Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Weakly bound and unbound light nuclei from *ab initio* theory

INT Program INT 17-1a Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart March 16, 2017 Petr Navratil TRIUMF Collabrorators: Sofia Quaglioni, Carolina Romero-Redondo Guillaume Hupin (CEA/DAM) Jeremy Dohet-Eraly, Angelo Calci, Peter Gysbers (TRIUMF) Robert Roth (TU Darmstadt)

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienn

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

- New high precision chiral interactions
- No-Core Shell Model with Continuum (NCSMC) approach
- N-⁴He scattering

TRIUMF

- ¹¹Be parity inversion in low-lying states, photo-dissociation
- ¹¹N and ¹⁰C(p,p) scattering
- ¹²N and ¹¹C(p,p) scattering and ¹¹C(p,γ)¹²N

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

Inter-nucleon forces from chiral effective field theory

- Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order (Q/Λ_x)
- Hierarchy
- Consistency
- Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

N⁴LO500 NN N³LO NN+N²LO 3N (NN+3N400, NN+3N500)

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

From QCD to nuclei

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

From QCD to nuclei

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

TRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

- ...with resonating group method ۲
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- ...with resonating group method
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

p-⁴He scattering within NCSMC

Differential *p*-⁴He cross section with NN+3N potentials

n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N500 potential

Total *n*-⁴He cross section with NN and NN+3N potentials

3N force enhances $1/2^- \leftrightarrow 3/2^-$ splitting: Essential at low energies!

IOP Publishing | Royal Swedish Ac Phys. Scr. 00 (2016) 000000 (37pp)

Invited Comment

Unified *ab initio* approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹ PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

3N force enhances $1/2^- \leftrightarrow 3/2^-$ splitting: Essential at low energies!

IOP Publishing | Royal Sweda Phys. Scr. 00 (2016) 000000 (37pp

Invited Commen

Unified *ab initio* approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹ PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N500 potential *n*-⁴He scattering phase-shifts for chiral N⁴LO500 NN potential

3N force enhances $1/2^- \leftrightarrow 3/2^-$ splitting: Essential at low energies!

IOP Publishing | Royal Swedia Phys. Scr. 60 (2016) 000000 (37pp

Invited Comment

Unified *ab initio* approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹ PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

Neutron-rich halo nucleus ¹¹Be

• Z=4, N=7

- In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-1}$
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have $J^{\pi}=1/2^{-}$ g.s.
- In reality, ¹¹Be g.s. is $J^{\pi}=1/2^{+}$ parity inversion
- Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

1s_{1/2} 0p_{1/2}

0p_{3/2} 0s_{1/2}

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at TRIUMF with the novel IRIS solid H₂ target
 - First re-accelerated ¹⁰C beam at TRIUMF
 - ${}^{10}C(p,p)$ angular distributions measured at $E_{CM} \sim 4.16$ MeV and 4.4 MeV

TRIUMF

p+¹⁰C scattering: structure of ¹¹N resonances

- NCSMC calculations with chiral NN+3N (N³LO NN+N²LO 3NF400, NNLOsat)
 - $p^{-10}C + {}^{11}N$
 - ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates

• ¹¹N: $\geq 4 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

p+¹⁰C scattering: structure of ¹¹N resonances

RIUMF

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al with IRIS collaboration, submitted

24

p+¹⁰C scattering: structure of ¹¹N resonances

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)
 - n-¹⁰Be + ¹¹Be

🤹 + 🥵 👘

- ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

^{TRIUMF} ¹¹Be within NCSMC: Discrimination among chiral nuclear forces

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

27

^{TRIUMF} Discrimination among chiral nuclear forces

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

28

^{TRIUMF} ¹¹Be within NCSMC: Discrimination among chiral nuclear forces

PHILE PRILIME p+¹⁰C scattering: structure of ¹¹N resonances

180 180 180 ¹⁰C+p 10 - ¹⁰C+p ⁶p C+p 150 150 150 ⁶P_{5/} ²P_{1/2} $^{2}\mathbf{p}$ $^{2}\mathbf{P}$ D⁰ ^{2}P 120 120 120 ^{2}P 5/290 90 3/290 ð [deg] ð [deg] 5/2 $3/2^{+}$ 60 60 60 $3/2^{+}$ 30 30 30 $3/2^{+}$ chiral NN chiral NNLOsat chiral NN+3NF400 -30 -30 -30 -60 4 E_{kin} [MeV] -60, E_{kin} [MeV] -60 4 E_{kin} [MeV] 2 3 5 6 5 6 Discrimination among chiral nuclear forces (3/2)p-¹⁰C $p^{-10}C$ (5/2) E_{kin}=4.16 MeV E_{kin}=4.4 MeV 100 -100 (5/2~ NCSMC NCSMC do/dQ [mb/sr] dơ/dΩ [mb/sr] 2.5174 9B+2p 57 10 chiral NN chiral NN+3NF400 10 chiral NN chiral NN+3NF400 chiral NN+3N N2LOsat chiral NN+3N N2LOsat $J^{\pi} = 1/2^+; T = 3/2$ ^{11}N 60 90 120 150 180 60 90 120 150 180 $\Theta_{\rm CM}$ [deg] $\Theta_{\rm CM}$ [deg] -1.4893 ¹⁰C+p IRIS collaboration: 30 A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al with IRIS collaboration, submitted A. Kumar, R. Kanungo, A. Sanetullaev et al.

