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Some particular motivations for thinking about this here

@ Nature of optical potentials for N—A

e Filomena Nunes (and other recent talks): “bipolar thinking” of
effective interaction vs. ab initio self-energy

@ Surrey group: sensitivity to high-np momenta and D-state
component in (d, p) reactions [e.g., PRL 117 (2016)]

@ Short-range correlations (SRC) in nuclear structure and reactions

e JLab SRC/EMC correlation experiments [e.g., Hen et al., RMP]
@ Chen et al. analysis using EFT and OPE [arXiv:1607.03065]
@ Nuclear contacts (cf. cold atoms), 580v, ...

@ And, as usual, what about spectroscopic factors and the like?
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Context for scale/scheme dependence: knock-out reactions

E.g., (p, 2p) or high-momentum electron scattering on nuclei

Goal is process independent determination of properties

If impulse approximation (IA) in some form is really valid, then
direct extraction of nuclear properties is possible

More generally, process independence requires a controlled
factorization of structure and reaction mechanism

But dividing point is not unique, so scale/scheme dependent

Understanding this dependence is important for:
@ robust extractions from experiments
e to correctly use the structure information in other processes
e to understand the impact of approximations for both



Standard story for (e, €p) [from C. Ciofi degli Atti]
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Impulse Approximation Final State Interaction

@ In IA: “missing” momentum p, = ki and energy E,, = E
@ Choose Ej, to select a discrete final state for range of py,

@ FSI and meson exchange currents treated as add-on theoretical
corrections to IA? But mixing with structure is scale dependent!



Let’s check a textbook for conventional wisdom ...

S. Wong, “Introductory Nuclear Physics”, pg. 358-9:

“Let us recapture what is happening when an intermediate
energy nucleon is scattered off a nucleus. ... The three parts
of a calculation — optical potential, nucleon-nucleon
interactions, and nuclear wave functions — are three distinct
parts of the problem and may be treated quite independently
of each other.”

Even if not so explicit, this viewpoint is often implicit.

Note: there’s no problem with an ab initio calculation that treats all
elements consistently. (Still need factorization to extract properties.)



Parton distributions as paradigm [Marco Stratman]

Deep-inelastic scattering (DIS)
according to pQCD

the physical structure fct. is independent of
(this will lead to the concept of renormalization group egs.)

both, pdf's and the short-dist. coefficient depend on pi;
(choice of pg: shifting terms between long- and short-distance parts)
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Factorization: high-E QCD vs. low-E nuclear
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parton densify Wilson coefficient

@ Separation between Iong- and
short-distance physics is not
unique = introduce uy

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment



Factorization: high-E QCD vs. low-E nuclear

har'd scale
) fummmn ° AIso has factorization assumptions
“ e.g., from D. Bazin ECT* talk, 5/2011)

F2 X, Q ) ~ Z fa X, Hf ® F2 X, Q/ﬂf Observable: Structure model: Reaction model:
cross section spectroscopic factor  single-particle

. cross section
i < hort-dist \‘ if \‘ if e
long-distance o short-distance otf = > Sy
parton density % Wilson coefficient |5 —Ji| <j<Js+Js

@ |s the factorization general/robust?

@ Separation between long- and
(Process dependence?)

short-distance physics is not
unique = introduce @ What is the scale/scheme
dependence of extracted properties

@ Choice of i defines border .
(and the reaction model)?

between long/short distance

@ What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing s to optimize Use RG as tool to address questions

extraction from experiment



Parton vs. nuclear momentum distributions
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@ The quark distribution g(x, Q?) is
scale and scheme dependent

@ x q(x, Q) measures the share of
momentum carried by the quarks
in a particular x-interval

@ g(x, Q%) and q(x, Q?) are related
by RG evolution equations



Parton vs. nuclear momentum distributions
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@ The quark distribution g(x, Q?) is
scale and scheme dependent @ Deuteron momentum distribution

® x g(x, @2) measures the share of is scale and scheme dependent

momentum carried by the quarks @ Initial AV18 potential evolved with
in a particular x-interval SRG from A = oo to A = 1.5fm™"

@ g(x,Q@%) and g(x, Q3) are related @ High momentum tail shrinks as
by RG evolution equations A decreases (lower resolution)



Scheming for parton distributions

Need schemes for both renormalization and factorization

From the “Handbook of perturbative QCD” by G. Sterman et al.

“Short-distance finite parts at higher orders may be
apportioned arbitrarily between the C’s and ¢’s. A prescription
that eliminates this ambiguity is what we mean by a
factorization scheme. ... The two most commonly used
schemes, called DIS and MS, reflect two different uses to
which the freedom in factorization may be put.”

“The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to
know in which scheme any given calculation, or comparison to
data, is carried out.”



