

Canada's National Laboratory for Particle and Nuclear Physics

Nuclear structure and astrophysics investigations at TRIUMF-ISAC

Adam Garnsworthy Principal Scientist for ARIEL, Research Scientist, TRIUMF

March 15th 2017

Nuclear Reactions: A Symbiosis between Experiment, Theory and Applications INT Workshop, University of Washington, Seattle

TRIUMF: Canada's National Laboratory

TRIUMF was founded in 1968 and has delivered nearly 50 years of accelerator-based science and innovation for Canada, and is engaging the World.

York University

McMaster University

Western University

Nordion

commercial medical isotope production 3 cyclotrons

CMMS Centre for Molecular and Material Science (µSR)

TRIUMF's accelerator complex

ISAC (Isotope Separator and ACcelerator) Rare Isotope Facility

- Nuclear Structure
- Nuclear Astrophysics
- Fund. Symmetries
- CMMS (βNMR)

Nordion

commercial medical isotope production 3 cyclotrons

CMMS Centre for Molecular and Material Science (µSR)

TRIUMF's accelerator complex

ISAC (Isotope Separator and ACcelerator) Rare Isotope Facility

- Nuclear Structure
- Nuclear Astrophysics
- Fund. Symmetries
- CMMS (β NMR)

Nordion

commercial medical isotope production 3 cyclotrons

CMMS Centre for Molecular and Material Science (µSR)

ISAC rare isotope facility

Programs in

- Nuclear Structure &
 Dynamics
- Nuclear Astrophysics
- Electroweak Interaction

Studies

- Material Science
- 18 permanent experiments

ISAC rare isotope facility

Target materials: SiC, TiC, NiO, Nb, ZrC, Ta, U Ion sources: Surface, FEBIAD, IG-LIS

ISAC experimental areas

ISAC experimental areas

ISAC experimental areas

TIGRESS + auxiliary detectors

TRIUMF

15 Mar 2017

High-energy RIBs > 6 AMeV

EMMA (2017) Mass analyzer for nuclear reactions

HPGe y-ray spectrometer in-beam spectroscopy of nuclear reactions

TUDA Scattering array for direct reactions

IRIS Solid hydrogen target for direct nuclear reactions

Experimental facilities and programs of ISAC

Nuclear physics aims to describe all isotopes of which we expect ~ 7000 to exist. Only 288 of those are stable.

Currently we use different approaches for specific areas of the nuclear chart with finite range and limited predictability.

We seek to develop an approach/ theory that works everywhere and for all isotopes, the standard model for nuclear physics.

- to explain what holds atomic nuclei together
- a full understanding of the nuclear strong force

15 Mar 2017

- Transmission ion chamber for beam identification
- Frozen gaseous target on thin Ag foil
- Si and CsI detectors for particle identification and angular distributions

PRL 114, 192502 (2015)

PHYSICAL REVIEW LETTERS

Evidence of Soft Dipole Resonance in ¹¹Li with Isoscalar Character

R. Kanungo, A. Sanetullaev et al.

First evidence of a dipole resonance in ¹¹Li having an isoscaler character.

Provides stringent tests of *ab initio* theories and nuclear forces.

15 Mar 2017

INT Workshop

IRIS: d(¹¹Li,d')¹¹Li'

week ending

15 MAY 2015

PRL 115, 062701 (2015)

week ending 7 AUGUST 2015

Inverse Kinematic Study of the ${}^{26g}Al(d, p){}^{27}Al$ Reaction and Implications for Destruction of ${}^{26}Al$ in Wolf-Rayet and Asymptotic Giant Branch Stars

15 Mar 2017

INT Reactions Workshop

127 keV resonance in ²⁷Si determines the entire ^{26g}Al(p,γ)²⁷Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.

V. Margerin, G. Lotay et al., PRL 115, 062701 (2015).

TIGRESS Facility

- TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer
- High energy-resolution, high efficiency gammaray detector array
- Up to 16 units of "clover" detectors
- 4 crystals per unit, 8 outer contacts per crystal, reconfigurable suppressor shields, Cold FET on core, warm FETs on segments
- Suit of ancillary detector systems for particle detection
- Studies with accelerated RIBs 0.5-15MeV/u

15 Mar 2017

G. Hackman & C.E. Svensson, Hyperfine Int. 225, 251 (2014)

Si detector arrays: Bambino and SHARC

15 Mar 2017

BAMBINO: Collaboration with Lawrence Livermore Nat's Lab, U. of Rochester

- 2 Si detectors for heavyion detection, TIG-10 readout
- Well suited to Coulex

SHARC Silicon Highly-segmented Array for Reactions and Coulex

- U. York-LSU-CSM*-TIGRESS collaboration
- High granularity, full angular range coverage, dE-E telescopes, TIG-64 readout