NCSMC wave function

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \stackrel{\overrightarrow{r}}{\underbrace{}}_{(A-a)} \stackrel{(A)}{\underbrace{}}_{(A)}, \nu \right\rangle$$

$$\begin{split} \left| \Psi_{A}^{J^{\pi}T} \right\rangle &= \sum_{\lambda} \left| A\lambda J^{\pi}T \right\rangle \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} + \sum_{\nu'} \int dr' \, r'^2 (N^{-\frac{1}{2}})^{\lambda}_{\nu'r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \bigg] \\ &+ \sum_{\nu\nu'} \int dr \, r^2 \int dr' \, r'^2 \hat{\mathcal{A}}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r,r') \left[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu'r'} \bar{c}_{\lambda'} + \sum_{\nu''} \int dr'' \, r''^2 (N^{-\frac{1}{2}})_{\nu'r'\nu''r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''} \right]. \end{split}$$

Asymptotic behavior $r \rightarrow \infty$:

$$\overline{\chi}_{v}(r) \sim C_{v}W(k_{v}r) \qquad \overline{\chi}_{v}(r) \sim v_{v}^{-\frac{1}{2}} \Big[\delta_{vi}I_{v}(k_{v}r) - U_{vi}O_{v}(k_{v}r) \Big]$$

Bound state

Scattering state

Scattering matrix

E1 transitions in NCSMC

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{\overrightarrow{r}}{\underbrace{\textcircled{}}}_{(A-a)}, \nu \right\rangle$$

$$\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right) + e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r_{A-a,a}}$$

$$\begin{split} M_{fi}^{E1} &= \sum_{\lambda\lambda'} c_{\lambda'}^{*f} \langle A\lambda' J_{f}^{\pi_{f}} T_{f} || \vec{E1} || A\lambda J_{i}^{\pi_{i}} T_{i} \rangle c_{\lambda}^{i} \\ &+ \sum_{\lambda'\nu} \int dr r^{2} c_{\lambda'}^{*f} \langle A\lambda' J_{f}^{\pi_{f}} T_{f} || \vec{E1} \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^{i} \rangle \frac{\gamma_{\nu}^{i}(r)}{r} \\ &+ \sum_{\lambda\nu'} \int dr' r'^{2} \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^{f} || \hat{\mathcal{A}}_{\nu'} \vec{E1} || A\lambda J_{i}^{\pi_{i}} T_{i} \rangle c_{\lambda}^{i} \\ &+ \sum_{\nu\nu'} \int dr' r'^{2} \int dr r^{2} \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^{f} || \hat{\mathcal{A}}_{\nu'} \vec{E1} \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^{i} \rangle \frac{\gamma_{\nu}^{i}(r)}{r} \end{split}$$

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; $1/2^+ \rightarrow 1/2^-$) [$e^2 \text{ fm}^2$]	0.0005	0.117	0.102(2)

NCSMC phenomenology

Photo-disassociation of ¹¹Be

Photo-disassociation of ¹¹Be

Next: p+¹¹C scattering and ¹¹C(p,γ)¹²N capture

- Measurement of ¹¹C(p,p) resonance scattering planned at TRIUMF
 - TUDA facility
 - ¹¹C beam of sufficient intensity produced
- NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way
- Obtained wave functions will be used to calculate ${}^{11}C(p,\gamma){}^{12}N$ capture relevant for astrophysics

Next: p+¹¹C scattering and ¹¹C(p,γ)¹²N capture

¹¹C(p,γ)¹²N capture relevant in hot *p*-*p* chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ⁴He(αα,γ)¹²C

 ${}^{3}He(\alpha,\gamma)^{7}Be(\alpha,\gamma)^{11}C(p,\gamma)^{12}N(p,\gamma)^{13}O(\beta^{+},\nu)^{13}N(p,\gamma)^{14}O$ ${}^{3}He(\alpha,\gamma)^{7}Be(\alpha,\gamma)^{11}C(p,\gamma)^{12}N(\beta^{+},\nu)^{12}C(p,\gamma)^{13}N(p,\gamma)^{14}O$ ${}^{11}C(\beta^{+},\nu)^{11}B(p,\alpha)^{8}Be({}^{4}He,{}^{4}He)$

