

QCD in a Box

 § Lattice QCD is an ideal theoretical tool for investigating strong-coupling regime of quantum field theories
 § Physical observables are calculated from the path integral

$$\langle 0|O(\bar{\psi},\psi,A)|0\rangle = \frac{1}{Z}\int \mathcal{D}A \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{iS(\bar{\psi},\psi,A)}O(\bar{\psi},\psi,A)$$

n **Euclidian** space

Wide-Scale Applications

§ What can we learn from it?

1506.04196

Are We There Yet?

- § Lattice gauge theory was proposed in the 1970s by Wilson
- > Why haven't we solved QCD yet?
- § Progress is limited by computational resources 1980s Today

§ Greatly assisted by advances in algorithms
 > Physical pion-mass ensembles are not uncommon!

Successful Examples

§ Lattice flavor physics provides precise inputs from the SM
 A. El-Khadra, Sep. 2015, INT workshop "QCD for New Physics at the Precision Frontier"
 > Very precise results in many meson systems

errors (in %) (preliminary) FLAG-3 averages

§ We are beginning to do precision calculations in nucleons

Orígín of Proton Spín

§ What is the makeup of the nucleon?

Decomposition using Ji's GPD moment connection
 Preliminary result from χQCD (2+1f ov/DWF 400 MeV)

 $\succeq \text{ETMC (2f TMF 130 MeV)} M_{\pi}L = 3 \text{ Preliminary} \\ \Delta \Sigma^{u+d+s} = 0.214(61), L^{u+d+s} = 0.168(60), J^g = 0.118(57)$

M. Constantinou, Spin 16

Strange Form Factors

K. Orginos/R. Sufian,

Spin 16

§ Better determined strange form factors \Rightarrow LHPC (2+1f): clover M_{π} = 317 MeV, a = 0.11 fm $\Rightarrow \chi$ QCD (2+1f): ov/DWF M_{π} = 207,140 MeV, a = 0.11 fm

Sea Flavor Asymmetry

§ First time in LQCD history to study antiquark distribution! $\gg M_{\pi} \approx 310 \text{ MeV}$

$$\bar{q}(x) = -q(-x)$$

Lost resolution in small-x region Future improvement: larger lattice volume

$$dx\left(\bar{u}(x) - \bar{d}(x)\right) \approx -0.16(7)$$

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$		
E866	0.015< <i>x</i> <0.35	0.118 ± 0.012		
NMC	0.004 < x < 0.80	0.148 ± 0.039		
HERMES	0.020 < x < 0.30	0.16 ± 0.03		

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

Nucleons and BSM

Many opportunities to probe BSM with nucleon inputs § Parton distribution functions for SM background 1402.1462 > Especially less known intrinsic strange/charm contribution § Dark matter detection 1306.6939 > Popular candidates (e.g. SuSy neutralinos) exchange Higgs § Electric dipole moment 1506.04196 § Neutron beta decay 1110.6448; 1506.06411 Non-V-A interactions to probe the existence of new particles (mediating new forces) with masses in the multi-TeV range § Nucleon (transition) axial form factor 0803.3020, 1003.3387 >> First-principles inputs into Monte Carlo event generators for precision neutrino physics

Many of these are supported by P5 recommendations

Nucleons and BSM

Many opportunities to probe BSM with nucleon inputs

§ Parton distribution functions for SM background 1402.1462
Second Parton distribution functions for SM background 1402.1462

INSTITUTE FOR NUCLEAR THEORY

Home | Contact | Search | Site Map

Intersections of BSM Phenomenology and QCD for New Physics Searches September 14 - October 23, 2015 S. Gardner, H.-W. Lin, F. J. Llanes-Estrada, R. Van de Water

(mediating new forces) with masses in the multi-lev range

§ Nucleon (transition) axial form factor 0803.3020, 1003.3387
 Solve First-principles inputs into Monte Carlo event generators for precision neutrino physics

Many of these are supported by P5 recommendations

Nucleon Axíal Charge

Outlíne

§ What do we really know about axial charge?

Revisit the experiment

§ Does LQCD calculation control ALL systematics?

- Issues and problems
- The tale of a 6-year quest
- § Conclusions(?)