C.A. Diget et al, J. Inst. **6**, P02005 (2011)

 LPC-Caen Downstream thin plastic scintillator ("TRIFOIL") for transfer product ID/fusion-evaporation veto

G.L. Wilson et al, J. Phys. Conf. **381**, 012097 (2012)

Scattering of Halo Nucleus ¹¹Be on ¹⁹⁷Au at Energies below and around the Coulomb barrier

¹¹Be at 31.2 and 39.6 MeV

- ¹⁹⁷Au 1.9 mg/cm2 target
- Coulomb barrier ~40 MeV
- Charged particle telescope configuration optimized for this specific study
- 3 x DSSD 16x16 (40 μm) + pad (500 μm), 15 to 95 deg
- 1 x SSSD 16 (20 μm) + DSSD 16x16 (300 μm), 105 to 150 deg lab
- HPGe: 12 clovers, 90 and 135 deg, high suppression mode

Gamma-Ray Spectroscopy at ISAC

V. Pesudo, M.L.G. Borge et al., Accepted to PRL.

15 Mar 2017

¹¹Be on ¹⁹⁷Au at TIGRESS

Structure of ¹¹Be:

- (SP) Single Particle
- (CEX) Particle-plus-core model

15 Mar 2017

Scattering observables:

20

40 60 θ_{c.m.} (deg)

(EPM) Equivalent Photon Method (SP)

80

100

a) $E_{em} = 37.10 \text{ MeV}$

EPM CDCC

Exp.

b) $E_{em} = 29.64 \text{ MeV}$

XCDCC

- (CDCC) Continuum-Discretized Coupled Channels (SP) ٠
- (XCDCC) CDDC with core-halo entanglement (CEX)

RTRIUMF

¹¹Be on ¹⁹⁷Au at TIGRESS

V. Pesudo, M.L.G. Borge et al., Accepted to PRL.

B(E1) strength calculation – coupling of core and halo states is important

R. Palit et al., Phys. Rev. C 68, 4318 (2003).
N. Fukuda et al., Phys. Rev. C 70, 054606 (2004).
D. Millener et al., Phys. Rev. C 28, 497 (1983).
E. Kwan et al., Phys. Lett. B 732, 210 (2014).

15 Mar 2017

Other TIGRESS data: ¹¹Be(p,d) @ 110 MeV and ¹¹Be(⁹Be,x) @ 30, 55 MeV

Goal to investigate extended (halo? Cluster?) structures in ¹⁰Be, ¹²Be

Nuclear astrophysics aims at understanding the origin of all stable isotopes as observed in the "solar abundance curve"

- "Heavy element nucleosynthesis" summarizes several reaction mechanisms producing all elements heavier than Fe:
- "slow" neutron capture process
- "rapid" neutron capture process
- "intermediate" neutron capture process
- Production of proton-rich isotopes

 $N_{\odot} = N_s + N_r + N_i + N_p$

Direct Capture Cross Section measurements at DRAGON

7 RIB 10 Stable beam

Reaction	Motivation	Intensity (s ⁻¹)	(beam:cont.)
²¹ Na(<i>p,γ</i>) ²² Mg	1.275 MeV line emission in ONe novae	5 x 10 ⁹	100%
¹² C(<i>α,γ</i>) ¹⁶ O	Helium burning in red giants	6 x 10 ¹¹	
^{26g} Al(<i>p,γ</i>) ²⁷ Si	Nova contribution to galactic ²⁶ Al	3 x 10 ⁹	30,000:1
¹² C(¹² C,γ) ²⁴ Mg	Nuclear cluster models	3 x 10 ¹¹	
⁴⁰ Ca(<i>α,γ</i>) ⁴⁴ Ti	Production of ⁴⁴ Ti in SNII	3 x 10 ¹¹	10,000:1 - 200:1
²³ Mg(<i>p,γ</i>) ²⁴ Al	1.275 MeV line emission in ONe novae	5 x 10 ⁷	1:20 - 1:1,000
¹⁷ Ο(<i>α,γ</i>) ²¹ Ne	Neutron poison in massive stars	1 x 10 ¹²	
¹⁸ F(<i>p,γ</i>) ¹⁹ Ne	511 keV line emission in ONe novae	2 x 10 ⁶	100:1
³³ S(<i>p,γ</i>) ³⁴ Cl	S isotopic ratios in nova grains	1 x 10 ¹⁰	
¹⁶ Ο(<i>α,γ</i>) ²⁰ Ne	Stellar helium burning	1 x 10 ¹²	
¹⁷ Ο(<i>p,γ</i>) ¹⁸ F	Explosive hydrogen burning in novae	1 x 10 ¹²	
³Не(<i>α,ү</i>) ⁷ Ве	Solar neutrino spectrum	5 x 10 ¹¹	
⁵⁸ Ni(<i>p,γ</i>) ⁵⁹ Cu	High mass tests (p-process, XRB)	6 x 10 ⁹	
^{26m} Al(<i>p,γ</i>) ²⁷ Si	SNII contribution to galactic ²⁶ Al	2 x 10 ⁵	1:10,000
³⁸ К(<i>р, ү</i>) ³⁹ Са	Ca/K/Ar production in novae	2 x 10 ⁷	1:1
¹⁹ Ne(<i>p,γ</i>) ²⁰ Na	¹⁹ F abundance in nova ejecta	2 x 10 ⁷	1:1 to 4:1
²² Ne(<i>p</i> , <i>y</i>) ²³ Na	NeNa cycle: explosive H burning in classical novae	2 x 10 ¹²	