Scheming for parton distributions

Need schemes for both renormalization and factorization

From the “Handbook of perturbative QCD” by G. Sterman et al.

“Short-distance finite parts at higher orders may be
apportioned arbitrarily between the C’s and ¢’s. A prescription
that eliminates this ambiguity is what we mean by a
factorization scheme. ... The two most commonly used
schemes, called DIS and MS, reflect two different uses to
which the freedom in factorization may be put.”

“The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to
know in which scheme any given calculation, or comparison to
data, is carried out.”

Specifying a scheme in low-energy nuclear physics includes
specifying a potential and consistent currents, including regulators,
and how a reaction is analyzed. (EFT is a good framework for this!)



How should one choose a scale and/or scheme?
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or to make microscopic connection to shell model or dft

o (Near-) local potential: quantum Monte Carlo methods work
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How should one choose a scale and/or scheme?

@ To make calculations easier or more convergent

@ QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorenz

e Low-k potential: improve many-body convergence,
or to make microscopic connection to shell model or dft

o (Near-) local potential: quantum Monte Carlo methods work
@ Better interpretation or intuition = predictability

e SRC phenomenology for high-q electron scattering?
@ Allowing for cleanest extraction from experiment

e Can one “optimize” validity of factorization (cf. 1A)?

e Ininclusive high-E QCD, use Q? of experiment

o |deally extract at one scale, evolve to others using RG
@ Scale and scheme for nuclear reactions?

e Plan: use renormalization group (RG) to consistently relate
scales and quantitatively probe ambiguities
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Set up for 2H(e, €p) and disclaimers

@ Simplest knock-out process:
no complications of three-body
forces; neglect relativity, etc.

@ fionly: 92 ocvyf +vrfr+---
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@ |¢;) is always deuteron

@ FSI: [¢) = [67) + Go(E)H(E)|¢")
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initial potential (A = o0)

@ Initially only one-body current
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Set up for 2H(e, €p) and disclaimers

@ Simplest knock-out process:
no complications of three-body
forces; neglect relativity, etc.
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SRG evolution of AV18 potential dH,/ds = [[Gs, Hs], Hs], Gs=T
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Notes: unitary transformation O, = U,Ox_..U!; X sets decoupling scale:
2_412\2
Vi(k, k') ~ VA:w(k,k’)e’(k ) (nonlocality!); scheme dependence from Gs



Running QCD a4(Q?) vs. running nuclear V,

0.5
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s a Deep Inelastic Scattering
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@ The QCD coupling is scale
dependent (cf. low-E QED):
as(@) = [Bo IN(Q?/Nocp)] ™'

@ The QCD coupling strength as is

scheme dependent (e.g., “V”

scheme used on lattice, or MS)

@ Vary scale (“resolution”) with RG

@ Scale dependence: SRG (or Vi k) running
of initial potential with A (decoupling or
separation scale)
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@ Scheme dependence: SRG generator and
AV18 vs. N°LO (plus associated 3NFs)
but note flow to universality at low k

@ All X are (NN) phase equivalent!

@ Shift contributions between interaction and
sums over intermediate states



Visualizing the softening of NN interactions
@ Project non-local NN potential: Vy(r
e Roughly gives action of potential on Iong—wavelength nucleons

V [MeV]

72V [fm? MeV]

% — Argonne vis . ‘: 38, ‘:‘
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0 : 2
ST\
o2 s R 2 3 2 3 2 3 4
r [fm] r [fm] r [fm] r [fm] r [fm]
@ Tensor part (S-D mixing) [graphs from K. Wendt et al., PRC (2012)]
30
20 —— Argonne vy 38,-3D, --- Initial
o —  NPLO-500 — Evolved
10 A =4.00fm™! A=3.00fm7! A=2.00fm7" A=1.60fm~"
10 B
20 J \  //
300 23 4 1 2 3 4 1 2 3 2 3 4
r [fm] r [fm] r [fm] r [fm] r [fm]
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@ Central part (S-wave) [Note: The V,’s are all phase equivalent!]

—> Note the flow to universal potentials!



Source of scale-dependence for low-E processes

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\TJn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes



Source of scale-dependence for low-E processes

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\Tjn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes

@ In a low-energy effective theory, transformations that modify
short-range unresolved physics —- equally valid states.
So Omn # Omp = scale/scheme dependent observables.

@ RG unitary transformations change the decoupling scale —-
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!



All pieces mix with unitary transformation

@ A one-body current becomes many-body (cf. EFT current):

Up(q)Ut = T+ + ..

@ New wf correlations have appeared (or disappeared):

Y Y B € Z ...................... €F €
U‘WO> - U 1pyy — 1py)2 —0-0—— 1ps2 +
CO-00— 1py, ST 1y, 00— 1py,
—_——0— 1s —_—-— 1s —_——-0— 1s

o Similarly with [W/) = gh|wa™")
e E.g., spectroscopic factors are generally scale dependent
@ Final state interactions (FSI) are also modified by ]

@ Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H(\), current operator, FSI, ...