§ A fundamental measure of nucleon structure § Axial-vector–current matrix element $g_A = G_A^{u-d}(Q^2=0)$

§ Important to many nuclear processes
The rate of *pp* fusion (as in Sun-like stars)
Ovββ searches, "quenching" g⁴_A
V_{ud} values through *n*-lifetime measurements

>> New-physics searches such as right-handed neutrinos

§ In lattice QCD, it was long called "A benchmark for nucleon structure"

§ A fundamental measure of nucleon structure

osmology	Primordial element formation (² H, ³ He, ⁴ He, ⁷ Li,)	$n n + e^+ \rightarrow p + v'_e$ $p + e^- \rightarrow n + v_e$	$\sigma_{ m v} \sim 1/ au \ \sigma_{ m v} \sim 1/ au$	d W ve	- e ⁻
Ŭ N	Solar avala	$n \rightarrow p + e^- + v_e^-$	τ	u' 'e ⁻ u e ⁻	
nomo	Solar cycle	$p + p \rightarrow -H + e^{-} + v_e^{-}$ $p + p + e^{-} \rightarrow ^{2}H + v_e^{-}$ etc	$\sim (g_{\rm A}/g_{\rm V})^5$	W	- $\overline{\nu_{e}}$
Astr	Neutron star formation	$p + e^- \rightarrow n + v_e$		d ve	
	Pion decay	$\pi^- \rightarrow \pi^0 + e^- + \nu'_e$			
hysics	Neutrino detectors	$v'_e + p \rightarrow e^+ + n$		e- v _e	
	Neutrino forward scattering	$v_e + n \rightarrow e^- + p$ etc.			
	W and Z production	$u' + d \rightarrow W^- \rightarrow e^- +$	v' _e etc.	d u'	

from D. Dubbers

Ep

§ Ask somebody what they know about the axial charge...
The PDG number has errorbars so tiny, we just drop the error!

Particle Data Group

§ Ask somebody what they know about the axial charge...
The PDG number has errorbars so tiny, we just drop the error!
§ If you look closer,

, it's changed over the years

- Spectro.
- UCNA
- Counter
- TPC
- ► Review

Particle Data Group

§ Ask somebody what they know about the axial charge...
The PDG number has errorbars so tiny, we just drop the error!

§ If you look closer, it's changed over the years

§ Let us look closely at how g_A is determined experimentally § Two main types of experimental input

$$\begin{split} & \clubsuit \text{ Asymmetry in neutron differential decay rate (by UCN)} \\ & d\Gamma \propto F(E_e) \left(1 + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_v}}{E_e E_v} + A \frac{\overrightarrow{\sigma_n} \cdot \overrightarrow{p_e}}{E_e} + \cdots \right) \qquad A_0 = \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2} \\ & \lambda = G_A/G_V = 1.2755(30) \text{ UCNA 13} \end{split}$$

§ Let us look closely at how g_A is determined experimentally § Two main types of experimental input

 $\overset{\bullet}{\rightarrow} \text{Asymmetry in neutron differential decay rate (by UCN)} \\ d\Gamma \propto F(E_e) \left(1 + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_v}}{E_e E_v} + A \frac{\overrightarrow{\sigma_n} \cdot \overrightarrow{p_e}}{E_e} + \cdots \right) \qquad A_0 = \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2} \\ \lambda = G_A / G_V = 1.2755(30) \text{ UCNA 13}$

 $\sim n \text{-lifetime decay (requires additional input } V_{ud})$ $\tau_n^{\text{ave}} = 880.2(1.0) \text{ sec} \qquad |V_{ud}|^2 = \frac{4908.7(1.9) \text{ sec}}{\tau_n(1+3g_A^2)}$

 $v V_{ud}$ from...

𝖘 nuclear 0⁺ → 0⁺ superallowed: 0.97417(21) \Rightarrow $g_A = 1.2749(10)$

 $\mathfrak{SR}(0^+ \to e^+ \nu_e(\gamma)): 0.9728(30) \Rightarrow g_A = 1.2771(44)$

§ Let us look closely at how g_A is determined experimentally

§ Let us look closely at how g_A is determined experimentally

Experiments

§ Let us look closely at how g_A is determined experimentally

Experiments

§ What can we infer about g_A from other observables? § Constraints from V_{ud} experiments (must be ≤ 1) \gg The allowed region is $g_A \geq 1.23524(98)$

QCD Experiment

§ How about QCD experiments?

- \clubsuit With a polarized target or polarized beam, one can find the helicity distribution and get g_A
- \sim Global analysis? g_A is used as a constraint
- § LQCD currently is the only reliable QCD source for g_A
- § Does LQCD g_A agree with QCD experiments?

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 March 2017, Oxford, UK

> First workshop with global-fit community to address LQCD

http://www.physics.ox.ac.uk/confs/PDFlattice2017

Lattice Aspects

Nucleons are more complicated than mesons because...

