Nuclear structure and reactions from coupled-cluster theory

Gaute Hagen Oak Ridge National Laboratory

INT, March 29th, 2017

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

AK RIDGE NATIONAL LABO

Collaborators

@ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock, M. Schuster, Z. H. Sun

- @ MSU: W. Nazarewicz, F. Nunes, J. Rotureau
- @ Chalmers: B. Carlsson, A. Ekström, C. Forssén
- @ Hebrew U: N. Barnea, D. Gazit
- @ MSU/ U Oslo: M. Hjorth-Jensen
- @ Trento: G. Orlandini
- @ TRIUMF: S. Bacca, J. Holt, **M. Miorelli**, P. Navratil, **S. R. Stroberg**
- @ TU Darmstadt: C. Drischler, C. Stumpf, K. Hebeler, R. Roth, A. Schwenk, J. Simonis
- @ LLNL: K. Wendt

Outline

- Optical potentials from coupledcluster theory
- The neutron skin and dipole polarizability of ⁴⁸Ca and ⁶⁸Ni
- Structure of ⁷⁸Ni
- Structure and decay of ¹⁰⁰Sn

Overlap with key topics of the workshop:

•Integrated structure and reaction *ab initio* modeling: Addressing the challenge of heavier nuclei, continuum, and multiple reaction channels.

Ab initio approaches carry predictive power, which is critical for studying short-lived isotopes inaccessible by experiment, but are currently limited to light nuclei. Following the development of *ab initio* structure models that exhibit a better scaling, the program will discuss and guide the development of *ab initio* reaction theory for medium-mass nuclei.

•Effective interactions in reaction calculations.

Effective interactions (optical potentials) have to enter reaction descriptions when possible reaction channels are eliminated from explicit consideration. The program will address the challenge of developing effective interactions that have predictive power in the regime of exotic nuclei, where data is scarce, and seek strategies for anchoring these interaction in *ab initio*, microscopic, or effective theories.

Improving structure inputs to reaction approaches.

To achieve more reliable predictions for unstable nuclei, it is important that *ab initio* theories inform/replace current microscopic models for medium-mass systems, while microscopic methods need to replace the phenomenology used for heavier systems. The program will review recent developments in nuclear structure theory and identify avenues for integrating improved structure information into new and existing reaction theories and codes.

Trend in realistic ab-initio calculations

Explosion of many-body methods (Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

Application of ideas from EFT and renormalization group (V_{low-k}, Similarity Renormalization Group, ...)

Reach of ab-initio computations of nuclei

Coupled-cluster method (CCSD approximation)

Ansatz:

$$\Psi \rangle = e^{T} |\Phi\rangle$$

$$T = T_{1} + T_{2} + \dots$$

$$T_{1} = \sum_{ia} t^{a}_{i} a^{\dagger}_{a} a_{i}$$

$$T_{2} = \sum_{ijab} t^{ab}_{ij} a^{\dagger}_{a} a^{\dagger}_{b} a_{j} a_{i}$$

T

- Scales gently (polynomial) with increasing problem size o²u⁴.
- \odot Truncation is the only approximation.
- ③ Size extensive (error scales with A)
- ⊗ Most efficient for closed (sub-)shell nuclei

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled cluster equations

 $E = \langle \Phi | H | \Phi \rangle$ $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$ Alternative view: CCSD generates similarity transformed Hamiltonian with no 1p-1h and no 2p-2h excitations.

$$\overline{H} \equiv e^{-T}He^{T} = \left(He^{T}\right)_{c} = \left(H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots\right)_{c}$$

Coupled-cluster method (CCSD approximation)

- CCSD captures most of the 3p3h and 4p4h excitations (scales as n_o²n_u⁴)
- In order to describe
 α -cluster states
 need to include full
 quadruples (CCSDTQ)
 (scales n⁴_on⁶_u)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Success: BEs of oxgyen chain

Hebeler, Holt, Menendez, Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

Challenge: Collectivity and B(E2)

Accurate nuclear binding energies and radii from a chiral interaction

<u>Solution</u>: Simultaneous optimization of NN and 3NFs Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization (NNLO_{sat})

A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015).
G. Hagen et al, Phys. Scr. **91**, 063006 (2016).

Navratil et al (2007); Jurgenson et al (2011)

а

- b Binder et al (2014)
 - Epelbaum et al (2014)
- d Epelbaum et al (2012)
- e Maris et al (2014)
- f Wloch et al (2005)
- g Hagen et al (2014)
- h Bacca et al (2014)
 - Maris et al (2011)
 - Hergert et al (2014)
- k Soma et al (2014)

<u>Not new:</u> GFMC with AV18 and Illinois-7 are fit to 23 levels in nuclei with A <10

1.8/2.0 (EM) from K. Hebeler *et al* PRC (2011) The other chiral NN + 3NFs are from Binder et al, PLB (2014)

- Accurate binding energies up to mass 100 from a chiral NN + 3NF
- Fit to nucleon-nucleon scattering and BEs and radii of A=3,4 nuclei
- Reproduces saturation point in nuclear matter within uncertainties
- Deficiencies: Radii are less accurate

