

Study of Inclusive Breakup Reactions Induced by Weakly Bound Nuclei

JIN LEI Ohio University Universidad de Sevilla

ANTONIO M.MORO Universidad de Sevilla CRSIDAD

Contents

+ Motivation

+ The Ichimura, Austern and Vincent Model

+ Applications

Summary and Perspectives

3

Introduction

Exclusive breakup

$a(b+x) + A \to b + x + A$

Introduction

Inclusive breakup

 $a(b+x) + A \to b + B^*$

Introduction

NON-ELASTIC BREAKUP (NEB)

••

6

* Understanding of large inclusive alpha yields (⁶Li,⁷Be,⁷Li...).

S. Santra et al, Phys. Rev. C 85, 014612 (2012).

* Understanding of large inclusive alpha yields (⁶Li,⁷Be,⁷Li...).

* Inclusive breakup reactions with halo nuclei (¹¹Be,⁶He,⁸B...).

* Understanding of large

* Inclusive breakup react

FIG. 12. (Color online) $\Delta E \cdot E$ scatterplot for the collision ¹¹Be+⁶⁴Zn at $\theta = 39^{\circ}$.

A. Di Pietro PRC 85, 054607 (2012)

FIG. 3. AD of transfer or breakup events in ¹¹Be + ⁶⁴Zn obtained by selecting ¹⁰Be events in the ΔE -E spectrum.

A. Di Pietro PRL 105, 022701 (2010)

* Inclusive breakup reactions with halo nuclei (¹¹Be,⁶He,⁸B...).

* Incomplete fusion (⁶Li,⁷Li).

Surrogate reactions (d,pf).

* Understanding of large inclusive alpha yields (⁶Li,⁷Be,⁷Li...).

8

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Post Form

- Baur & co: surface approximation
- Ichimura, Austern,
 - Vincent(IAV):sum rule

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Post Form

- Baur & co: surface approximation
- Ichimura, Austern,

Vincent(IAV):sum rule

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Post Form

- Baur & co: surface approximation
- Ichimura, Austern,

Vincent(IAV):sum rule

$\mathcal{H} = T + H_A + V_{bx} + U_{xA} + U_{bA}$

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Post Form

- Baur & co: surface approximation
- Ichimura, Austern,

Vincent(IAV):sum rule

 $\mathcal{H} = T + H_A + V_{bx} + U_{xA} + U_{bA}$

 $\mathcal{H} = T + H_A + V_{bx} + V_{xA} + U_{bA}$

Prior Form

- Kerman, McVoy(KM)
- Udagawa, Tamura(UT)

Post Form

- Baur & co: surface approximation
- Ichimura, Austern,

Vincent(IAV):sum rule

 $\mathcal{H} = T + H_A + V_{bx} + U_{xA} + U_{bA}$

 $\mathcal{H} = T + H_A + V_{bx} + \underbrace{V_{xA}} + U_{bA}$

Inclusive breakup :

* $a + A \longrightarrow b + anything$

0

Inclusive breakup :

★ a → b + anything

0

Inclusive breakup :

- $\bullet a \to b + anything$
 - b+x

Inclusive breakup: $* a + A \rightarrow b + anything \longrightarrow (x+A)^*$ b+x

 $(X+A)^*$

(x+A)* --> x+A

elastic scattering

(x+A)* → x+A

elastic scattering

inelastic scattering

(x+A)* --> x+A

elastic scattering

inelastic scattering

(x+A)* --> x+A

breakup reaction

elastic scattering

inelastic scattering

(x+A)* --> x+A

breakup reaction

transfer reaction

elastic scattering
inelastic scattering
breakup reaction

(x+A)* ---> x+A

transfer reaction

fusion reaction

(x+A)* --> x+A

elastic scattering

inelastic scattering

breakup reaction

transfer reaction

fusion reaction

nonelastic scattering
Inclusive breakup: $* a + A \rightarrow b + anything \longrightarrow (x+A)^*$ b+x

x,A ground states Elastic Breakup

sequential breakup

II

x,A ground states Elastic Breakup

x,A excited states Inelastic Breakup

sequential breakup

particle transfer between x and A

x absorbed by A incomplete fusion

spectator/participant model:

spectator/participant model:
 b: spectator;

spectator/participant model:

- b: spectator;
- x: participant (not observed);

spectator/participant model:

- b: spectator;
- x: participant (not observed);

 $^{\diamond}$ x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

spectator/participant model:

- b: spectator;
- x: participant (not observed);