§ Noise issue

- $\boldsymbol{\gg}$ Signal diminishes at large $t_{\rm E}$ relative to noise
- $\boldsymbol{\nsim}$ Gets worse when quark mass decreases

§ Excited-state contamination

- Nearby excited state: Roper(1440)
- § Hard to extrapolate in pion mass
- $\sim \Delta$ resonance nearby; multiple expansions, poor convergence...
- \sim Less an issue in the physical pion-mass era
- § Requires larger volume and higher statistics
- Ensembles are not always generated with nucleons in mind
 High-statistics: large measurement and long trajectory

Nucleons are more complicated than mesons because...

MICHIGAN STATI

"Welcome to the lattice and its dangerous animals."

"Welcome to the lattice and its dangerous animals."

Nucleon Matrix Elements

§ Control all systematic errors:

- ✤ Finite-volume effects
- > Chiral extrapolations to physical u and d quark masses
- >> Nonperturbative renormalization using the RI/SMOM scheme
- Contamination from excited states
- ✤ Statistical effects

\mathcal{PNDME}

Precision Neutron-Decay Matrix Elements

https://sites.google.com/site/pndmelqcd/

Tanmoy Bhattacharya Rajan Gupta

HWL

Saul Cohen Anosh Joseph

Yong-Chull Jang

Boram Yoon

Precision Nucleon Couplings

§ Much effort has been devoted to controlling systematics § A state-of-the art calculation (PNDME)

<i>a</i> (fm)	V	$M_{\pi}L$	$oldsymbol{M}_{\pi}$ (MeV)	t _{sep}	# Meas.
0.12	$24^3 \times 64$	4.55	310	8,10,12	64.8k
0.12	$24^3 \times 64$	3.29	220	8,10,12	24k
0.12	$32^3 \times 64$	4.38	220	8,10,12	7.6k
0.12	$40^3 \times 64$	5.49	220	8,10,12,14	64.6k
0.09	$32^3 \times 96$	4.51	310	10,12,14	7.0k
0.09	$48^3 \times 96$	4.79	220	10,12,14	7.1k
0.09	64 ³ × 96	3.90	130	10,12,14	56.5k
0.06	$48^3 \times 144$	4.52	310	16,20,22,24	64.0k
0.06	64 ³ × 144	4.41	220	16,20,22,24	41.6k
0.06	96 ³ × 192	3.80	130		On-going

MICHIGAN STAT

Excited-State Contamination

§ Trade off: signal-to-noise versus contamination

✤ Noise issue (P. Lepage; D. Kaplan)

 $\approx \text{ Consider a baryon correlator } C = \langle 0 \rangle = \langle qqq(t) \overline{q} \overline{q} \overline{q}(0) \rangle$

≫ Variance (noise squared) of $C \propto \langle O^{\dagger}O \rangle - \langle O^{2} \rangle$

Signal falls exponentially as $e^{-m_N t}$

Excited-State Contamination

§ Trade off: signal-to-noise versus contamination ➢ Noise issue (P. Lepage; D. Kaplan) ➢ Consider a baryon correlator C = ⟨0⟩ = ⟨qqq(t)qqq(t)qqq(0)⟩ ➢ Variance (noise squared) of C ∝ ⟨0[†]0⟩ - ⟨0²⟩

§ Difficulties in Euclidean space

> True ground state (nucleon in this case) at large Euclidean time

Systematic Control

§ Much effort has been devoted to controlling systematics § A state-of-the art calculation (PNDME)a = 0.12 fm, 310-MeV pion

Move the
 excited-state systematic
 into the statistical error

$$C^{3\text{pt}}(t_{f}, t, t_{i}) = |\mathcal{A}_{0}|^{2} \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{0}(t_{f}-t_{i})} + \mathcal{A}_{0}\mathcal{A}_{1}^{*} \langle 0| + e^{-M_{0}(t-t_{i})} e^{-M_{1}(t_{f}-t)} + \mathcal{A}_{0}^{*}\mathcal{A}_{1} \langle 1|\mathcal{O}_{\Gamma}|0\rangle + (t-t_{i}) e^{-M_{0}(t_{f}-t)} + |\mathcal{A}_{1}|^{2} \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}(t_{f}-t)} + |\mathcal{A}_{1}|^{2} \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}(t_{f}-t)}$$

No obvious contamination
 between 0.96 and 1.44 fm
 separation

§ Much effort has been devoted to controlling systematics § A state-of-the art calculation (PNDME)a = 0.09 fm, 310-MeV pion