Results at the quasi-free ridge (QFR) [More et al. (2015)]
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Results at the quasi-free ridge (QFR) [More et al. (2015)]

A= 15 fm 1]
@ Recall: f~ > |(trdoluo)|?
ms ,my
@ At the quasi-free ridge, IA works because ©
proton and neutron already on shell %g@
1(: ~ 2/(: -2 & o
E'(in MeV) =~ 10q~(in fm™") 5 S A
@ Long-range part of the wave function probed ,

at QFR — invariant under SRG evolution

E' =100MeV g2 =10fm2

Wlhl) B
6 R )
W3l Jol)
£, — (gl
<3
2
0
0 30 60 90 120 150

0 [deg]



Results at the quasi-free ridge (QFR) [More et al. (2015)]
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Results at the quasi-free ridge (QFR)

@ Recall: f~ > |(trdoluo)|?
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Results below the quasi-free ridge (QFR) [More et al. (2015)]
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Results below the quasi-free ridge (QFR)
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Results below the quasi-free ridge (QFR) [More et al. (2015)]
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Results below the quasi-free ridge (QFR)

@ (Yy|dolvhi) = (¢lJolthi) + (]t Gidolvr)
1A FSI
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Results below the quasi-free ridge (QFR)

@ Scale dependence qualitatively different
above the quasi-free ridge

@ (trldolthi) = (Bldoli) + (d]tT GJoli)
1A FSI

@ Above QFR two terms add destructively

[More et al. (2015)]
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Results below the quasi-free ridge (QFR)

@ Scale dependence qualitatively different
above the quasi-free ridge

@ (| doltr) = (Bldol ) + (It Glolei)

\W_/ N——
1A FSI

@ Above QFR two terms add destructively

@ Can be explained by looking at the effect
of evolution on overlap matrix elements
[SNM et al., PRC 92, 064002 (2015)]

[More et al. (2015)]
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Results below the quasi-free ridge (QFR)

[More et al. (2015)]
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@ Above QFR two terms add destructively 0.010
@ Can be explained by looking at the effect
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Results below the quasi-free ridge (QFR)

@ Scale dependence qualitatively different
above the quasi-free ridge

@ (| doltr) = (Bldol ) + (It Glolei)

\W_/ N——
1A FSI

@ Above QFR two terms add destructively

@ Can be explained by looking at the effect
of evolution on overlap matrix elements
[SNM et al., PRC 92, 064002 (2015)]

@ Scale dependence depends on the
kinematics, but in a systematic way

[More et al. (2015)]
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SRG evolution of AV18 potential dH,/ds = [[Gs, Hs], Hs], Gs=T

- A=o0 151 A=4.0fm"! 35,95, A=3.0fm™! 35,381 A =2.0fm™!
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Notes: unitary transformation O, = U,Ox_..U!; X sets decoupling scale:
2_412\2
Vi(k, k') ~ VA:w(k,k’)e’(k ) (nonlocality!); scheme dependence from Gs



Deuteron wave functions at two resolution scales

1017 08 ‘. /,A=00
0.7F — Uy
10% o6t /"
& - a7 0.5}
R 10 1 ~‘; 9
i . = 0.4}
— 10 = o3l
= =
=103 = 02
Lot 0.1}
e 0.0
10,5 ) ) ) ) ) i .';. —0.1
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@ S-wave part: high-momentum tail from coupling of low- and
high-momentum by AV18 (A = co) evolved away as A reduced

@ Consequent filling of wound at small r (SRCs disappear!)
@ D-wave part: reduced S-D tensor coupling lowers D-state probability

@ Note that r-space tails (i.e., ANCs) are RG invariant



S-wave scattering wave functions at different scales
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High-k tail and small r wound evolved away as ) reduced (but same §)

Local decoupling shows up as p’ increases: suppressed low k



Evolution of current with decreasing resolution \
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@ One-body Jy unchanged under SRG, but two-body components grow

@ Two-body changes are smooth and distributed = not pathological

; one-body peaked at q/2
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Evolution of current with decreasing resolution \
33, component at fixed g = 6 fm~'; one-body peaked at q/2
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@ One-body Jy unchanged under SRG, but two-body components grow

@ Two-body changes are smooth and distributed = not pathological



Evolution of current with decreasing resolution \
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33, component at fixed g = 6 fm~'; one-body peaked at q/2
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@ One-body Jy unchanged under SRG, but two-body components grow

@ Two-body changes are smooth and distributed = not pathological
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Evolution of current with decreasing resolution \
33, component at fixed g = 6 fm~'; one-body peaked at q/2
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@ One-body Jy unchanged under SRG, but two-body components grow