X-A wave function following breakup and projected on the Ags

$$V_{xA} \to U_{xA}$$

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = \left(\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) \middle| V_{post} \middle| \Psi^{3b} \right)$$

spectator/participant model:

- **b**: spectator;
- x: participant (not observed);

 igoplus x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

- prox

 $\vec{r_a} = \vec{r_x}$

 $\vec{r_x}$

 $r\vec{b}x$

 $\vec{r_b}$

 $(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = (\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) | V_{post} | \Psi^{3b} \rangle$

spectator/participant model:

- **b**: spectator;
- x: participant (not observed);

 igoplus x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

 $- pr_{bx}$

 $\vec{r_a} = \vec{r_x}$

 $\vec{r_x}$

 $r\vec{b}x$

 $\vec{r_b}$

 $(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = \left(\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) \middle| V_{post} \middle| \Psi^{3b} \right)$

spectator/participant model:

- b: spectator;
- x: participant (not observed);

 $^{\diamond}$ x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = (\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) | V_{post} | \Psi^{3b} \rangle \qquad \mathsf{DWBA}$$

$$\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$$

spectator/participant model:

- b: spectator;
- x: participant (not observed);

 igoplus x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = \left(\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) \middle| V_{post} \middle| \Psi^{3b} \right) \qquad \mathsf{DWBA}$$

$$\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$$

 $r\vec{b}x$

 $\vec{r_b}$

Nonelastic breakup (NEB): loss of flux leaving the x-Ags channel

 $- pr_{ba}$

 $\vec{r_a} = \vec{r_x}$

spectator/participant model:

- b: spectator;
- x: participant (not observed);

 $^{\diamond}$ x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = \left(\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) \middle| V_{post} \middle| \Psi^{3b} \right) \qquad \mathsf{DWBA}$$

$$\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$$

 $r\vec{b}x$

Nonelastic breakup (NEB): loss of flux leaving the x-Ags channel

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E_b\mathrm{d}\Omega_b} = -\frac{2}{\hbar v_a}\rho_b(E_b)\big\langle\varphi_x^0(\vec{r}_x,\vec{k}_b)\big|W_x\big|\varphi_x^0(\vec{r}_x,\vec{k}_b)\big\rangle$$

 $- pr_{ba}$

spectator/participant model:

- b: spectator;
- x: participant (not observed);

 $^{\diamond}$ x-A wave function following breakup and projected on the Ags $V_{xA}
ightarrow U_{xA}$

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r}_x, \vec{k}_b) = \left(\chi_b^{(-)}(\vec{r}_b, \vec{k}_b) \middle| V_{post} \middle| \Psi^{3b} \right) \qquad \mathsf{DWBA}$$

$$\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$$

Nonelastic breakup (NEB): loss of flux leaving the x-Ags channel

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} E_b \mathrm{d} \Omega_b} = -\frac{2}{\hbar v_a} \rho_b(E_b) \left\langle \varphi_x^0(\vec{r}_x, \vec{k}_b) | W_x | \varphi_x^0(\vec{r}_x, \vec{k}_b) \right\rangle$$

imaginary part of U_×

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E_b\mathrm{d}\Omega_b} = -\frac{2}{\hbar v_a}\rho_b(E_b)\big\langle\varphi_x^0(\vec{r}_x,\vec{k}_b)\big|W_x\big|\varphi_x^0(\vec{r}_x,\vec{k}_b)\big\rangle$$

Absorption cross section in three body reaction b + (x + A)

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E_b\mathrm{d}\Omega_b} = -\frac{2}{\hbar v_a}\rho_b(E_b)\big\langle\varphi_x^0(\vec{r}_x,\vec{k}_b)\big|W_x\big|\varphi_x^0(\vec{r}_x,\vec{k}_b)\big\rangle$$

b

Absorption cross section in three body reaction b + (x + A)

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E_b\mathrm{d}\Omega_b} = -\frac{2}{\hbar v_a}\rho_b(E_b)\big\langle\varphi_x^0(\vec{r}_x,\vec{k}_b)\big|W_x\big|\varphi_x^0(\vec{r}_x,\vec{k}_b)\big\rangle$$

Absorption cross section in binary reaction a+A (Optical Theorem)

$$\sigma_{\rm abs} = -\frac{2}{\hbar v_a} \langle \chi_a | W_a | \chi_a \rangle$$

b

Absorption cross section in three body reaction b + (x + A)

