Microscopic optical potentials in neutron-rich matter from chiral EFT

Jeremy Holt

Toward predictive theories of nuclear reactions across the isotopic chart, March 10, 2017

MOTIVATION AND OUTLINE

R-process nucleosynthesis

- Neutron-capture rates in cold r-process environments
- *Global optical potentials* from infinite matter calculations (update JLM)
- Charged-current reactions in the supernova neutrinosphere

Transport model simulations of heavy-ion collisions

- Needed to extract equation of state at high density
- FRIB experimental program

R-PROCESS NUCLEOSYNTHESIS

z	140Nd	141Nd	142Nd	143Nd	144Nd	145Nd	146Nd	A7Nd B-	148Nd	149Nd	150Nd	151Nd	152Nd	153Nd	154Nd	155Nd	156Nd
	139Pr	140Pr	141Pr	142Pr	143PB	144Pr	3¥45₽~	146Pr	147Pr	3 <u>1</u> 48Pr	149Pr	3150Pr	151Pr	152Pr	153Pr	154Pr	155Pr
58	138Ce	139Ce	140Ce	141Ce	142Ce	143CB	144C4	¥45€€	146Cg	147Ce	1 48Ce	149Ce	₹250Ce	151Ce	152Ce	153Ce	154Ce
	137La	138La	139La	140La	141La	142L3	<u>1</u> 43L₿	×44Lβ	-1451&-	146Lβ	×47Lβ	148La	149La	150La	151La	152La	153La
56	136Ba	137Ba	138Ba	139Ba	140Ba	14183	142Ba	14383	144B\$	-¥45₿å [−]	146B¢	-147B	148Ba	149Ba	3 15 0Ba	151Ba	152Ba
	135Cs	136Cs	137Cs	138Cs	139Cs	140Cs	14102	14293	143Cs	<u>ч</u> 44СВ	-14503	146Cs	3Daz Cs	148Cs	149Cs	150Cs	151Cs Y
54	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe	140Xe	141Xe	14238	143Xe	344Xe	ansxe	146Xe	1747Xe			
	133I	134I	135I	136I	137I	1381	139I	1401	1411	×42β- Π.γ	1431	1441					
52	132Te	133Te	134Te	135Te	136Te	137Te	138Te	139Te	140Te	141Te	142Te	, htt	p://lable	mmingle	ounge.bl	logspot.	com/
	80		82		84		86		88		90		92	_	94		N

Astrophysical site?

Core-collapse supernovae

Neutron-star mergers

R-PROCESS NUCLEOSYNTHESIS

NUCLEAR PHYSICS INPUTS

Masses of neutron-rich nuclei

Determine elemental abundance patterns along isotopic chains during equilibrium

$$\frac{Y(Z,A+1)}{Y(Z,A)} \sim \exp\left[\frac{S_n(Z,A+1) - S_n^0(T,\rho_n)}{kT}\right]$$

Beta-decay lifetimes

- Set timescale for formation of heavy elements from seed nuclei
- > Partly responsible for peaks at A = 130 and A = 195

Neutron-capture rates

- Relevant during late-time freeze-out phase of the r-process
- Sensitivity studies vary capture rates over orders of magnitude

"HOT" VS. "COLD" R-PROCESS SCENARIOS

Hot r-process (T ~ 1 GK): radiative neutron capture and photodissociation in equilibrium

Cold r-process (T ~ 0.5 GK): radiative neutron capture and photodissociation out of equilibrium

NEUTRON CAPTURE SENSITIVITY STUDIES

Uncertainties coming from:

- Nuclear level densities for Hauser-Feshbach
- $\triangleright \gamma$ strength functions
- Neutron-nucleus optical potentials

GLOBAL OPTICAL POTENTIALS

$$\mathcal{U}(r, E) = -\mathcal{V}_V(r, E) - i\mathcal{W}_V(r, E) - i\mathcal{W}_D(r, E)$$

 $+ \mathcal{V}_{SO}(r, E) \cdot \mathbf{l} \cdot \sigma + i \mathcal{W}_{SO}(r, E) \cdot \mathbf{l} \cdot \sigma + \mathcal{V}_{C}(r)$