Move the excited-state systematic into the statistical error

$$C^{3\text{pt}}(t_f, t, t_i) = |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)}$$
$$+\mathcal{A}_0 \mathcal{A}_1^* \langle 0| \qquad)e^{-M_0(t - t_i)} e^{-M_1(t_f - t)}$$
$$+\mathcal{A}_0^* \mathcal{A}_1 \langle 1|\mathcal{O}_{\Gamma}|0\rangle \qquad (t - t_i) e^{-M_0(t_f - t)}$$
$$+|\mathcal{A}_1|^2 \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_0(t_f - t)}$$

- Much stronger effect at finer lattice spacing!
 Needs to be studied
 - case by case

§ Much effort has been devoted to controlling systematics
 § A state-of-the art calculation (PNDME)
 a = 0.06 fm, 220-MeV pion

MICHIGAN STATE

§ Much effort has been devoted to controlling systematics
 § A state-of-the art calculation (PNDME)
 a = 0.06 fm, 220-MeV pion

§ Much effort has been devoted to controlling systematics
§ A state-of-the art calculation (PNDME)
➢ Statistical effect (worst case) *a* = 0.06 fm, 220-MeV pion

§ Much effort has been devoted to controlling systematics
 § A state-of-the art calculation (PNDME)
 > Robustness of the 2-state fit

Plots by Boram Yoon

Extrapolations

§ Finite-volume/statistical effects

$$g_T(a, m_\pi, L) = c_1 + c_2 m_\pi^2 + c_3 a + c_4 e^{-m_\pi L}$$

Extrapolations

Here we are

MICHIGAN STATE

Conclusions(?)

- § g_A is not a gold-plated quantity
- \sim Early idea that g_A would be easy underestimated systematics
- § High-statistics and large-volume studies are needed!
- § Can you trust other lattice calculations?
 - ...from groups who do due diligence for every ensemble and carefully study systematics

§ Disappointment?

rertainly not.

We are just entering into the precision era to explore these issues...

§ Difficulties = opportunities

 $\boldsymbol{\clubsuit}$ Getting g_A to subpercent precision will be very hard

§ New physics?

$$\gg \lambda = g_A / g_V f_{NP}$$

$$A_0 = \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2}$$

Stay tuned...

Can We Trust LQCD?

The disappearance of X(750)

Backup Slides

Other Results

§ Flavor-dependent couplings, 1st moments of PDFs, ...
 ➢ qEDM by Cirigliano (this afternoon)

Available Time Separations

Excited-State Contamination

§ Tradeoff: signal-to-noise versus contamination

➢ Noise issue (P. Lepage; D. Kaplan 2011)

✤ For example, CLS/Mainz

2f NP clover, $M_{\pi} \approx 320 \text{ MeV}$ $a \approx 0.063 \text{ fm}$ Fix $N_{\text{meas}} = 200$

1205.0180 & private communication

Summation Method

§ Tradeoff: signal-to-noise versus contamination ➢ Noise issue (P. Lepage; D. Kaplan 2011)

§ Options

- Stay at large t_{sink}: RBC/UKQCD (must check smaller pion mass)
 Include excited-state degrees of freedom
 - Multistate fitting or variational method from 3pt correlator matrix
 HWL (Lat 2008); ETMC/LHPC/Mainz-CLS (2011); CSSM 2012 (mesons)
- Extend to small tsink to pick up better signal and apply "summation" method
 ³⁰
 ³⁰

$$S(t_S) \coloneqq \sum_{t=0}^{t_S} R(t, t_S) \xrightarrow{t_S \gg 0} c + t_S \left(g_A^{\text{bare}} + O(e^{-\Delta t_S}) \right)$$

 \mathfrak{S}_A obtained from slope

Summation Method

§ QCDSF hypothesis: Z_A might be a problem?

- § Chiral extrapolation
- § Small shift matters?

CLS/Mainz, 1205.0180

- § Chiral extrapolation
- § Small shift matters?

CLS/Mainz, 1205.0180

§ More precise studies are needed

§ Chiral extrapolation

§ Same formula, similar LECs fixed, different ChPT behavior

§ Chiral extrapolation

§ Same formula, similar LECs fixed, different ChPT behavior

- § How big $M_{\pi}L$ is required? § ChPT volume correction/used to estimate systematics \Rightarrow ETMC, QCDSF, CLS/Mainz: possibly underestimated?
- § Example study (RBC/UKQCD) $A + B m_{\pi}^2 + C f_V(m_{\pi}L)$

Available Volumes

§ How big $M_{\pi}L$ is required?

§ How big $M_{\pi}L$ is required?

