Microscopic optical potentials in neutron-rich matter from chiral EFT

Jeremy Holt

Toward predictive theories of nuclear reactions across the isotopic chart, March 10, 2017

MOTIVATION AND OUTLINE

R-process nucleosynthesis

- \triangleright Neutron-capture rates in cold r-process environments
- *Global optical potentials* from infinite matter calculations (update JLM)
- Charged-current reactions in the supernova neutrinosphere

Transport model simulations of heavy-ion collisions

- \triangleright Needed to extract equation of state at high density
- FRIB experimental program \triangleright

R-PROCESS NUCLEOSYNTHESIS

Astrophysical site?

Core-collapse supernovae

Neutron-star mergers

R-PROCESS NUCLEOSYNTHESIS

NUCLEAR PHYSICS INPUTS

Masses of neutron-rich nuclei

Determine elemental abundance patterns along isotopic chains during equilibrium

$$
\frac{Y(Z,A+1)}{Y(Z,A)} \sim \exp\left[\frac{S_n(Z,A+1) - S_n^0(T,\rho_n)}{kT}\right]
$$

Beta-decay lifetimes

- Set timescale for formation of heavy elements from seed nuclei
- Partly responsible for peaks at $A = 130$ and $A = 195$

Neutron-capture rates

- Relevant during **late-time freeze-out phase** of the r-process
- Sensitivity studies vary capture rates over **orders of magnitude**

"HOT" VS. "COLD" R-PROCESS SCENARIOS

Hot r-process (T ~ 1 GK): radiative neutron capture and photodissociation in equilibrium

Cold r-process (T ~ 0.5 GK): radiative neutron capture and photodissociation out of equilibrium

NEUTRON CAPTURE SENSITIVITY STUDIES

Uncertainties coming from:

- Nuclear level densities for Hauser-Feshbach
- \triangleright γ strength functions
- **Neutron-nucleus optical potentials**

GLOBAL OPTICAL POTENTIALS

$$
\mathcal{U}(r, E) = -\mathcal{V}_V(r, E) - i\mathcal{W}_V(r, E) - i\mathcal{W}_D(r, E)
$$

+ $V_{SO}(r, E)$.l. σ + $iW_{SO}(r, E)$.l. σ + $V_C(r)$.

ISOSPIN ASYMMETRY DEPENDENCE

Isovector part of optical potential linear in the isospin asymmetry

$$
U = U_0 - U_I \delta_{np} \tau_3 \qquad \delta_{np} = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}
$$

Very little is known/predicted about **isovector imaginary part**

BULK MATTER OPTICAL POTENTIALS

Identified with the on-shell nucleon self-energy $\Sigma(\vec{r}_1, \vec{r}_2, \omega)$

Hartree-Fock contribution (real, energy-independent):

$$
\Sigma^{(1)}_{2N}(q;k_f)=\sum_{1}\langle \vec{q}\vec{h}_1ss_1tt_1|\bar{V}_{2N}|\vec{q}\vec{h}_1ss_1tt_1\rangle n_1
$$

Second-order perturbative contibutions (complex, energy-dependent):

$$
\Sigma_{2N}^{(2a)}(q,\omega;k_f)=\frac{1}{2}\sum_{123}\frac{|\langle\vec{p_1}\vec{p_3}s_1s_3t_1t_3|\bar{V}|\vec{q}\,\vec{h_2}ss_2tt_2\rangle|^2}{\omega+\epsilon_2-\epsilon_1-\epsilon_3+i\eta}\bar{n}_1n_2\bar{n}_3(2\pi)^3\delta(\vec{p_1}+\vec{p_3}-\vec{q}-\vec{h_2})
$$

Benchmarks:

Depth and energy dependence of phenomenological volume parts (including isospin dependence)

NUCLEAR FORCES FROM CHIRAL EFT

NATURAL SEPARATION OF SCALES

CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions

RESOLUTION SCALE

Regulating function

$$
\sqrt{p'}|V|\vec{p}\rangle \n \underbrace{\exp[-(p/\Delta)^{2n} - (p'/\Delta)^{2n}]}_{\text{Sets resolution scale}}
$$

Variations in regulator

Estimate of theoretical uncertainty

$$
\Delta = 414 \text{ MeV} (\Delta x \sim 1.50 \text{ fm})
$$

- - -
$$
\Lambda = 450 \text{ MeV} (\Delta x \sim 1.38 \text{ fm})
$$

........
$$
\Lambda = 500 \text{ MeV} (\Delta x \sim 1.25 \text{ fm})
$$

Coraggio, Holt, Itaco, Sammarruca & Machleidt PRC (2013)

SYMMETRIC NUCLEAR MATTER EQUATION OF STATE

Several approximations give good saturation properties

NEUTRON MATTER EQUATION OF STATE

Sources of uncertainty

- Scale dependence
- Convergence in many-body perturbation theory
- Convergence in chiral expansion

NEUTRON MATTER EQUATION OF STATE

Sources of uncertainty

- Scale dependence
- Convergence in many-body perturbation theory
- Convergence in chiral expansion