ISOSPIN ASYMMETRY DEPENDENCE

Isovector part of optical potential linear in the isospin asymmetry

$$U = U_0 - U_I \delta_{np} \tau_3 \qquad \delta_{np} = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

Very little is known/predicted about isovector imaginary part

BULK MATTER OPTICAL POTENTIALS

ldentified with the on-shell nucleon self-energy $\Sigma(\vec{r_1}, \vec{r_2}, \omega)$

Hartree-Fock contribution (real, energy-independent):

$$\Sigma_{2N}^{(1)}(q;k_f) = \sum_1 \langle ec{q} ec{h}_1 s s_1 t t_1 | ec{V}_{2N} | ec{q} ec{h}_1 s s_1 t t_1
angle n_1$$

Second-order perturbative contibutions (complex, energy-dependent):

$$\Sigma_{2N}^{(2a)}(q,\omega;k_f) = \frac{1}{2} \sum_{123} \frac{|\langle \vec{p_1}\vec{p_3}s_1s_3t_1t_3 | \bar{V} | \vec{q}\,\vec{h}_2ss_2tt_2 \rangle|^2}{\omega + \epsilon_2 - \epsilon_1 - \epsilon_3 + i\eta} \bar{n}_1 n_2 \bar{n}_3 (2\pi)^3 \delta(\vec{p_1} + \vec{p_3} - \vec{q} - \vec{h}_2)$$

Benchmarks:

Depth and energy dependence of phenomenological volume parts (including isospin dependence)

NUCLEAR FORCES FROM CHIRAL EFT

NATURAL SEPARATION OF SCALES

CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions

RESOLUTION SCALE

Regulating function

$$\langle \vec{p}' | V | \vec{p} \rangle exp[-(p/\Lambda)^{2n} - (p'/\Lambda)^{2n}]$$
sets resolution scale

Variations in regulator

Estimate of theoretical uncertainty

$$\begin{array}{ll} & - & - & \Lambda = 414 \, \mathrm{MeV} \, (\Delta x \sim 1.50 \, \mathrm{fm}) \\ & - & - & \Lambda = 450 \, \mathrm{MeV} \, (\Delta x \sim 1.38 \, \mathrm{fm}) \\ & - & - & \Lambda = 500 \, \mathrm{MeV} \, (\Delta x \sim 1.25 \, \mathrm{fm}) \end{array}$$

Coraggio, Holt, Itaco, Sammarruca & Machleidt PRC (2013)

SYMMETRIC NUCLEAR MATTER EQUATION OF STATE

Several approximations give good saturation properties

NEUTRON MATTER EQUATION OF STATE

Sources of uncertainty

- Scale dependence
- Convergence in many-body perturbation theory
- Convergence in chiral expansion

NEUTRON MATTER EQUATION OF STATE

Sources of uncertainty

- Scale dependence
- Convergence in many-body perturbation theory
- Convergence in chiral expansion

Independent of resolution scale up to density 0.1 fm⁻³

OPTICAL POTENTIAL IN SYMMETRIC MATTER

DENSITY DEPENDENCE

CONVERGENCE IN PETURBATION THEORY

PRELIMINARY CALCULATION

ISOVECTOR REAL OPTICAL POTENTIAL

Chiral EFT prediction consistent with broad empirical constraints

VALIDITY OF LANE APPROXIMATION

Real part has quadratic isoscalar contributions at low energies

Imaginary part almost perfectly linear in isospin asymmetry

PROBING NUCLEAR EQUATION OF STATE IN THE LAB

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$rac{\partial f}{\partial t} +
abla_p arepsilon \cdot
abla_r f -
abla_r arepsilon \cdot
abla_p f = I$$

PROBING NUCLEAR EQUATION OF STATE IN THE LAB

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$\frac{\partial f}{\partial t} + \nabla_p \varepsilon \cdot \nabla_r f - \nabla \varepsilon \nabla_p f = I$$

$$\varepsilon = p^2/2M + U(r, p, t)$$

R-PROCESS IN NEUTRON STAR MERGERS

- Soft EoS (SFHo) required for favorable shock-heating in full GR
- Subsequent **neutrino processing** increases Y_e value for majority (60%) of ejecta