.

 ¹⁹F observed in nova ejecta
 → Direct comparison of experimental results with astronomical data!
 → Probe nucleosynthesis models!

- ¹⁹F is **only stable fluorine** isotope
- → No complication in spectroscopy by ¹⁸F contribution (T_{1/2} = 158 min, 511 keV & continuum)
- → Fluorine observed in ejecta exclusively from ¹⁹F contribution

- Experimental determination of reaction rates \rightarrow nova models
- Production & destruction of ¹⁹F
- ¹⁹F is produced via ${}^{17}O(p,\gamma){}^{18}F(p,\gamma){}^{19}Ne(\beta^+){}^{19}F$
- <u>But:</u> At high peak temperatures (~0.4 GK) ¹⁹F synthesis can be bypassed via ¹⁹Ne(p,γ)²⁰Na reaction ("Leakage" out of hot CNO cycle)
- High uncertainty in reaction rate
- Rate variations may affect ¹⁹F abundance by up to a factor of 7! [2]
- \rightarrow Essential to constrain uncertainty!

RETRIUME 457 keV resonance – contribution to stellar reaction rate

- ¹⁹Ne(p, γ)²⁰Na reaction rate dominated by single low-energy resonance at E_R~457 keV above proton threshold (2190.1(11) keV) in ²⁰Na
- **Direct** experimental determination of → **Probe for theoretical models**

Figure from G. Lotay, C. Ruiz, U. Greife, TRIUMF research proposal (2015) 15 Mar 2017 INT Workshop

Analysis in progress! (Collaboration with University of Surrey)

Particle ID in ionization chamber ($\Delta E/E$)

- Black: Raw singles events
- 2 main clusters: ¹⁹F & ¹⁹Ne
- Red: Raw coincidence events
- Green: ¹⁹Ne(p, γ)²⁰Na recoils

457 keV resonance likely **stronger** than previous upper limit!

PRL 116, 132701 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 APRIL 2016

Direct Measurement of the Astrophysical ${}^{38}K(p,\gamma){}^{39}Ca$ Reaction and Its Influence on the Production of Nuclides toward the End Point of Nova Nucleosynthesis

First experimental measurement of this reaction rate.

Constrains the rate of ³⁸K(p,γ)³⁹Ca in ONe nova and significantly reduces uncertainty in ³⁸Ar and ⁴⁰Ca abundances.

First charge-bred beam to DRAGON. Heaviest RIB direct radiative capture measurement. 15 Mar 2017 INT Workshop

DRAGON: ${}^{38}K(p,\gamma){}^{39}Ca$

EMMA Installed

- Installation of the Electromagnetic Mass Analyzer EMMA completed in TRIUMF's ISAC-II experimental hall just in time for December 16th, 2016 beam time
- Designed to spatially separate reaction products from beam, disperse them according to mass/charge; focuses products in angle and energy

Successful Initial Test of EMMA

- Bombarded thick Au foil with 80 MeV ³⁶Ar beam
- Multiply scattered beam with large angular and energy spreads dispersed according to mass/charge ratios
- Measured mass/charge dispersion & resolving power found to be consistent with ion optical calculations
- Set for ¹⁹⁷Au⁹⁺, observed single mass peak, no background in hour-long run with 10⁹ ions/s on target implying hardware beam suppression > 10¹²