@ Two-body changes are smooth and distributed = not pathological



Evolution of current with decreasing resolution \
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384 component at fixed g = 6 fm™'; one-body peaked at g/2
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@ One-body Jy unchanged under SRG, but two-body components grow
@ Two-body changes are smooth and distributed = not pathological

@ Evolved deuteron wf filters current (and then filtered by |v))
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FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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@ AtQFR, p’ ~ g/2 where J3 strength is
concentrated, probes small k of deuteron

@ On-shell kinematics
=— FSlis small for all A



FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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@ AtQFR, p’ ~ g/2 where J3 strength is
concentrated, probes small k of deuteron
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@ On-shell kinematics
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FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
E' = 120 MeV q2 = 3'6.0fm"2

(:‘Sli l\r']I|',|'1\ 7 SSI; ko) ‘ll2 :3;6 rl”;z 0.020 3.0
Y [:’l::“ """" (@l Jolebi)
1 r 0.012
0.008 <7»b |']0|1»b2>
2 r —_15 —15\ A
_‘T ‘ 0.004 <¢|J0A—l.o|wik—l.o>
= 3 0.000
&=, A=1.2),,A=1.2
- | ~0.004 <¢|J0 |¢z > T
~0.008
g ~0.012
6 T -0.016
ko [fm™1] o
100 S 0.0 R,
e 0 30 60 90 120 150 180
10! A =3.0fm
- =2.0fm! 0 [deg]
o A=15fm!
oAz @ At larger g2, unevolved high-k tail in |+)y)

gives significant FSI strength

p41/hn1

P LB~ 120 MeV

1 2 3 4 5 G 7



FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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@ At larger g2, unevolved high-k tail in |+)y)
gives significant FSI strength

@ Butwhen g/2 > p/, A, evolved |47') picks up
k ~ p’ while |¢);) restricts k' < A
= small FSI



FSI at large final o' = 1.7 fm~' — scan in g? with fixed [¢})
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@ At still larger g2, unevolved high-k tail in |¢y)
gives even more FSI strength

1

@ But when g/2 > p/, A, evolved [¢}) picks up
k =~ p’ while |¢;) restricts k' < A
— small FSI by same argument
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FSI at large final p’ = 1.7 fm~' — scan in g? with fixed |¢})
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@ Atlow @2, |¢¢) probes current for k > g/2
= large FSI again

@ Reduced but significant FSI dependent on A
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Current evolution and SRC story

@ So FSl can be simpler at low
resolution. What about
short-distance physics in deuteron? .

@ Varying A shuffles physics between
current and structure parts

@ What happens to SRCs?

@ )\ decreases — blob size
increases. One-body current
operator develops two-body (and
higher-body) components at high resolution

@ (kiTi|Jo(q)keT = 0) =
%(G@ +(~1){ GE) 6(ki —k2—q/2) + %((71)16’5 Gg) (ki —k2 +q/2)

@ Naive expectation: RG changes to Jy(q) complicate calculations



Derivative expansion for the current

@ Consider region p’ < g/2 and
calculate f;; recall
(Wil do(@)|i) = (W7 9o (@) 97
= [47) and |«;}") filter current

@ . Low-momentum part of J3'(q)
will be selected

ky [fm™!]

kq [fm‘l]

(3S1; k| Jg=1%S1; ka) ¢° =36 fm~2

1 2 /_K 1

5

6

-

T [f;n"]l

(3S1; k| Jg= 05 y; ko) ¢* =36 fm 2
1 s

2 3 4

5

6

o

T [f‘m’l]‘

0.020

0.016

0.012

0.008

0.004

0.000

~0.004

~0.008

~0.012

-0.016

=0.020

0.020

0.016

0.012

0.008

0.004

0.000

—0.004

—0.008

—0.012

0.016

—0.020



Derivative expansion for the current

@ Consider region p’ < g/2 and
calculate f;; recall

(Weldo(@)wi) = (7 o (q)[47")
= |7) and |y} filter current

@ ... Low-momentum part of J3'(q)
will be selected
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Derivative expansion for the current

@ Consider region p’ < g/2 and
calculate f;; recall

(Weldo(@)wi) = (7 o (q)[47")
= |7) and |y} filter current

@ ... Low-momentum part of J3'(q)
will be selected
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Derivative expansion for the current

@ Consider region p’ < g/2 and
calculate f;; recall

(Weldo(@)wi) = (7 o (q)[47")
= |7) and |y} filter current

@ ... Low-momentum part of J3'(q)
will be selected
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Derivative expansion for the current

@ Consider region p’ < g/2 and

@ ... Low-momentum part of J3'(q)

calculate f;; recall
(Wil do(@)|i) = (W7 9o (@) 97
= |7) and |y} filter current

will be selected
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Simple treatment of matrix elements

@ Add expansions in other waves: (*P; ki|J;(q)[>Si; ko) = 5 (g7 + gIkZ/N?) + - --
@ Only S-wave part of deuteron wf needed: (7|5 (9)|47) ~ (¥7' s (@)[%7'ss,)
@ Thus: (U7 [Jp[¢7'ss,)
= (W7 PS1) CSilds PS1) CSi[4hss,) + (W7 PP1) CPildy P 81) CSilehsg, ) + - -
—_——— —_———

use deriv. exp. use deriv. exp.



