Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

¹¹Be excitation energies of the NCSM eigenstates entering

and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

- New high precision chiral interactions
- No-Core Shell Model with Continuum (NCSMC) approach
- N-⁴He scattering

TRIUMF

- ¹¹Be parity inversion in low-lying states, photo-dissociation
- 11 N and $10C(p,p)$ scattering
- $12N$ and $11C(p,p)$ scattering and $11C(p,y)$ ¹²N

From QCD to nuclei

Nuclear structure and reactions

Inter-nucleon forces from chiral effective field theory

- Based on the symmetries of QCD
	- Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
	- Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order $(Q/\Lambda_{\rm v})$
- **Hierarchy**

POTRIUMF

- **Consistency**
- Low energy constants (LEC)
	- Fitted to data
	- Can be calculated by lattice QCD

N3LO NN+N2LO 3N (NN+3N400, NN+3N500) N4LO500 NN

Λχ~1 GeV : Chiral symmetry breaking scale

From QCD to nuclei

RETRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
	- Short- and medium range correlations
	- Bound-states, narrow resonances

Harmonic oscillator basis

From QCD to nuclei

- Systematic from LO to N⁴LO
- High precision x^2 /datum = 1.15
	- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

Chiral EFT interactions up to N⁴LO

- Systematic from LO to N⁴LO e Systematic from LO • Systematic
	- $High \, precision \chi^2/datum = 1.15$
- Filgh precision $-\chi$ -/datum = 1.15

 D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision x^2 /datum = 1.15
	- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision x^2 /datum = 1.15
	- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision x^2 /datum = 1.15
	- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

RETRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
	- Short- and medium range correlations
	- Bound-states, narrow resonances

Harmonic oscillator basis

A TRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
	- Short- and medium range correlations
	- Bound-states, narrow resonances

Harmonic oscillator basis

 \rightarrow *r*

- ... with resonating group method
	- Bound & scattering states, reactions
	- Cluster dynamics, long-range correlations

TRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
	- Short- and medium range correlations
	- Bound-states, narrow resonances

- ... with resonating group method
	- Bound & scattering states, reactions
	- Cluster dynamics, long-range correlations

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Coupled NCSMC equations where \sim to be simultaneously determined by \sim to be simultaneously determined by \sim **by solving the coupled NCSMC equations**

asymptotic with microscopic *R*-matrix on Lagrange mesh Scattoring matrix (and observables) from matching solutio Scattering matrix (and observables) from matching solutions to known

p

*p***-4He scattering within NCSMC**

*n***-4He scattering within NCSMC**

n-4He scattering phase-shifts for chiral NN and NN+3N500 potential

Total *n*-4He cross section with NN and NN+3N potentials

3N force enhances $1/2 \leftrightarrow 3/2$ splitting: Essential at low energies!

IOP Publishing Phys. Scr. 00 (2016) 000000 (37pp)

Invited Comment

Unified ab initio approaches to nuclear structure and reactions

,

| Royal Swedish Academy of Sciences Physica Scripta

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4} Carolina Romero-Redondo² and Angelo Calci¹

PHYSICAL REVIEW C **88**, 054622 (2013)

Ab initio **many-body calculations of nucleon-4He scattering with three-nucleon forces**

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

3N force enhances $1/2 \leftrightarrow 3/2$ splitting: Essential at low energies!

PHYSICAL REVIEW C **88**, 054622 (2013)

Ab initio **many-body calculations of nucleon-4He scattering with three-nucleon forces**

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

Invited Comment Phys. Scr. 00 (2016) 000000 (37pp)

IOP Publishing

Unified ab initio approaches to nuclear structure and reactions

,

| Royal Swedish Academy of Sciences Physica Scripta

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4} Carolina Romero-Redondo² and Angelo Calci¹

*n***-4He scattering within NCSMC**

n-4He scattering phase-shifts for chiral NN and NN+3N500 potential *n*-4He scattering phase-shifts for chiral N4LO500 NN potential

3N force enhances $1/2 \leftrightarrow 3/2$ splitting: Essential at low energies!

