, ¹⁸¹Ta, ¹⁵⁹Tb, ¹⁶⁹Tm, 182,183,184,186W, 171,172,173,174,176Yb
- **Tested convergence to the number of channels and correction** for volume conservation
- **Initially compared direct-reaction observables; then extended** approach to test effect on compound nucleus quantities

Comparison between spherical and CC: Total cross sections

provides a good description of the observed total cross sections Spherical approach fails at low energy and its shape is often in disagreement with experimental data, while deforming KD potential

Angular distributions: Gd, Ho, W

- **Nore detailed analysis on the experimental data sets**
- Some elastic ang. dist. data actually contained inelastics
- **Ensured convergence regarding number of rotational channels**

Angular distributions: Gd, Ho, W

- **Nore detailed analysis on the experimental data sets**
- Some elastic ang. dist. data actually contained inelastics
- **Ensured convergence regarding number of rotational channels**

158, 160Gd Angular distributions

Good agreement with experimental data obtained by the model

W – Elastic angular distributions

Good agreement with experimental data obtained by the model

W – 2 + Inelastic ang. dist. (E² ⁺=0.100MeV)

Good agreement with experimental data obtained by the model

¹⁸²W – 4 + Inelastic ang. dist. (E⁴ ⁺=0.329MeV)

Good agreement with experimental data obtained by the model

x 107

 $x 10⁵$

150

150

 $x 10³$

x 10

180

 $x₁₀$

180

W – Elastic and inelastic angular distributions

¹⁸⁶W – Elastic and inelastic angular distributions $10⁵$

approximation. The fact that deforming KD allows to consistently describe observed elastic and inelastic angular distributions remarkably well is very supportive of the model and of the adiabatic

Reaction observables from Energy Density Functionals Ab Initio NN+NNN

UNEDF SciDAC Collaboration Universal Nuclear Energy Density Functional

Main goals:

- \triangleright To find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties.
- \triangleright To apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure data.
- \triangleright To apply the validated theory to properties of interest that cannot be measured, in particular the transition properties needed for reaction theory.

3

Reaction observables from Energy Density Functionals Ab Initio NN+NNN

UNEDF SciDAC Collaboration Universal Nuclear Energy Density Functional

Main goals:

- \triangleright To find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties.
- \triangleright To apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure data.
- \triangleright To apply the validated theory to properties of interest that cannot be measured, in particular the transition properties needed for reaction theory.

3

Outline of Coupled-Channels Calculations

- Mean-field HFB calculations using SLy4 Skryme functional
- Use (Q) RPA to find all levels E^* , with transition densities from the g.s.
- Structure calculations for $n, p + {}^{40,48}Ca, {}^{58}Ni, {}^{90}Zr$ and 144 Sm
- Fold transition densities with effective n-n interaction: Transition Potentials
- Couple to all excited states, $E^* < 10$, 20, 30, 40 MeV
- Find what fraction of σ_R corresponds to inelastic couplings: more states, larger σ_R, until <u>all open channels</u> are coupled
- Couple to all pickup channels leading to deuteron formation

Outline of Coupled-Channels Calculations

- Mean-field HFB calculations using SLy4 Skryme functional
- Use (Q) RPA to find all levels E^* , with transition densities from the g.s.
- Structure calculations for $n, p + {}^{40,48}Ca$, ${}^{58}Ni$, ${}^{90}Zr$ and ${}^{144}Sm$
- Fold transition densities with effective n-n interaction: Transition Potentials
- Couple to all excited states, $E^* < 10$, 20, 30, 40 MeV
- Find what fraction of σ_R corresponds to inelastic couplings: more states, larger σ_R, until <u>all open channels</u> are coupled
- Couple to all pickup channels leading to deuteron formation

Nuclear Excited States from Mean-field Models

Use (Q) RPA to find all levels E^* , with transition densities from the g.s.

Uncorrelated particle-hole states

Correlated p-h states in HO basis

Correlated p-h states in 15 fm box

Neutron separation energy is 9.5 MeV. Above this we have discretized continuum.

Collaboration with Chapel Hill: Engel

& Terasaki

Diagonal Density

Folding of densities with n-n interaction \square Transition potentials

Off-Diagonal Densities

Example of off- diagonal Transition densities for ⁹⁰Zr

Folding of densities with n-n interaction \square Transition potentials

Transition densities to Transition potentials

Natural parity states only: no spin-flip, so no spin-orbit forces generated. No energy or density dependence. Exchange contributions included implicitly.

(So far…)

Comparison with Experimental Data

Comparison with Experimental Data

Summary of Results at E_{lab} = 30 MeV

- Phenomenological Optical Model
- Inelastic couplings only
- Inelastic + Transfer
- Inelastic + Transfer with non-orthogonality

With all couplings, calculations agree with experimental data

Phys. Rev. Lett. 105, 202502 (2010) Phys. Rev. C 84, 064609 (2011)

G. P. A. Nobre, F.S. Dietrich, J. E. Escher, I. J. Thompson, M. Dupuis, J. Terasaki and J. Engel

Two-Step Approximation

We found we need only two-step contributions

• These simply add for all *j*=1*,N* inelastic & transfer states:

 $V_{\text{DPP}} = \sum_j^N V_{0j} G_j V_{j0}.$

 $G_j = [E_n - e_j - H_j]^{-1}$: channel-*j* Green's function

 $V_{i0} = V_{0i}$: coupling form elastic channel to excited state *j*

• Gives $V_{\text{DPP}}(r,r',L,E_n)$: nonlocal, L- and E-dependent.

In detail: $V_{\text{DPP}}(r,r',L,E_n) = \sum_{j}^{N} V_{0j}(r) G_{jL}(r,r') V_{j0}(r') = V + iW$

- Quadratic in the effective interactions in the couplings V*ij*
- Can be generalized to non-local $V_{ij}(r,r')$ more easily than CCh.
- Treat any higher-order couplings as a perturbative correction

Calculated Nonlocal Potentials V(r,r') now

p + ⁵⁸Ni – Coupled Channels and Two-Step Approach

Two-step method allows to perform calculations at higher energies, coupling to higher states.

Conclusion

- **Predictive models are crucial for progress of reaction** evaluations
- Evaluations are a link between nuclear science and applications
- Collaboration with scientific community (both structure and reaction) is indispensable
- Win-win: fundamental models will improve evaluations and allow for new ones; evaluations will point new ways to go that can directly impact applications

Collaboration

- Incorporate latest theoretical models
- Benchmark our evaluations against most recent data

References

- www.nndc.bnl.gov
- **EMPIRE: Nuclear Data Sheets 108 (2007) 2655-2715**
- **ENDF/B library: <https://ndclx4.bnl.gov/gf/project/endf/>**
- Soft-rotator model:
	- Physical Review C 94, 064605 (2016)
	- Physical Review C 87, 054611 (2013)
	- Nuclear Data Sheets 118 (2014) 191-194
- Rare-earths:
	- Physical Review C 91, 024618 (2015)
	- AIP Conf. Proc. 1625, 45 (2014)
	- EPJ Web of Conf. 69, 00007 (2014)
	- Nuclear Data Sheets 118 (2014) 266-269
- Nucleon-nucleus microscopic OP:
	- Physical review letters 105 (2010), 202502
	- Physical Review C 84 (2011), 064609
	- Journal of Physics: Conference Series 312 (2011), 082033
	- Computer Physics Communications 184 (2013), 2235-2250