Simple treatment of matrix elements

@ Add expansions in other waves: (*P; ki|J;(q)[>Si; ko) = 5 (g7 + gIkZ/N?) + - --
@ Only S-wave part of deuteron wf needed: (7|5 (9)|47) ~ (¥7' s (@)[%7'ss,)

@ Thus: (U7 [Jp[¢7'ss,)
= (W7 1P81) (il P S1) CSilias,) + Wi Pr) (Pl P S1) CSiluas,) + -

use deriv. exp. use deriv. exp.
E' =20 MeV q? = 36 fm2
04 . : € Iq J(I) m .
2.2, — Wkl 1
. . e . 4
@ End result is very simple: . EFT: S (up to k%)
A A A 20r NX, =+= EFT:S+P 1
<wf |J0 (q)‘wdeul> AN .
N Lghees Ny EFT:S+P+D
=g U (D vaa(n)] - \

r=

f1 [1075 fm]

@ And it works! f, """ & f exact

@ Agreement improves with
higher-order terms in expansion




Convergence in partial wave channels

[Note: still not fully understood yet!]
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Simple pictures at high and low resolution
Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering on the quasi-free ridge:

/\/q\/\V 4d: Before
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Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?
Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering on the quasi-free ridge:

q k,
NN (_Ek Before p}~0

n

<TTp> After p; ~ q/2

n

Deuteron wave function probed at low momentum



Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering near threshold with SRC kinematics:

/\/{/\V < d Before




Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering near threshold with SRC kinematics:

/\/{/\V < d Before

k:__>kp After p; ~ small



Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering near threshold with SRC kinematics:

q k
AVaVa 2 " — Before pj~ large
kn
N After p; ~ small

n p

Cross section from short-range correlation



Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?
Work in final neutron-proton rest frame at 6 = 0°
Assume photon momentum absorbed entirely by proton

Scattering near threshold with SRC kinematics:

g K ,
/\/\/-Q<T Before p; ~ low

kf_ékp After p; ~ small

Cross section from low momentum!



Scale dependence of D-state contribution

@ Is sensitivity to the deuteron D-state probability scale-independent?
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Scale dependence of D-state contribution

@ Is sensitivity to the deuteron D-state probability scale-independent?

@ No! Kinematics that probe unevolved deuteron where D-state dominates
(SRCs) will probe low-momentum S-state components at low resolution.
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Scale dependence of D-state contribution

@ Is sensitivity to the deuteron D-state probability scale-independent?

@ No! Kinematics that probe unevolved deuteron where D-state dominates
(SRCs) will probe low-momentum S-state components at low resolution.

quasi-free ridge
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@ Consider E’ = 20 MeV with g2 = 36 fm 2



Scale dependence of D-state contribution

@ Is sensitivity to the deuteron D-state probability scale-independent?

@ No! Kinematics that probe unevolved deuteron where D-state dominates
(SRCs) will probe low-momentum S-state components at low resolution.

E'=20MeV ¢ =36fm™2 A\ = 1.5fm™!

— (Ul Jol¢hi)
------- (Wl Joltbins,)
W ,)

£ [107° fm)]
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@ Consider E’ = 20 MeV with g2 = 36 fm 2

@ Unevolved contribution to f; mostly D-state but all S-state for evolved



Scale dependence of D-state contribution

@ Is sensitivity to the deuteron D-state probability scale-independent?

@ No! Kinematics that probe unevolved deuteron where D-state dominates
(SRCs) will probe low-momentum S-state components at low resolution.

E' =20MeV q* = 36fm~2 6 = (°
. — (Wylhle)
.
.-""
sl R 0.0 e
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 1o 20 j-;‘ 8.0
k [fm 7] Afm™!]