IOP Publishing Phys. Scr. 00 (2016) 000000 (37pp) Invited Comment

Unified ab initio approaches to nuclear structure and reactions

| Royal Swedish Academy of Sciences Physica Scripta

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4} , Carolina Romero-Redondo² and Angelo Calci¹

PHYSICAL REVIEW C **88**, 054622 (2013)

Ab initio **many-body calculations of nucleon-4He scattering with three-nucleon forces**

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

Neutron-rich halo nucleus 11Be

• $Z=4$, N=7

- $-$ In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-}$
	- Z=6, N=7 13 C and Z=8, N=7 15 O have J^{π}=1/2 g.s.
- In reality, 11Be g.s. is **J^π=1/2+** parity inversion
- Very weakly bound: E_{th} =-0.5 MeV
	- Halo state dominated by 10Be-n in the *S*-wave
- The 1/2 state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
	- Continuum must be included
	- Does the 3N interaction play a role in the parity inversion?

 $0s_{1/2}$ $Op_{3/2}$ $Op_{1/2}$ $1s_{1/2}$

21

TRIUMF

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at TRIUMF with the novel IRIS solid H_2 target
	- First re-accelerated ¹⁰C beam at TRIUMF
	- 10C(p,p) angular distributions measured at $E_{CM} \sim 4.16$ MeV and 4.4 MeV

TRIUMF

p+10C scattering: structure of 11N resonances

- NCSMC calculations with **chiral NN+3N** (N3LO NN+N2LO 3NF400, NNLOsat)
	- $-$ p-¹⁰C + ¹¹N

 \Rightarrow *r* +

- $10C$: 0^+ , 2^+ , 2^+ NCSM eigenstates
- \cdot ¹¹N: ≥4 π = -1 and ≥3 π = +1 NCSM eigenstates

p+10C scattering: structure of 11N resonances

@TRIUMF

p+10C scattering: structure of 11N resonances

 \bigotimes

TRIUMF

PETRIUMF

Structure of 11Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400) \Rightarrow
	- $-$ n-¹⁰Be + ¹¹Be
- *r* +
- $•¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates$ $\ddot{}$ 2
-
- \cdot ¹¹Be: ≥6 π = -1 and ≥3 π = +1 NCSM eigenstates \bullet ¹¹Be: ≥ 6 π = -1 4

*E*thr. [MeV] **TRIUMF** ¹¹Be within NCSMC: 9889
19Be: Note of Discrimination and 2 **Discrimination among chiral nuclear forces** $\overline{ }$

Feb 17 2016 A. Calci, P. Na 27
A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

27

*E*thr. [MeV] **TRIUMF** ¹¹Be within NCSMC: 9889
19Be: Note of Discrimination and 2 **Discrimination among chiral nuclear forces** $\overline{ }$

Feb 17 2016 A. Calci, P. Na

28

*E*thr. [MeV] **TRIUMF** ¹¹Be within NCSMC: 9889
19Be: Note of Discrimination and 2 **Discrimination among chiral nuclear forces** $\overline{ }$

Feb 17 2016 A. Calci, P. Na

p+10C scattering: structure of 11N resonances

TRIUMF

NCSMC wave function UNIFIED *AB INITIO* APPROACH TO BOUND AND *...* PHYSICAL REVIEW C **87**, 034326 (2013)

$$
\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)}(A) \sum_{\nu} \mathbf{1}_{\nu} \mathbf{1}_{\nu} + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \mathbf{1}_{(A-a)} \overrightarrow{r} \mathbf{1}_{(a)} \gamma_{\nu} \rangle
$$

$$
\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{\lambda} |A\lambda J^{\pi}T\rangle \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} + \sum_{\nu'} \int dr' \, r'^2 (N^{-\frac{1}{2}})^{\lambda}_{\nu' r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \bigg] + \sum_{\nu\nu'} \int dr \, r^2 \int dr' \, r'^2 \hat{\mathcal{A}}_{\nu} |\Phi_{\nu r}^{J^{\pi}T}\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r, r') \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu' r'} \bar{c}_{\lambda'} + \sum_{\nu''} \int dr'' \, r''^2 (N^{-\frac{1}{2}})_{\nu' r'\nu'' r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''}\bigg].
$$

νν′ i c be * *rr*′ − δνν′*Rn*ℓ(*r*)δ*nn*′*Rn*′ ^ℓ′(*r*′) expressed borranor Asymptotic behavior $r \to \infty$:

$$
\overline{\chi}_{v}(r) \sim C_{v}W(k_{v}r) \qquad \overline{\chi}_{v}(r) \sim \overline{V}_{v}^{\frac{1}{2}}\Big[\delta_{vi}I_{v}(k_{v}r) - U_{vi}O_{v}(k_{v}r)\Big]
$$