Next: p+¹¹C scattering and ¹¹C(p,γ)¹²N capture

• NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

positive parity

Next: $p+^{11}C$ scattering and $^{11}C(p,\gamma)^{12}N$ capture

NCSMC calculations of ${}^{11}C(p,p)$ with chiral NN+3N under way lacksquare

negative parity

Next: p+¹¹C scattering and ¹¹C(p,γ)¹²N capture

NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

NCSMC calculations to be validated by measured cross sections and applied to calculate the ${}^{11}C(p,\gamma){}^{12}N$ capture

Conclusions and Outlook

- *Ab initio* calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters (${}^{6}\text{He} \sim {}^{4}\text{He}+n+n$): NCSMC in progress
- Ongoing projects:
 - Transfer reactions
 - Applications to capture reactions important for astrophysics
 - Bremsstrahlung

Outlook

- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He

Backup slides

Chiral EFT interactions up to N⁴LO

- Systematic from LO to N⁴LO
- High precision χ^2 /datum = 1.15
 - D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
 - D. R. Entem, R. Machleidt, and Y. Nosyk, to be published.

Binary cluster Resonating Group Method

• Working in partial waves $(v = \{A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s\ell\})$

• Introduce a dummy variable \vec{r} with the help of the delta function

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \; r^{2} dr \, d\hat{r}$$

- Allows to bring the wave function of the relative motion in front of the antisymmetrizer

Binary cluster Resonating Group Method

 $\overline{r}_{A-a,a}$

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \; r^{2} dr \, d\hat{r}$$

Now introduce partial wave expansion of delta function

$$\delta(\vec{r} - \vec{r}_{A-a,a}) = \sum_{\lambda\mu} \frac{\delta(r - r_{A-a,a})}{rr_{A-a,a}} Y_{\lambda\mu}^*(\hat{r}) Y_{\lambda\mu}(\hat{r}_{A-a,a})$$

• After integration in the solid angle one obtains:

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi}T}(r)}{r} \hat{A}_{v} \left[\left(\left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} r^{2} dr$$

$$\left| \Phi_{vr}^{J^{\pi}T} \right\rangle \quad \text{(Jacobi) channel basis}$$

Binary cluster RGM equations

[a]

- Trial wave function: $\left|\psi^{J^{\pi}T}\right\rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi}T}(r)}{r} \hat{A}_{v} \left|\Phi_{vr}^{J^{\pi}T}\right\rangle r^{2} dr$
- Projecting the Schrödinger equation on the channel basis yields:

- Breakdown of approach:
 - 1. Build channel basis states from input target and projectile wave functions
 - 2. Calculate Hamiltonian and norm kernels
 - 3. Solve RGM equations: find unknown relative motion wave functions
 - Bound-state / scattering boundary conditions

•

How to calculate the RGM kernels?

• Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle = \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} R_{n\ell}(r_{A-a,a})$$

- The coordinate space channel states are given by

$$\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle$$

• We used the closure properties of HO radial wave functions

Note :

 $\frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} = \sum_{n} R_{n\ell}(r) R_{n\ell}(r_{A-a,a})$

Note that this is OK, in particular when the sum is truncated, ONLY for localized parts of the kernels

- We call them Jacobi channel states because they describe only the internal motion
 - Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

Norm kernel (Pauli principle) Single-nucleon projectile

$$N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1)\sum_{n'n} R_{n'\ell'}(r')R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \middle| \hat{P}_{A-1,A} \middle| \Phi_{vn}^{J^{\pi}T} \right\rangle$$
Direct term:
Treated exactly!
(in the full space)

$$V' \qquad (A-1) \times (a=1)$$
Exchange term:
Obtained in the model space!
(Many-body correction due to
the exchange part of the inter-
cluster antisymmetrizer)

$$\delta(r-r_{A-a,a}) = \sum_{n} R_{n\ell}(r)R_{n\ell}(r_{A-a,a})$$
Target wave functions expanded in the SD basis
the CM motion exactly removed

Microscopic R-matrix theory on Lagrange mesh

• Separation into "internal" and "external" regions at the channel radius a

$$\int_{0}^{n} \frac{\text{Internal region}}{u_{c}(r) = \sum_{n} A_{cn} f_{n}(r)} \int_{0}^{n} \frac{\text{External region}}{a \quad r^{-\frac{1}{2}} \left[\delta_{ci} I_{c}(k_{c}r) - U_{ci} O_{c}(k_{c}r) \right]}}{r}$$

– This is achieved through the Bloch operator:

$$L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)$$

System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on Lagrange square-integrable basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} \Theta_c(k_c r) \right]$

Scattering matrix

 $u_c(r) = \sum A_{cn} f_n(r)$

Bound state

Scattering state