LATE-TIME SUPERNOVA NEUTRINOS

Governs energies of free-streaming neutrinos

NUCLEAR MEAN FIELDS AND CHARGED-CURRENT REACTIONS

Neutrino-antineutrino spectral difference crucial for nucleosynthesis

 $\begin{array}{c} \nu_{e} + n \longleftrightarrow e^{-} + p \\ \bar{\nu}_{e} + p \longleftrightarrow e^{+} + n \end{array} \begin{array}{c} \text{Set proton fraction in} \\ \text{region of r-process} \end{array} \\ \\ \left\langle E_{\bar{\nu}_{e}} \right\rangle - \left\langle E_{\nu_{e}} \right\rangle > 4(m_{n} - m_{p}) \end{array} \begin{array}{c} \text{Robust} \\ \text{r-process} \end{array}$

Nuclear mean fields enhance neutrino absorption

Skyrme & RMF calculations: Martinez-Pinedo et al, PRL (2012); Roberts et al, PRC (2012)

Resonant nucleon-nucleon interactions may enhance effect ($a_{nn}=-18\,{
m fm}$)

NEUTRINO ABSORPTION CROSS SECTION

$$\frac{1}{V} \frac{d^2 \sigma}{d \cos \theta \, dE_e} = \frac{G_F^2 \cos^2 \theta_C}{4\pi^2} \left[\vec{p_e} \left| E_e \left(1 - f_e(\xi_e) \right) \right| \right]^{\text{Electron phase space}} \\ \times \left[(1 + \cos \theta) S_\tau(q_0, q) + g_A^2 (3 - \cos \theta) S_{\sigma\tau}(q_0, q) \right]^{\text{Nucleon response}}$$

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

$$E_{n}(k) = \frac{k^{2}}{2M} + \Sigma_{n}(k)$$

$$E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)$$

$$e^{-} \neq p$$
neutrons
protons
protons

NEUTRINO ABSORPTION CROSS SECTION

$$\frac{1}{V} \frac{d^2 \sigma}{d \cos \theta \, dE_e} = \frac{G_F^2 \cos^2 \theta_C}{4\pi^2} \left[\vec{p_e} \left| E_e \left(1 - f_e(\xi_e) \right) \right| \right]^{\text{Electron phase space}} \\ \times \left[(1 + \cos \theta) S_\tau(q_0, q) + g_A^2 (3 - \cos \theta) S_{\sigma\tau}(q_0, q) \right]^{\text{Nucleon response}}$$

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

$$E_n(k) = \frac{\pi}{2M} + \Sigma_n(k)$$

$$E_p(k) = \frac{k^2}{2M} + \Sigma_p(k)$$
neutrons

 k^2

Q-value for neutrino absorption changes significantly

MEDIUM EFFECTS ON MEAN NEUTRINO ENERGIES

RESONANT NN INTERACTIONS AT LOW DENSITIES

Virial expansion Horowitz & Schwenk (2006)

Equation of state and neutrino response for low-density, high-temperature matter

Many-body perturbation theory with chiral forces

- Leading Hartree-Fock contribution likely too weak
- Second-order perturbation theory may be sufficient (work in progress...)

Nuclear pseudo-potential:

$$\langle p|V_{llSJ}^{pseudo}|p
angle=-rac{\delta_{lSJ}(p)}{pM_N}~~$$
 Fumi (1955), Fukuda & Newton (1956)

Designed to reproduce exact energy shift when used at the mean field level (valid for low-density matter)

EFFECT ON MEAN FREE PATH

EFFECT ON MEAN FREE PATH

Larger neutrino/antineutrino spectral difference (may enhance r-process)

Optical potentials for neutron-rich nuclei

- Benchmarked to phenomenological potentials (stable nuclei)
- Extended to large isospin asymmetries
- Fold with theoretical/empirical density distributions (LDA, improved LDA?)

Neutrino reactions in proto-neutron stars

- Higher-order contributions to nuclear response from chiral effective field theory
- Consistent equations of state & implement in simulations of supernovae, proto-neutron star evolution, neutron star mergers