* P *dr⁄′′ r²^{<i>n*} *r*² *l*²*<i>d***₁** *d***₂***<i>n***⁴** *d***₂***n***⁴** *d***₂***n***⁴** *d***₂***n***⁴** *d***₂***n***⁴** *d***₂***n***⁴** *b* and *blate*

Bound state *rie* Scattering state Scattering matrix Scattering matrix ig state *region, <i>region*, *region*, *reg*

E1 transitions in NCSMC ij j ı l, Í I *E*~1 l $\overline{}$ J, Í \overline{a} *^J*⇡*ⁱ ⁱ Tⁱ ^A* (*Ei*) E

1 + ⌧ (3)

A

r
Ha

$$
\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)}(A), \lambda \rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} |_{(A-a)} \overrightarrow{^{(A)}(a)}, \nu \rangle
$$

⁼2*J^f* + 1

$$
\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right) + e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r}_{A-a,a}.
$$

$$
\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r}_i - \vec{R}_{\text{c.m.}}^{(A-a)} \right) \qquad \begin{aligned}\nM_{fi}^{E1} &= \sum_{\lambda \lambda'} c_{\lambda'}^{*f} \langle A \lambda' J_f^{\pi_f} T_f || \vec{E1} || A \lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\
&+ e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r}_i - \vec{R}_{\text{c.m.}}^{(a)} \right) \\
&+ e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r}_{A-a,a} \\
&+ \sum_{\lambda \nu'} \int dr' r'^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu' r'}^f || \hat{A}_{\nu'} \vec{E1} || A \lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\
&+ \sum_{\nu \nu'} \int dr' r'^2 \int dr' r'^2 \int dr' r'^2 \int dr' r'^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu' r'}^f || \hat{A}_{\nu'} \vec{E1} \hat{A}_{\nu} || \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r} \n\end{aligned}
$$

Photo-disassociation of 11Be

NCSMC phenomenology where the simultaneously determined and a simulated by the simulated of the simulated **by solving the coupled NCSMC priems**

Photo-disassociation of 11Be

.
Note the coupling between the 10Be target and neutron in the 10Be target and neutron in the coupling between t

Photo-disassociation of 11Be

POTRIUMF

Next: p+11C scattering and 11C(p,γ)12N capture

- Measurement of ${}^{11}C(p,p)$ resonance scattering planned at TRIUMF
	- TUDA facility
	- $-$ ¹¹C beam of sufficient intensity produced
- NCSMC calculations of ${}^{11}C(p,p)$ with chiral NN+3N under way
- Obtained wave functions will be used to calculate $11C(p,y)$ ¹²N capture relevant for astrophysics

Next: p+11C scattering and 11C(p,γ)12N capture $\mathcal D$ trium between those stars existed in a quasi-static stage in an equilibrium between the stage in and gravitational contraction. Fuller et. al. [1] investigated the evolution of super-massive stars under consideration of the \blacksquare Next: $p+ \ulcorner \mathbb{C}$ scattering and $\ulcorner \mathbb{C}$ (p,y) $\ulcorner \mathsf{c}$ capture t and t into black holes without losing mass after burning the triple- t process \mathcal{C} process \mathcal{C} Wout $n+11C$ coattoring and $11C/n$ w $12N$ canture \mathbf{r}_1 , \mathbf{r}_2 of \mathbf{r}_3 is to burning would burning would burning would be processed burning and collapse processes proce

al. Δ suggests that massive, non-rotating stars (260 M) with zero metallicity would undergo direct gravi-

and the energy release of the hot CNO cycle could change the density of the star, thus permitting it to explode.