EMMA's First Mass/Charge Spectrum

GRIFFIN: Sensitive Decay Spectroscopy

GRIFFIN couples with a powerful suite of ancillary detectors

Zero-Degree Fast scintillator Fast-timing signal for betas

DESCANT Neutron array Detects neutrons to measure betadelayed neutron branching ratios

INT Workshop

HPGe: 16 Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

> LaBr₃: 8 LaBr₃ Fast-timing of photons to measure level lifetimes

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/proton 34

Fast, in-vacuum tape system Enhances decay of interest T_{1/2} Longer ISOBAR $_{1/2}$ Shorter $J^{\pi}_{\ ISOMER}$ J^{π}_{GS} ß a,p

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios 15 Mar 2017

GRIFFIN HPGe Clover Detectors

4096 crystal pairs at 52 unique angles 15 Mar 2017 for γ-γ angular correlations

⁴⁶Ca Level Structure via ⁴⁶K β Decay

Two previous beta decay experiments from the 1960's

B. Parsa and G. Gordon, Phys. Lett. 2, 269 (1966).M. Yagi et al., Laboratory Nucl. Sci., Tohoku Univ. 1, 60 (1968).

09/12/2016

Gamma-Ray Spectroscopy at ISAC

⁴⁶Ca Level Structure via ⁴⁶K β Decay

⁴⁶Ca level scheme from 1.5 days of ⁴⁶K beam to GRIFFIN

- ≈ 200 new gamma-ray transitions placed between 45 excited states
- States observed to within 815keV of the 7.7MeV *Q*-value.
- Branching ratios observed down to 10⁻³
- Weakest gamma ray observed has intensity of 0.0015% that of the 2_1^+ to 0_1^+ transition.
- Performing new shell model calculations and γ-γ angular correlation analysis
- Ph.D. thesis defended by J. Pore, Simon Fraser University, in November 2016.

Gamma-Gamma Angular Correlation Analysis in ⁶⁶Ga Decay

Development of $\gamma - \gamma$ angular correlation analysis techniques with GRIFFIN using ⁶⁶Ga radioactive beam.

M.Sc. Thesis, A. MacLean, Guelph 2016

Compton Polarimetry using GRIFFIN

Dan Southall, TRIUMF research student, 2016

Define Polarization plane from $\gamma - \gamma$ coincidence detection. Then examine azimuthal scattering angle to determine electric or magnetic nature of the radiation.

 207 Bi Example: Red=567keV E2 Blue=1064keV M4+E5, δ_1 =+0.03

15 Mar 2017

GRIFFIN: ^{128,129,130}Cd β-decay

40

New spectroscopic information in ¹²⁸In from ¹²⁸Cd beta decay

PhD Nikita Bernier (UBC/ TRIUMF)

New: 23 new transitions, 15 new states

15 Mar 2017

INT Workshop

Formation of the 'Rare-Earth Peak'

S1625: "Decay spectroscopy of neutron-rich ¹⁶⁰⁻¹⁶⁶Eu isotopes with GRIFFIN" Spokespersons: I. Dillmann (TRIUMF), P.E. Garrett (Guelph)

 To understand the formation of the REP, we need to understand the isotopes in the decay chains:

LaBr₃ Fast-Scintillator Array for Excited-State Lifetimes

- Eight LaBr₃(Ce) 2"x2" cylindrical crystal
- Source-detector distance=12.5 cm.
- GEANT4 simulated efficiency 1.4%@1.3MeV

SEE NOT

- Hybrid analogue + digital electronics, excellent time resolution
- Effort led by Bruno Olaizola, University of Guelph

$^{146}\text{Cs}\ \beta$ decay: GRIFFIN +DESCANT +LaBr_3

ARIEL: The future of isotopes at TRIUMF

The Advanced Rare IsotopE Laboratory will triple TRIUMF's isotope beam capacity

- Uses state-of-the-art, made-in-Canada superconducting electron linear accelerator technology; targets are designed to allow medical isotopes to be extracted alongside the experimental program
- Represents ~\$100 million investment by federal and provincial governments; supported by 19 university partners from across Canada
- Project to occur in two phases:
 - ARIEL-I completed in Fall 2014;
 - ARIEL-II funded by Canada Foundation of Innovation, funding now secured.
- Will provide more and new isotopes

Cyclotron

15 Mar 2017

Isotope Separator and ACcelerator

1 *RIB delivery to experiments* 500MeV p⁺ at 100μA on ISOL target

> SiC, NiO, Nb, ZrC, Ta, UC_x Targets Surface, FEBIAD, IG-LIS ion sources

ISAC-I Low-Energy <60keV</th>Ground state + decay, material scienceISAC-I Medium E<1.5MeV/u</td>AstrophysicsISAC-II SC LINAC<10MeV/u</td>Nuclear reactions and structure46

