

Lessons from the ab initio symmetry-adapted no-core shell model

Kristina Launey

... LSU Team ...

Jerry Draayer, Tomas Dytrych, Robert Baker, Ali Dreyfuss, David Kekejian, Grigor Sargsyan, Harvey Shows, Logan Woolsey, Sean Laughlin

In collaboration with

Iowa State U. – J. Vary & P. Maris Czech Republic – D. Langr & T. Oberhuber Princeton U. – W. Tang HPC Resources NSF/U. of Illinois ...BlueWaters LSU...SuperMike-II

Supported by NSF & DOE-EPSCoR

LSU code (LSU3shell): sourceforge.net/projects/lsu3shell Dytrych, Launey, Draayer, et al., Phys. Rev. Lett. 111 (2013) 252501 Launey, Dytrych, & Draayer, Prog. Part. Nucl. Phys. 89 (2016) 101

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017 Lessons from the *ab initio* SA-NCSM

Î

Deformed (in intrinsic frame)...

Effect on X-ray Burst Nucleosynthesis

Orderly pattern from first principles

Symmetry-adapted No-core Shell Model (SA-NCSM)

Symplectic symmetry from first principles

What can we learn from symplectic symmetry?

What is Symplectic Symmetry?

Formal definition

All linear canonical transformations of the single-particle phasespace observables

Nucleus with A nucleons

$$x_{i\alpha} \rightarrow \sum_{\beta=x,y,z} a_{\alpha\beta} x_{i\beta} + b_{\alpha\beta} p_{i\beta}$$
$$p_{i\alpha} \rightarrow \sum_{\beta=x,y,z} c_{\alpha\beta} x_{i\beta} + d_{\alpha\beta} p_{i\beta}$$

that preserve the canonical commutation relation

$$\left[x_{i\alpha}, p_{j\beta}\right] = i\hbar\delta_{ij}\delta_{\alpha\beta}$$

Generators: $Q_{ij} = \sum_{n} x_{ni} x_{nj},$ geometrySymplectic Model
Rosensteel & Rowe,
PRL 38 (1977) 10 $S_{ij} = \sum_{n} (x_{ni} p_{nj} + p_{ni} x_{nj}),$ $L_{ij} = \sum_{n} (x_{ni} p_{nj} - x_{nj} p_{ni}),$ kinematics $K_{ij} = \sum_{n} p_{ni} p_{nj},$ Kinematics

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Earlier studies ... algebraic models

Quite successful, but symmetries were assumed *a priori:* Typically 1 (a few) irrep(s) + symmetry-preserving interaction

P. Park et al., Nucl. Phys. A. 414, 93 (1984)

D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985)

Earlier studies ... algebraic models

Quite successful, but symmetries are assumed *a priori:* Typically 1 (a few) irrep(s) + symmetry-preserving interaction

Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

What can we learn from symplectic symmetry?

Efficacy of SA-NCSM: Li-6

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017 Lessons from the *ab initio* SA-NCSM

<u>1 N</u>

C-12: collectivity...

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Ab Initio Nuclear Modeling in New Domains

X-ray Bursts

αp

24NE

2+

2+

0+

Expt.

5.2-8.4 W.u.

proces

 \odot

Hot Cl Cycle

Th

Novae

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

22Mg

8.621

4.175

1.582

0.000

 $\langle 2 \rangle 10$

Exp

24<mark>5</mark>1

N/A

2+

Expt.

10

8

0

E_x [MeV]

 $6^+_1 0$

 $0^{+}_{1}0$

Th.

20NE

8.778

4.248

1.634

0.000 Exp

(2+)

Expt.

Th, 4<2>

Th, 2

pernovae

stable nuclide
drip line

32NE

nnn

4 W.u.

Th.

SU(3) NN interaction: keep track of x, y, & z

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Lessons from the *ab initio* SA-NCSM

Important pieces of the NN interaction

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Important pieces of the NN interaction

Simple physics: "shape" + vibrations + rotations

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart, INT Program INT-17-1a, 3-1-2017

Conclusions

Informing the inter-nucleon interaction...