Neutron radius and skin of ⁴⁸Ca

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

Uncertainty estimates from family of chiral interactions: K. Hebeler *et al* PRC (2011)

DFT:

SkM^{*}, SkP, Sly4, SV-min, UNEDF0, and UNEDF1

- Neutron skin significantly smaller than in DFT
- Neutron skin almost independent of the employed Hamiltonian
- Our predictions for ⁴⁸Ca are consistent with existing data

neutron skin [fm]

Optical potentials from coupled-cluster theory

J. Rotureau et al, Phys. Rev. C 95, 024315 (2017)

Coupled-cluster Green's function:

$$\begin{split} &\mathcal{F}^{CC}(\alpha,\beta,E) \equiv \\ &\langle \Phi_{0,L} | \overline{a_{\alpha}} \frac{1}{E - (\overline{H} - E_{gs}^{A}) + i\eta} \overline{a_{\beta}^{\dagger}} | \Phi_{0} \rangle \\ &+ \langle \Phi_{0,L} | \overline{a_{\beta}^{\dagger}} \frac{1}{E - (E_{gs}^{A} - \overline{H}) - i\eta} \overline{a_{\alpha}} | \Phi_{0} \rangle \end{split}$$

Solve for $A \pm 1$ systems with PA/PR-EOMCCSD truncated at 2p1h and 1p2h

$$\begin{bmatrix} E - (\bar{H} - E_{gs}^{A}) \end{bmatrix} |\Psi_{R,\beta}^{A+1}(E)\rangle = \bar{a}_{\beta}^{\dagger} |\Phi_{0,R}\rangle$$
$$\begin{bmatrix} E - (E_{gs}^{A} - \bar{H}) \end{bmatrix} |\Psi_{R,\alpha}^{A-1}(E)\rangle = \bar{a}_{\alpha} |\Phi_{0,R}\rangle$$

The coupled-cluster Green's function can then be written:

$$G(\alpha,\beta,E) = \langle \phi_{0,L} | \bar{a_{\alpha}} | \Psi_{R,\beta}^{A+1}(E) \rangle + \langle \phi_{0,L} | a_{\beta}^{\dagger} | \Psi_{R,\alpha}^{A-1}(E) \rangle$$

See also talk by Andrea Idini, and C. Barbieri and B. K Jennings Phys. Rev. C72 (2005) 014613

Optical potentials from coupled-cluster theory

Imaginary part of the neutron s-wave Green's function

Using a Berggren basis allows stable results for eta -> 0 $\sum_{i} |u_i\rangle \langle \tilde{u_i}| + \int_{L^+} dk |u(k)\rangle \langle u(\tilde{k})| = \hat{1}$

See also Hagen 04, Kruppa 07, Carbonell 2014, Papadimitriou 2015 for few-body applicatiobs

Inverting the Dyson equation we obtain the self-energy:

$$\Sigma^*(E) = [G^{(0)}(E)]^{-1} - G^{-1}(E)$$

Scattering phase shifts are obtained by the solving the equation:

$$-\frac{\hbar^2}{2\mu}\nabla^2\xi(\mathbf{r}) + \int d\mathbf{r}'\Sigma'(\mathbf{r},\mathbf{r}',E^+)\xi(\mathbf{r}') = E^+\xi(\mathbf{r})$$

Optical potentials from coupled-cluster theory

J. Rotureau et al, Phys. Rev. C 95, 024315 (2017)

Neutron elastic scattering on ¹⁶O with NNLO_{opt}

Consistent results between computed phase shifts and resonances computed directly in the Berggren basis via PA-EOMCCSD

$N_{ m max}$	$E(5/2^{+})$	$E(1/2^{+})$	$E(3/2^{+})$
8	-4.35	-2.62	2.68-i0.32
10	-4.49	-2.73	2.24-i 0.25
12	-4.56	-2.76	2.34 -i 0.21
14	-4.57	-2.80	2.26-i0.12

Neutron elastic scattering on ⁴⁰Ca

- Diffraction minima in good agreement with data
- Cross section overestimated due to lack of absorption (e.g. 0⁺ state in ⁴⁰Ca too high)
- Using a Berggren basis allows for stable results as ε -> 0.

⁴⁰Ca(n,n)⁴⁰Ca , E_{lab} = 5.3 MeV

Response function from coupled-cluster

theory Cross section is related to the Response Function in the continuum

$$S(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Cannot be calculated beyond 3-body break-up even for A=4

Solution: Lorentz Integral Transform method (Efros, Leidemann,Orlandini, Barnea, Bacca) Efros *et al.*,J. Phys. G: Nucl. Part. Phys. 34 (2007)

$$\mathcal{L}(\sigma,\Gamma) = \int d\omega \frac{S(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\Psi} | \tilde{\Psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\Psi} \rangle = O | \Psi_0 \rangle \xrightarrow[object. Need]{Bound-state-like}$$

Inclusive electron scattering and the Coulomb sum rule

The CSR is the total integerated strength of inelastic longitudinal response function

$$CSR(q) = \int d\omega \ R_L^{in}(\omega, \mathbf{q}) / G_p^2(Q^2)$$

$$R_L^{in}(\omega, \mathbf{q}) = \sum_f |\langle f | \rho(\mathbf{q}) | \mathbf{0} \rangle|^2 \delta(\omega - \mathbf{E_f} + \mathbf{E_0})$$

Here $\rho(q)$ is the nuclear charge operator Final state different from g.s. since we want the inelastic response

We approached the problem as we do for the calculation of the total strength of the dipole response function in PRL **111**, 122502 (2013).