@ Consider E’ = 20 MeV with g2 = 36 fm 2
@ Unevolved contribution to f; mostly D-state but all S-state for evolved

@ ) evolution shows switch from D-channel to S-channel
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Overview: scale and scheme dependence

Test case: deuteron electrodisintegration

Summary and take-aways

Many back-up slides



Take-away points from “toy” model study

@ Scale dependence appears in many places, but systematic
@ Case studies show:

e Decoupling of the final state by RG evolution leads to
decreased contribution from FSI = increased validity of IA

e RG generated scale separation makes low-resolution
potentials well suited for (high-g) reaction calculations (OPE!)

e Intuitive picture of reaction can change qualitatively

e Sensitivity to specific parts of nuclear wave function can be
highly scale dependent

e Explanation of factorization straightforward in low-momentum
picture [in back-up slides]

@ While extreme kinematics here, non-negligible effects expected
for more ordinary kinematics

@ Next steps: initial 2-body current, fr, extendto A > 2



How should one choose a scale and/or scheme?

@ To make calculations easier or more convergent

@ QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorenz

e Low-k potential: improve many-body convergence,
or to make microscopic connection to shell model or dft

o (Near-) local potential: quantum Monte Carlo methods work
@ Better interpretation or intuition = predictability

@ SRC phenomenology for high-q electron scattering?
@ Allowing for cleanest extraction from experiment

e Can one “optimize” validity of impulse approximation?
e Ininclusive high-E QCD, use Q? of experiment
o |deally extract at one scale, evolve to others using RG

@ Scale and scheme for nuclear reactions?



Outline

Overview: scale and scheme dependence

Test case: deuteron electrodisintegration

Summary and take-aways

Many back-up slides



Large ? scattering at different RG decoupling scales

PN © What is this vertex?
=k—-K
> e ’
P .} v=EFE;,— Ep
%/ O Ny
A — g
Knock 2
‘ P/Q N rp = Q
O ) 2mpyv
Aeem—mFFFr————— A-2
Subedi et al., Science 320, 1476 (2008) Higinbotham, arXiv:1010.4433
Fa g :f:
2 ¢~+~~+~$ { SRC interpretation:

Joteteee ¢

r(*He/*He)

NN interaction can scatter
states with p1,ps < kp
to intermediate states with
Py, ph > kr which are
knocked out by the photon
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Egiyan et al. PRL 96, 1082501 (2006)

SRC explanation relies on high-momentum nucleons in structure



Large ? scattering at different RG decoupling scales

PN )
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Subedi et al., Science 320, 1476 (2008)

Fa

~

r(*He/*He)

fe .
L2\ L L L

)
. I —

‘oe000e +
.®

1'?C/°He)

L O A O S
T T

ot

IS
T

r(®Fe/*He)

.
oe®e®e
PSR S

~

lo °
00
1125 15 175 2 225 25 275

14<Q?<26GeV?] ™

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

&
qg=k—-Fk
v=FE,—Ey
Nogre g
N @
rp =
2myv

A-2
Higinbotham, arXiv:1010.4433

SRC interpretation:

NN interaction can scatter
states with p1,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

How to explain cross sections in terms of
low-momentum interactions?
Vertex depends on the resolution!

RG evolution changes physics interpretation but not cross section!



U-factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

QO ' o e et v s

@ Test of factorization of U:

Ui(ki, q) . Kix(
Un(ko,q)  Ki(
N

ki) Qx(q)
ko)Qx(q)’
K

so for g > A = 2H 124

[U(k,q) / Uky,a)l

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term! Ol




U-factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Xlow
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@ Test of factorization of U:
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K

so for g > A = 2H 124

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term!




U-factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

10 T

@ Test of factorization of U:

Ux(ki,Q) N KA(kI)QA(q)
Us(ko,q) = Ki(ko)Qx(q)’
N

<

<

T
Ki(k) LO, 4 £ 1
A =

o

<

2

soforg> A= gZry —

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term!




Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

Alabag|A 2 ~ 7 A Uatal
na(a) _ A2l 8Oy d) D) A), Dalag Ut
ny(q)  (d|ajag|d) 0=

— na(q) ~ Canp(q) at large q Test case: A posons in toy 1D model

r r 10

3 5N —— A=2, 2-body only

-='A=3, 2-body only
- -=-A=4, 2-body only |
* A=2, PHQ 2-body only, A.=2
©  A=3, PHQ 2-body only, 2=2
x A=4, PHQ 2-body only, 1=2 | |

N H
*He 107"t
He

4

Universal
p>>A

" dependence o«
10 given by b“@“~

Qoa w S

o X

. hel

10 : ! : 0 2 4 6 8 10 12
0 1 2 3 4 p
k (fm™)

o AL ] [Anderson et al., arXiv:1008.1569]
[From C. Ciofi degli Atti and 8. Simula] 1350 Bogner, Roscher, arXiv:1208.1734]



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

n(k) (fm°)

- + ~
na(q) <A\anaqUT\A (Al JUA(K', 9')3qqUL (g, K)|A)
na(q)  (d|Uala,Utld)  (d| [ Ur(K',q")dqqUL(q, k) d)
~ Test case: A bosons in toy 1D model
— na(g) ~ Canp(q) atlarge g Josteas sons in toy
10t [N ' : ' . ‘ ——A=2, 2-body only |
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10" \ ,\Is Z@ . N
S 0 Universal 0056;;{%&&
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wE " deppendence O e
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10| Qoa w N
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[From C. Ciofi degli Atti and S. Simula]