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} E_b \mathrm{d} \Omega_b} = -\frac{2}{\hbar v_a} \rho_b(E_b) \left\langle \varphi_x^0(\vec{r}_x, \vec{k}_b) \middle| W_x \middle| \varphi_x^0(\vec{r}_x, \vec{k}_b) \right\rangle$$

Absorption cross section in binary reaction a+A (Optical Theorem)

$$\sigma_{\rm abs} = -\frac{2}{\hbar v_a} \langle \chi_a | W_a | \chi_a \rangle$$

b

Applications

^ф d ⇒ (n + p), S_p=2.224 MeV

J. Pampus et al, Nucl. Phys. A311, 141 (1978). $d \Rightarrow$ (n + p), S_p=2.224 MeV 100 ⁹³Nb(d,pX) @ E_d=25.5 MeV only proton is detected $(E_p = 14 \text{ MeV})$ dơ/dΩ_pdE_p(mb/sr/MeV) EBU : CDCC (FRESCO) 10 NEB : IAV model DWBA $\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$ \diamondsuit Pampus et al. EBU (CDCC) 0.1 Exact Finite Range NEB (DWBA FR) TBU (FR) TBU=EBU+NEB 0.01^L 30 60 90 120 150 180 $\theta_{c.m.}$ (deg.)

Application to ⁶Li breakup

Application to ⁶Li breakup

[♠] ⁶Li \Rightarrow (a+d), Q_a = -1.474 MeV
Application to ⁶Li breakup

[♠] ⁶Li \Rightarrow (a+d), Q_a = -1.474 MeV

S. Santra et al, Phys. Rev. C 85, 014612 (2012).

Application to ⁶Li breakup

large a yields are detected

S. Santra et al, Phys. Rev. C 85, 014612 (2012).

Application to ⁶Li breakup

S. Santra et al, Phys. Rev. C 85, 014612 (2012).

Elastic scattering

📍 data : S. Santra et al

Elastic scattering

- 📍 data : S. Santra et al
- J. Cook potential (global ^{6,7}Li OMP)

- Elastic scattering
 - 📍 data : S. Santra et al
- J. Cook potential (global ^{6,7}Li OMP)
- CDCC calculation
 - d/a+²⁰⁹Bi : OMP
 - d+²⁰⁹Bi : requires reduction of
 imaginary part due to the limitation of
 2-body model of ⁶Li.

209Bi(6Li,aX)

209Bi(6Li,aX)

Inclusive a

🗢 data: S. Santra et al

209Bi(6Li,aX)

Inclusive a

- 🗢 data: S. Santra et al
- EBU : CDCC calculation

209Bi(6Li,aX)

- Inclusive a
 - 🗢 data: S. Santra et al
- EBU : CDCC calculation
- NEB : IAV model (DWBA)
 - dominate inclusive a

209 Bi(6Li,aX)

- Inclusive a
 - 🗢 data: S. Santra et al
- EBU : CDCC calculation
- NEB : IAV model (DWBA)
 - dominate inclusive a
- TBU=EBU+NEB
 - overall agreement with data

⁶Li

**

A_{q.s}

ELASTIC BREAKUP (EBU) ("diffraction")

ELASTIC BREAKUP (EBU) ("diffraction")

INELASTIC BREAKUP

6Li+209Bi

CF: M. Dasgupta et al, Phys. Rev. C 70, 024606 (2004).

6Li+209Bi

CF: M. Dasgupta et al, Phys. Rev. C 70, 024606 (2004).

Summary and Perspectives

* Our calculations show a overall agreement with the experimental data

* Our calculations show a overall agreement with the experimental data

* For non-halo projectile (d,⁶Li,⁷Li,⁷Be), the inclusive breakup is dominated by NEB

* Our calculations show a overall agreement with the experimental data

- * For non-halo projectile (d,⁶Li,⁷Li,⁷Be), the inclusive breakup is dominated by NEB
- * Relative importance between NEB and EBU depends on incident energy and projectile binding energy

* Our calculations show a overall agreement with the experimental data

- * For non-halo projectile (d,⁶Li,⁷Li,⁷Be), the inclusive breakup is dominated by NEB
- * Relative importance between NEB and EBU depends on incident energy and projectile binding energy

* For halo nuclei (¹¹Be, ⁸B), the EBU is found to be dominant.

Perspectives

* Extend the model beyond DWBA

* CDCC or Faddeev description of incident channel

* Inclusion of deformation of projectile ((10Be*)11Be)

* Deep understanding of ICF and its application to surrogate reaction

* Extension to 3-body projectiles (⁹Be->a+a+n)

Thank you for your attention!!!