Benchmark with Exact Hyperspherical Harmonics for ⁴He

Comparison to data in ¹⁶O and ⁴⁰Ca for elastic charge formfactor

Dipole response from coupled-cluster

S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, PRL 111, 143402 (2013). S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, PRC 90, 064610 (2014)

Dipole polarizability of ⁴⁸Ca

correlation with R_{p} :

 $2.19 \lesssim \alpha_{\textrm{D}} \lesssim 2.60 \ fm^3$

- DFT results are consistent and within band of ab-initio results
- Data has been analyzed by Osaka-Darmstadt collaboration
- Ab-initio prediction overlaps with experimental uncertainty

Neutron skin/dipole polarizability of ⁶⁸Ni

- Charge radii have been measured by the the COLLAPS collaboration at ISOLDE, CERN
- Neutron skin significantly larger than RPA results

Self consistent RPA results based on large set of EDFs from X. Roca-Maza Phys. Rev. C 92, 064304 (2015)

Measuremet of dipole strength in ⁶⁸Ni: D. Rossi et al, PRL 111 242503 (2013)

Nucleus	Δr_{np} (a)	Δr_{np} (b)	Δr_{np} (c)
⁶⁸ Ni	0.15 - 0.19	0.18 ± 0.01	0.16 ± 0.04
¹²⁰ Sn	0.12 - 0.16	0.14 ± 0.02	0.12 ± 0.04
²⁰⁸ Pb	0.13-0.19	0.16 ± 0.02	0.16 ± 0.03

Structure of ⁷⁸Ni from first principles

- From an observed correlation we predict the 2⁺ excited state in ⁷⁸Ni using the experimental data for the 2⁺ state in ⁴⁸Ca
- Similar correlations have been observed in other nuclei, e.g. Tjon line in light nuclei

G. Hagen, G. R. Jansen, and T. Papenbrock Phys. Rev. Lett. **117**, 172501 (2016) A high 2⁺ energy in ⁷⁸Ni indicates that this nucleus is doubly magic

A measurement of this state has been made at RIBF, RIKEN

R. Taniuchi et al., in preparation

Consistent with recent shell-model studies F. Nowacki *et al.*, PRL 117, 272501 (2016)

Excited states in ⁷⁸Ni and its neighbors

¹⁰⁰Sn – a nucleus of superlatives

Hinke et al, Nature (2012)

- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- In the closest proximity to the proton dripline
- At the endpoint of the rapid proton capture process (Sn-Sb-Te cycle)
- Unresolved controversy regarding s.p. structure of ¹⁰¹Sn

Structure of the ligthest tin isotopes

Structure of the ligthest tin isotopes

Structure of the ligthest tin isotopes

G.s. spin of ¹⁰⁷Sn correctly predicted to be 5/2+ [G. Cerizza et al Phys. Rev. C **93**, 021601 (2016)] Importance truncated CI results from **C. Stumpf** and R. Roth, valence space effective interactions from **S. R. Stroberg** and J. Holt.

¹⁰⁰In from a novel charge exchange coupledcluster equation-of-motion method

New method: 3p-3h charge-exchange EOM

$$\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$$

- 2.93(34) MeV
- Predict a 7⁺ ground-state for ¹⁰⁰In
- Ground-state spin of ¹⁰⁰In can be measured by CRIS collab. at CERN

Superallowed Gamow-Teller transition

- Prediction for the Gamow-Teller transition consistent with data
- Towards understanding the quenching of g_A
- Important implications for computations of 0vββ decay

Hinke et al, Nature (2012)

Model	Ref	unquenched	quenched
ESPM	[30]	17.78	10.00
MCSM	[8]	1 0.3	6.5
QRPA	[9]	8.95	
FFS	[9]	7.63	
extrapol.	[10]	9.8	5.2
SM+corr.	[7]	14.2	
LSSM	this work	~ 13.90	~ 7.82
LSSM			
(only 1_1^+)	this work	10.10	5.68

- Coupled-cluster computations predict a B(GT) of 4.7(5)
- B(GT) is currently targeted by upcoming precision measurements

- Optical potentials from coupled-cluster theory – promising first results for ⁴⁰Ca+n with NNLO_{sat}
- Prediction of dipole polarizability of ⁴⁸Ca consistent with data
- ⁷⁸Ni is predicted to be doubly magic
- Structure and decay of ¹⁰⁰Sn