Independent of resolution scale up to density 0.1 fm-3

OPTICAL POTENTIAL IN SYMMETRIC MATTER

DENSITY DEPENDENCE

CONVERGENCE IN PETURBATION THEORY

PRELIMINARY CALCULATION

ISOVECTOR REAL OPTICAL POTENTIAL

Chiral EFT prediction consistent with broad empirical constraints

VALIDITY OF LANE APPROXIMATION

Real part has quadratic isoscalar contributions at low energies

Imaginary part almost perfectly linear in isospin asymmetry

PROBING NUCLEAR EQUATION OF STATE IN THE LAB

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$
\frac{\partial f}{\partial t} + \nabla_p \varepsilon \cdot \nabla_r f - \nabla_r \varepsilon \cdot \nabla_p f = I
$$

PROBING NUCLEAR EQUATION OF STATE IN THE LAB

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$
\frac{\partial f}{\partial t} + \nabla_p \varepsilon \cdot \nabla_r f - \nabla \varepsilon \sqrt{\nabla_p f} = I
$$

R-PROCESS IN NEUTRON STAR MERGERS

- Soft EoS (SFHo) required for favorable shock-heating in **full GR**
- Subsequent **neutrino processing** increases Y_e value for majority (60%) of ejecta

LATE-TIME SUPERNOVA NEUTRINOS

Governs energies of free-streaming neutrinos

NUCLEAR MEAN FIELDS AND CHARGED-CURRENT REACTIONS

Neutrino-antineutrino spectral difference crucial for nucleosynthesis

Set proton fraction in region of r-process Robust r-process

Nuclear mean fields enhance neutrino absorption

Skyrme & RMF calculations: Martinez-Pinedo et al, PRL (2012); Roberts et al, PRC (2012)

Resonant nucleon-nucleon interactions may enhance effect $\left(\,a_{nn}=-18\,{\rm fm}\,\right)$

NEUTRINO ABSORPTION CROSS SECTION

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,dE_e} = \frac{G_F^2\cos^2\theta_C}{4\pi^2}\Big|{\vec{p_e}}\big|E_e\left(1-f_e(\xi_e)\right)\Big|\frac{\text{Electron phase space}}{\text{Electron phase space}}\\ \times\Big[(1+\cos\theta)S_\tau(q_0,q)+g_A^2(3-\cos\theta)S_{\sigma\tau}(q_0,q)\Big]\Big|\text{ Nucleon response}
$$

Nuclear interactions attractive at low momenta and

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

Mean field effects further **widen the energy gap** between protons and neutrons

Q-value for neutrino absorption changes significantly

$$
E_n(k) = \frac{k^2}{2M} + \Sigma_n(k)
$$

\n
$$
E_p(k) = \frac{k^2}{2M} + \Sigma_p(k)
$$

\n
$$
e \searrow \frac{k^2}{2M} - \Sigma_p(k)
$$

\nneutrons

NEUTRINO ABSORPTION CROSS SECTION

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,dE_e} = \frac{G_F^2\cos^2\theta_C}{4\pi^2}\Big|{\vec{p_e}}\big|E_e\left(1 - f_e(\xi_e)\right)\Big|\,\frac{\text{Electron phase space}}{\text{Electron phase space}}\\ \times\Big[(1 + \cos\theta)S_\tau(q_0, q) + g_A^2(3 - \cos\theta)S_{\sigma\tau}(q_0, q)\Big]\Big|\,\frac{\text{Nucleon response}}{\text{interpolous phase space}}
$$

Nuclear interactions attractive at low momenta and

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

Mean field effects further **widen the energy gap** between protons and neutrons

Q-value for neutrino absorption changes significantly

$$
E_n(k) = \frac{k^2}{2M} + \Sigma_n(k)
$$

$$
E_p(k) = \frac{k^2}{2M} + \Sigma_p(k)
$$

neutrons

MEDIUM EFFECTS ON MEAN NEUTRINO ENERGIES

RESONANT NN INTERACTIONS AT LOW DENSITIES

Virial expansion Horowitz & Schwenk (2006)

Equation of state and neutrino response for low-density, high-temperature matter

Many-body perturbation theory with chiral forces

- Leading Hartree-Fock contribution likely too weak
- Second-order perturbation theory may be sufficient (work in progress…)

Nuclear pseudo-potential:

$$
\langle p|V_{llSJ}^{pseudo}|p\rangle=-\frac{\delta_{lSJ}(p)}{pM_N}\quad \text{Fumi (1955),}\quad \text{Fumi (1955)}
$$

Designed to reproduce **exact energy shift** when used at the mean field level (valid for low-density matter)

EFFECT ON MEAN FREE PATH

EFFECT ON MEAN FREE PATH

Larger neutrino/antineutrino spectral difference **(may enhance r-process)**

Optical potentials for neutron-rich nuclei

- Benchmarked to phenomenological potentials (stable nuclei)
- Extended to large isospin asymmetries
- Fold with theoretical/empirical density distributions (LDA, improved LDA?)

Neutrino reactions in proto-neutron stars

- Larger neutrino opacity \longrightarrow more neutron-rich matter
- Higher-order contributions to nuclear response from chiral effective field theory
- Consistent equations of state & implement in simulations of supernovae, proto-neutron star evolution, neutron star mergers