• ¹¹C(p,γ)¹²N capture relevant in hot *p-p* chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ⁴He(αα,γ)¹²C al. [2] suggested that massive, non-rotating stars (260 M) with zero metallicity would undergo direct gravi-• ${}^{11}C(p,y){}^{12}N$ capture relevant in hot p-p chain: Link between pp and the CNO syele pripass of Slow the capital superior of the collapse processes processes and the collapse pr $\mathcal{L} = \mathcal{L} \left(\mathbf{u} \mathbf{u}, \mathbf{v} \right)$ star will chain and the

 $^3He(\alpha, \gamma)^7Be(\alpha, \gamma)^{11}C(p, \gamma)^{12}N(p, \gamma)^{13}O(\beta^+, \nu)^{13}N(p, \gamma)^{14}O$ ${}^3He(\alpha, \gamma)^7Be(\alpha, \gamma)^{11}C(p, \gamma)^{12}N(\beta^+, \nu)^{12}C(p, \gamma)^{13}N(p, \gamma)^{14}O$ ${}^{11}{\rm C}(\beta^+ \nu){}^{11}{\rm B}(p,\alpha){}^8{\rm Be}({}^4{\rm He},{}^4{\rm He})$ ³⁸ the competing -decay of ¹¹C and the decay back to ⁴He (¹¹C(⁺ ⌫)¹¹B(*p,*↵)⁸Be(⁴He,⁴He)) via proton capture ⁷*Be*(↵*,*) $P(\alpha, \gamma)$ $De(\alpha, \gamma)$ $C(p, \gamma)$ $N(p, \gamma)$ $O(p, \gamma)$ $N(p, \gamma)$ $O(p, \gamma)$ $He(\alpha, \gamma)$ $De(\alpha, \gamma)$ $C(p, \gamma)$ $N(p^+, \nu)$ $C(p, \gamma)$ $N(p, \gamma)$ O

@TRIUMF

Next: p+11C scattering and 11C(p,γ)12N capture

• NCSMC calculations of ${}^{11}C(p,p)$ with chiral NN+3N under way

RETRIUMF

Next: p+11C scattering and 11C(p,γ)12N capture

• NCSMC calculations of ${}^{11}C(p,p)$ with chiral NN+3N under way

Next: p+11C scattering and 11C(p,γ)12N capture

• NCSMC calculations of ${}^{11}C(p,p)$ with chiral NN+3N under way

RETRIUMF

 $\frac{1}{2}$ experiment can right compare Tab. in 1996 $\frac{1}{2}$ (compare Tab. 11 $\frac{1}{2}$), which continues that $\frac{1}{2}$ *L* the ¹¹C(p,γ)¹²N capture validated by measured cross

Conclusions and Outlook

- *Ab initio* calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
	- Merging of the NCSM and the NCSM/RGM = **NCSMC**
	- Inclusion of three-nucleon interactions in reaction calculations for *A*>5 systems
	- Extension to three-body clusters (6He ~ 4He+*n*+*n*): NCSMC in progress
- Ongoing projects:
	- Transfer reactions
	- Applications to capture reactions important for astrophysics
	- **Bremsstrahlung**

• Outlook

RIUMF

- Alpha-clustering (4He projectile)
	- \cdot ¹²C and Hoyle state: 8 Be+ 4 He
	- $16O \cdot 12C + 4He$

Backup slides

- Systematic from LO to N⁴LO
- High precision x^2 /datum = 1.15
	- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
	- D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

Binary cluster Resonating Group Method

• Working in partial waves $(v = \left\{ A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s \ell \right\})$

• Introduce a dummy variable \vec{r} with the help of the delta function \rightarrow *r*

$$
\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \alpha_1 I_1^{\pi_1} T_1 \right\rangle \right| a \alpha_2 I_2^{\pi_2} T_2 \right) \right]^{\left(J^{\pi}T\right)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \ r^2 dr \, d\hat{r}
$$

– Allows to bring the wave function of the relative motion in front of the antisymmetrizer

Binary cluster Resonating Group Method

 $(A-a)$ (a)

 \rightarrow *rA*−*a*,*^a*

$$
\left|\psi^{J^{\pi}T}\right\rangle = \sum_{v} \int \frac{g_v^{J^{\pi}T}(r)}{r} \hat{A}_v \left[\left(\left| A - a \alpha_1 I_1^{\pi_1} T_1 \right\rangle \right| a \alpha_2 I_2^{\pi_2} T_2 \right) \right]^{(ST)} Y_e(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \ r^2 dr d\hat{r}
$$

• Now introduce partial wave expansion of delta function

$$
\delta(\vec{r} - \vec{r}_{A-a,a}) = \sum_{\lambda\mu} \frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} Y_{\lambda\mu}^*(\hat{r}) Y_{\lambda\mu}(\hat{r}_{A-a,a})
$$