§ ChPT volume correction/used to estimate systematics ETMC, QCDSF, CLS/Mainz: possibly underestimated?

§ How big $M_{\pi}L$ is required? § ChPT volume correction/used to estimate systematics ➢ ETMC, QCDSF, CLS/Mainz: possibly underestimated? Highly sensitive to what parameters used in ChPT $\Delta g_A(L) = -\frac{g_A^0 m_\pi^2}{4\pi^2 F_\pi^2} \sum_{I}' \frac{K_1(L|\vec{n}|m_\pi)}{L|\vec{n}|m_\pi}$ $+\frac{(g_A^0)^3 m_\pi^2}{6\pi^2 F_\pi^2} \sum_{n=1}^{\prime} \left[K_0 \left(L |\vec{n}| m_\pi \right) - \frac{K_1 \left(L |\vec{n}| m_\pi \right)}{L |\vec{n}| m_\pi} \right]$ $+\frac{25c_{A}^{2}g_{1}}{81\pi^{2}F_{\pi}^{2}}\int_{0}^{\infty}dy\,y\sum_{n}'\left[K_{0}\left(L|\vec{n}|f(m_{\pi},y)\right)-\frac{L|\vec{n}|f(m_{\pi},y)}{3}\,K_{1}\left(L|\vec{n}|f(m_{\pi},y)\right)\right]$ $-\frac{c_A^2 g_A^0}{\pi^2 F_{\pi}^2} \int_0^\infty dy \, y \sum' \left[K_0 \left(L |\vec{n}| f(m_{\pi}, y) \right) - \frac{L |\vec{n}| f(m_{\pi}, y)}{3} \, K_1 \left(L |\vec{n}| f(m_{\pi}, y) \right) \right]$ $+\frac{8c_A^2g_A^0}{27\pi^2F_{\tau}^2}\int_0^\infty dy \sum' \frac{f(m_{\pi},y)^2}{\Delta_0} \left[K_0\left(L|\vec{n}|f(m_{\pi},y)\right) - \frac{K_1\left(L|\vec{n}|f(m_{\pi},y)\right)}{L|\vec{n}|f(m_{\pi},y)}\right]$ $-\frac{4c_A^2 g_A^0}{27\pi F_{\pi}^2} \frac{m_{\pi}^3}{\Delta_0} \sum_{\tau}' \frac{1}{L|\vec{n}|m_{\pi}} e^{-L|\vec{n}|m_{\pi}} + \mathcal{O}(\epsilon^4)$ (18)

fix $\Delta_0 = 0.271 \,\text{GeV}, \, c_A = 1.5, \, F_{\pi} = 86.2 \,\text{MeV}$

§ How big M_πL is required? § ChPT volume correction/used to estimate systematics >> ETMC, QCDSF, CLS/Mainz: possibly underestimated?

 Lm_{π} $g_A(L \to \infty)$ 1.4 m_{π} q_A $\beta = 3.9$ 1.3 0.46755.04 1.163(18) 1.1670.4319 $4.66 \ 1.134(25)$ 1.140 g 1.2 0.37704.06 1.140(27) 1.1500.3032 $3.27 \ 1.111(34)$ 1.1331.1 0.29784.281.103(32)1.106 0.26003.74 | 1.156(47)1.1621.0 $\beta = 4.05$ • TMF at a=0, volume-corrected 0.46535.281.173(24)1.1770.9 0.40354.581.175(31)1.1820.29251.2180.023.32 | 1.194(66) |0.8 $\beta = 4.2$.05 .10 .15 .20 .00 0.46984.24 1.130(26) 1.144 m_{r}^{2} (GeV²) 0.008 0.2622 $3.55 \ 1.138(43)$ 1.146

§ Sensitivity to the parameters chosen in ChPT

Ref. [20] using a variety of constraints to $F_{\pi} = 86.2$ MeV, $c_A = 1.5$, $g_1 = 2.6$, $g_A^0 = 1.15$, Ref. [33] use SU(6) relations to derive $g_A = 1 + (2/3)\cos^2 \psi$, $g_{\Delta N} = -2\cos \psi$, $g_{\Delta \Delta} = -3$.

§ Sensitivity to the parameters chosen in ChPT

Ref. [20] using a variety of constraints to $F_{\pi} = 86.2$ MeV, $c_A = 1.5$, $g_1 = 2.6$, $g_A^0 = 1.15$, Ref. [33] use SU(6) relations to derive $g_A = 1 + (2/3)\cos^2 \psi$, $g_{\Delta N} = -2\cos \psi$, $g_{\Delta \Delta} = -3$.

Finite-Volume Effects