[Anderson et al., arXiv:1008.1569]

[also Bogner, Roscher, arXiv:1208.1734]



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)
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[From C. Ciofi degli Atti and S. Simula]
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[Anderson et al., arXiv:1008.1569]

[also Bogner, Roscher, arXiv:1208.1734]



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

n(k) (fm°)

na(q) _ (AlUahaqU'|A) (Al [K\(K)Ky(K)|A)

nq(q)

= na(q) =~ Canp(q) at large q
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[From C. Ciofi degli Atti and S. Simula]
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[also Bogner, Roscher, arXiv:1208.1734]



Scaling and EMC correlation via low resolution

@ SRG factorization, e.g.,
Ux(k,q) — Kx(k)Qx(9)
when k < Aand g > A

L | 21 ndf 0.7688 /3
0.4~ a .0.07879 + 0.006376

@ Dependence on high-q
independent of A
— universal [cf. Neff et al.]
@ A dependence from
low-momentum matrix
elements =— calculate!

@ EMC from EFT using OPE:
| T [ |

o Isolate A dependence, which ) Y E—
factorizes from x a,(A/d)

P EMC A dependence from L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)
long-distance matrix elements

If the same leading operators dominate, then does linear A
dependence of ratios follow immediately?
Need to do quantitative calculations to explore!



g-factorization of f;

o fL = fL(p’,G; q)
p’ and 6: outgoing nucleon
g: momentum transfer

@ For p’ < q, f; scales with g
f(p’,0:9) — g(p',0)B(q)

@ Note that f; is a strong function of q
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g-factorization of f;

o fL = fL(p’,G; q)
p’ and 6: outgoing nucleon
g: momentum transfer

@ For p’ < q, f; scales with g
f(p’,0:9) — g(p',0)B(q)

@ Note that f; is a strong function of q

@ Follows from the LO term in EFT
expansion:
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Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions

e Make nuclear physics look more like quantum chemistry!
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Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!

o @ Viowk: lower cutoff A; in k, kK’
E = via dT(k,k';k?)/dA =0
2 @ SRG: drive H toward diagonal
0 N . )
A. with flow equation
1\ N st/dS == [[Gs, Hs], Hs]
M Continuous unitary transforms

“Viowk” Similarity RG (cf. running couplings)



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!

- ﬁ
& dHs/ds = [[Gs, He]. H]

h Continuous unitary transforms

Block diagonal SRG Similarity RG (cf. running couplings)

@ Viow«: lower cutoff A; in k, k'
via dT(k,k';k?)/d\N =0

@ SRG: drive H toward diagonal
with flow equation




Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs

@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom

@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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— 4
AV18: £ 8 - 0 (im)
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@ Decoupling naturally visualized in momentum space for Gs = T
e Phase-shift equivalent! Width of diagonal given by A\ = 1//s
e What does this look like in coordinate space?



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs

@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom

@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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@ Decoupling naturally visualized in momentum space for Gs = T
e Phase-shift equivalent! Width of diagonal given by A\? = 1/,/s
@ What does this look like in coordinate space?



Compare changing a cutoff in an EFT to RG decoupling
@ (Local) field theory version in perturbation theory (diagrams)
o Loops (sums over intermediate states) <:> LECs

el o ><}

Ac dsq CoMCy  Co(Ae)oc Lyt
@) K- ric o C) 2n?

e Momentum-dependent vertices = Taylor expansion in k?
e This implements an operator product expansion!
@ Claim: Vi, x RG and SRG decoupling work analogously

“Viowk” SRG (“T” generator)
E’ £
" EE
AZ
? ~




Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)

\k’<)\// 1.0 e
05 y
<> G el
~ —0.5 . B ’
< [ K
< S ) /.
/ \ >~ -10f s
k<A r 2’ —— 550/600 [E/G/M]
. . L 4 --—600/700 [E/G/M] ]
g > X (or A) intermediate states -Lsp o <=+ 500 [E/M] 1
— change is ~ contact terms: L’ == S00[EM] ]
C053()(_)(/)'1"" _2'0:‘Hmu‘mu‘\HH\HH\HHMHT
1 2 00 05 1.0 1.5 20 25 3.0 3.5
[of. Lo =+ zCo(vT)2 + -] K ]

@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
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PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)
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PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)
Run NN to lower X via SRG = ~Universal low-k Vjy
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@ Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
KIS Q(q)Va(q, 9")Q(q")]K (k') with K(k) ~ 1!