TRIUMF-ARIEL

Advanced Rare-IsotopE Laboratory

1 RIB → 3 simultaneous RIBs

ARIEL Project:

- new electron linac driver for photo-fission
- new target stations and front end
- new proton beamline

E-linac and electron beamline Sept. 2014

ARIEL photo-fission beams

- What we can do at ARIEL:
- isotopes for characterizing new materials:
 - ⁸Li as a sensitive probe for interfaces
- medical isotopes for nuclear imaging and tumor treatment:
 - alpha-emitters like ²¹¹At
- isotopes for developing and refining theory for nuclear physics
 - **Proton- and electron-induced rare isotopes at the extremes**
- isotopes as laboratories to search for new symmetries in nature
 - Heavy proton-induced isotopes, like Fr, Rn and some light electron-induced isotopes: Li
- isotopes: how and where the heavy elements were produced in the universe
 - Very neutron rich isotopes from photo-fission

• Triple the available beam time: more time for beam developments

ARIEL Completion to Science

15 Mar 2017

Canada's national laboratory for particle and nuclear physics

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | McGill | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

D

The Future: Science enabled by ARIEL

Actinide proton beam-line:

High intensity, clean beams for electroweak precision experiments using hundreds of days of beam per year - Francium PNC

- Atomic EDM in Rn

N

- Electron EDM using Fr fountain

- Multi-user operations:
- More beam time for
- - Beam development
 - Nuclear astrophysics
 - Precision experiments

15 Mar 2017

e-linac and photo-fission

Delineating the r-process path with fission fragment beams from the e-linac

- masses, charge radii, decay properties
- transfer reactions mapping shell structure
- studiesodsneutron capture and photo dissociation rates 52

Charge-breeding ISAC beams with ARIEL-CANREB EBIS

Charge-breeding ISAC beams with ARIEL-CANREB EBIS

Singly-charge RIB

Highly-charged RIB

ARIEL-1: e-linac completed and commissioned

ARIEL-2: developments

- Target developments for p- and γfission targets with ²³⁸UC_v (100kW)
- New target removal and exchange
 - concept (internat. review)
- Test stand for e-hall

Photo-fission isotopes:

- 'cleaner' n-rich isotopes
- Limited to 100kW targets initially (10¹² fission)
- Can be achieved with conventional technologies
- Factory model for three beams developed
 - Target exchanges every 3 weeks
 - Storage of targets for up to 3 years
 - New target production capabilities

Photo-fission isotopes

Modular target system, hermetically sealed units

FLUKA Production Map from 35 MeV Electrons

Mo Tc

-Aa

Pr

Ρm

Eu

-Gd

Tb

ARIEL Current Concept Design In-Target Production Yields [10 kW⁻¹·s⁻¹]

[10 kW ⁻¹ · s ⁻¹]:				
from BeO:				
⁸ Li: 5·10 ¹⁰	500MeV Protons on			
from UC _x :	UC _x :			
⁷⁸ Ni: 1·10 ⁵	⁷⁸ Ni: 2·10 ⁶			
⁹⁸ Kr: 8·10 ⁷	⁹⁸ Kr: 1·10 ⁸			
¹⁰⁰ Rb: 1·10 ⁸	¹⁰⁰ Rb: 9·10 ⁷			
⁹⁸ Sr: 5·10 ⁹	⁹⁸ Sr: 1·10 ¹⁰			
¹³² Sn: 5·10 ⁸	¹³² Sn: 5·10 ⁹			
¹⁴⁶ Xe: 2·10 ⁷	¹⁴⁶ Xe: 1·10 ⁷			
¹⁴⁴ Ba: 5·10 ⁹	¹⁴⁴ Ba: 2·10 ¹⁰			
¹⁵⁰ Cs: 4·10 ⁵	¹⁵⁰ Cs: 5·10 ⁵			

In-target production rates

FLUKA: A. Gottberg (TRIUMF and results verified independently with GEANT4 (MMTal Covers and the cover of the covers of the cover

ARIEL photo-fission beams to ISAC

¹⁴⁴Ba is doubly-magic for octupole deformation; *Z*=56, *N*=88.
500MeV protons: 2x10¹⁰ with 3x10⁹ Nd (and Ce, Pr, Pm, Sm, Eu, Gd etc)
10kW electrons: 5x10⁹ with zero Nd

15 Mar 2017