

(The good, bad and ugly of) Optical potentials and nucleon scattering from ab-initio Green function Andrea Idini

C. Barbieri

Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart INT - Seattle, 21 Mar

Optical Potentials

Objective: an effective, consistent description of structure and reactions with a single formalism. *(Hopefully)* Predictive power of nuclear reactions measurements

(Hopefully) Predictive power of nuclear reactions measurements over a range of exotic isotopes.

Method: Optical potential derived from Self Consistent Green Function and χ EFT interactions.

- reproduce nuclear bulk properties, i.e. binding energy and radii;
 NNLO_{sat}
- 2. use the same description to consistently generate an optical potential reproducing elastic scattering data.

Particle-particle (pp-RPA) two-body correlation 'ladder' propagator

Andrea Idini C. Barbieri, A. Carbone, Lect. Notes Phys. arXiv:1611.03923 [nucl-th]

Nucleon elastic scattering

*Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991), Escher & Jennings PRC66:034313 (2002) Andrea Idini

¹⁶O neutron propagator

RESULTS

arXiv:1612.01478 [nucl-th]

 E_{kin} [MeV]

NNLO_{sat} neutron comparison

Ca isotopes

neutron and proton volume integrals of self energies.

 $^{16}O\left\langle r_{p}\right\rangle$

experiment	2.699±0.005 fm
NNLO _{sat}	2.734 fm
N3LO NN	2.354 fm

Hagen et al., Nature Physics 12, 186

EM results from A. Cipollone PRC92, 014306 (2015)

Conclusions and Perspectives

- We are developing an interesting tool to study nuclear reactions effectively.
 We have defined a non-local generalized optical potential corresponding to nuclear self energy.
- This tool is useful to probe properties of nuclear interactions.

Andrea Idini

 Radii, saturation and bulk properties are fundamental! (but not enough? Where do we want to go?)

Density dependence introduces instabilities in the mean field Hellemans et al. PRC 88, 064323 (2013)

Tarpanov et al. PRC89, 014307 (2014)

Finite Range pseudopotential

$$\mathcal{V}_{k}(\mathbf{r}_{1},\mathbf{r}_{2};\mathbf{r}_{3},\mathbf{r}_{4}) = \left(W_{k}\hat{1}_{\sigma}\hat{1}_{\tau} + B_{k}\hat{1}_{\tau}\hat{P}^{\sigma} - H_{k}\hat{1}_{\sigma}\hat{P}^{\tau} - M_{k}\hat{P}^{\sigma}\hat{P}^{\tau} \right. \\ \left. \times \hat{O}_{k}(\mathbf{k}_{12},\mathbf{k}_{34})\delta(\mathbf{r}_{13})\delta(\mathbf{r}_{24})g_{a}(\mathbf{r}_{12}) , \right.$$

K. Bennaceur J. Dobaczewski M. Korteleinen

with k = 0, 1, or 2.

$$\mathcal{V}_{\delta}(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_3, \mathbf{r}_4) = t_0 \left(1 + x_0 \hat{P}^{\sigma} \right) \delta(\mathbf{r}_{13}) \delta(\mathbf{r}_{24}) \delta(\mathbf{r}_{12})$$

J.Phys. G44 (2017) no.4, 045106

Landau parameters and error analysis

Error Analysis and Landau parameters guide us to know which channel of the interaction are less constrained

Andrea Idini

A.Idini, K. Bennaceur, J. Dobaczewski, arXiv:1612.00378

Why Green's Functions?

Dyson Equation

$$g_{\alpha\beta}(\omega) = g^{0}_{\alpha\beta}(\omega) + \sum_{\gamma\delta} g^{0}_{\alpha\gamma}(\omega) \Sigma^{\star}_{\gamma\delta}(\omega) g_{\delta\beta}(\omega) = + \Sigma^{\star}$$

Equation of motion

$$\left(E + \frac{\hbar^2}{2m}\nabla_r^2\right)G(\mathbf{r},\mathbf{r}';E) - \int d\mathbf{r}''\Sigma(\mathbf{r},\mathbf{r}'';E)G(\mathbf{r}'',\mathbf{r}';E) = \delta(\mathbf{r}-\mathbf{r}')_{\mathrm{E}}$$

Corresponding Hamiltonian $\mathcal{H}_{\mathcal{M}}(\mathbf{r},\mathbf{r}') = -\frac{\hbar^2}{2m} \nabla_r^2 \delta(\mathbf{r}-\mathbf{r}') + \Sigma(\mathbf{r},\mathbf{r}';E+i\epsilon)$

 Σ corresponds to the Feshbach's generalized optical potential

Escher & Jennings PRC66 034313 (2002)

Why optical potentials?

 Optical potentials reduce manybody complexity decoupling structure contribution and reactions dynamics.

Andrea Idini

2 particle transfer

Broglia et al. *Phys. Scr.* **91** 06301* (2016)

¹⁶O and ²⁴O