• After integration in the solid angle one obtains:

$$
\left|\psi^{J^{\pi}T}\right\rangle = \sum_{v} \int \frac{g_v^{J^{\pi}T}(r)}{r} \hat{A}_v \left[\left(\left|A-a\alpha_1 I_1^{\pi_1} T_1\right\rangle\right| a\alpha_2 I_2^{\pi_2} T_2\right)\right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} r^2 dr
$$
\n
$$
\left|\Phi_{vr}^{J^{\pi}T}\right\rangle \quad \text{(Jacobi) channel basis}
$$

Binary cluster RGM equations

 $(A-a)$ (a)

r

- Trial wave function: $\ket{\psi^{J^{\pi}T}} = \sum \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r}$ $\sum_{\nu} \int \frac{g_{\nu}(\nu)}{r} \hat{A}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle r^2 dr$ ν
- Projecting the Schrödinger equation on the channel basis yields:

- Breakdown of approach:
	- 1. Build channel basis states from input target and projectile wave functions
	- 2. Calculate Hamiltonian and norm kernels
	- 3. Solve RGM equations: find unknown relative motion wave functions
		- Bound-state / scattering boundary conditions

How to calculate the RGM kernels?

• Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$
\left| \Phi_{vn}^{J^{\pi}T} \right\rangle = \left[\left(\left| A - a \alpha_1 I_1^{\pi_1} T_1 \right\rangle \right| a \alpha_2 I_2^{\pi_2} T_2 \right) \right)^{(sT)} Y_e(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} R_{nl}(r_{A-a,a})
$$

– The coordinate space channel states are given by

$$
\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle
$$

• We used the closure properties of HO radial wave functions

• Note:

 $\delta(r - r_{A-a,a})$ $rr_{A-a,a}$ $= \sum R_{n\ell}(r)R_{n\ell}(r_{A-a,a})$ *n* ∑

Note that this is OK, in particular when the sum is truncated, ONLY for localized parts of the kernels

- We call them Jacobi channel states because they describe only the internal motion
	- Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

Norm kernel (Pauli principle) Single-nucleon projectile

$$
\left\langle \Phi_{\nu'r'}^{J^{\pi}T} \left| \hat{A}_{\nu} \hat{A}_{\nu} \right| \Phi_{\nu r}^{J^{\pi}T} \right\rangle = \left\langle \Phi_{\nu'}^{(A-1)} \left| 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right| \left| (a-1) \right| \right\rangle
$$

@TRIUMF

$$
N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1) \sum_{n'n} R_{n'l'}(r')R_{n\ell}(r) \langle \Phi_{v'n'}^{J^{\pi}T} | \hat{P}_{A-1,A} | \Phi_{vn}^{J^{\pi}T} \rangle
$$
\n
$$
V'
$$
\nDirect term:
\nTreated exactly!
\n(in the full space)
\n
$$
V
$$
\n(A-1)
\n
$$
(A-1)
$$
\n
$$
(a = 1)
$$
\nTarget wave functions expanded in the SD basis,
\nthe CM motion exactly removed

TRIUMF

Microscopic R-matrix theory on Lagrange mesh

• Separation into "internal" and "external" regions at the channel radius *a*

Internal region	External region	r
$u_c(r) = \sum_n A_{cn} f_n(r)$	$u_c(r) \sim v_c^{-\frac{1}{2}} [\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r)]$	$ C\rangle$
0	r	

 $-$ This is achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu}$

$$
L_c = \frac{\hbar^2}{2\mu_c} \delta(r - a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)
$$

– System of Bloch-Schrödinger equations: *c*

$$
\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\hat{u}_c(r)\right] + \sum_{c'} \int dr' \, r' \, W_{cc'}(r, r') \hat{u}_c(r') = L_c \hat{u}_c(r)
$$

- Internal region: expansion on Lagrange square-integrable basis
- External region: asymptotic form for large *r*

$$
u_c(r) \sim C_c W(k_c r) \quad \text{or} \quad u_c(r) \sim v_c^{-\frac{1}{2}} \Big[\delta_{ci} I_c(k_c r) - U_{ci} \rho_c(k_c r) \Big]
$$

Scattering matrix

 $u_c(r) = \sum A_{cn} f_n(r)$ *n*

Bound state Scattering state