U>\~>K Q



Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



EMC effect from the EFT perspective

@ Exploit scale separation between short- and long-distance physics

e Match complete set of operator matrix elements (power count!)
e Cf. needing a model of short-distance nucleon dynamics
e Distinguish long-distance nuclear from nucleon physics

@ EMC and effective field theory (examples)

e “DVCS-dissociation of the deuteron and the EMC effect”
[S.R. Beane and M.J. Savage, Nucl. Phys. A 761, 259 (2005)]

“By constructing all the operators required to reproduce the matrix
elements of the twist-2 operators in multi-nucleon systems, one sees
that operators involving more than one nucleon are not forbidden by the
symmetries of the strong interaction, and therefore must be present.
While observation of the EMC effect twenty years ago may have been
surprising to some, in fact, its absence would have been far more
surprising.”

e “Universality of the EMC Effect”
[J.-W. Chen and W. Detmold, Phys. Lett. B 625, 165 (2005)]

@ “SRCs and the EMC Effect in EFT” [Chen et al., arXiv:1607.03065]



A dependence of the EMC effect is long-distance physics!
@ EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

=" @xqf(x) = Ra(x)=FH(x)/AFN(x)

“The x dependence of Ra(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

@ Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators

» /
= (x2)gvHo .- v NTN[1 + anNTN] - -

Ra(x) = AFZN(X) 1405, ()G(A) where  G(A) = (AI(N'N)?|A) /Ao

— the slope 2% scales with G(A [Why is this not cited more?]
p ax



Partial list of ‘non-observables’ references

Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)

@ Measurability of the deuteron D state probability, J.L. Friar, (1979)

@ Problems in determining nuclear bound state wave functions,

R.D. Amado, (1979)

Nucleon nucleon bremsstrahlung: An example of the impossibility of
measuring off-shell amplitudes, H.W. Fearing, (1998)

Are occupation numbers observable?, rif and H.-W. Hammer, (2002)
Unitary correlation in nuclear reaction theory: Separation of nuclear

reactions and spectroscopic factors, A.M. Mukhamedzhanov and
A.S. Kadyrov, (2010)

Non-observability of spectroscopic factors, B.K. Jennings, (2011)

How should one formulate, extract, and interpret ‘non-observables’
for nuclei?, rif and A. Schwenk, (2010) [in J. Phys. G focus issue on
Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]



Deuteron true and scheme-dependent observables
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@ Unitary transformations labeled by A (V. x here)
= soften interactions by lowering resolution (how far?)
= reduced short-range and tensor correlations

@ D-state probability changes (cf. spectroscopic factors)
@ Asymptotic D-S ratio is unchanged (cf. ANC’s)



Momentum distributions in nuclei

Py(@:Q=0) (fim’)

n(k) (fm%)

L
S 0 1 2 3 4 5
10* L L L q(fm’)

° i & o % Schiavilla et al. PRL 98, 132501 (2007)

Kk (fm™)
taken from Ciofi degli Atti, Simula PRC 53, 1689 (1996)



Correlation of Pp with spectroscopic factors
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@ Increased occupation probability with increased non-locality
and correlated reduction in short-range tensor strength
@ Is the correlation quantitatively predictable?

Calculations from Gad and Muether, Phys. Rev. C 66, 044361 (2002)




Cutoff dependence in coupled cluster calculations
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FIG. 4: (Color online) Spectroscopic factor SF(1/27) for neu-
tron and proton removal as a function of the oscillator spacing
hw for nucleon-nucleon interactions with different cutoffs in a
model space with N = 6.

Wave functions are more single-particle-like as A/\ decreases,
but do reaction operators become significantly less one-body?



Changing the scheme: (short-range) NN potential
@ Vi,wk or SRG unitary transformations to soften interactions
@ Project non-local NN potential: V(r) = [d® Vi(r,r')
e Roughly gives action of potential on Iong—wavelength nucleons
@ Central part (S-wave) [Note: The V,’s are all phase equivalent!]

200 (L] PN B | A B BA) PV B B B | YRR I B
- R L — AVIS A

V(r) [MeV]

@ Tensor part (S-D mixing) [graphs from K. Wendt]
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Are wave functions measurable? [fromW.D
Atoms studied with the (e,2e) reaction

Hydrogen
Ls

Momentum profile
=3
BN

0 0.2 0.4 0.6 0.8 1 12 1.4
p(au)

And so on for other atoms ...

Helium
in Phys. Rev. A8, 2494 (1973)

:23/2n_
(pls(p) (1+

ickhoff]

1

)’

Hydrogen 1s wave function

"seen" experimentally
Phys. Lett. 86A, 139 (1

981)

Helium

Is

p(au)

@ But compare approximations for (e, 2e) on atoms to those
for (e, €p) on nuclei! (Impulse approx., FSI, vertex, ...)



Spectroscopic factors in atoms

For a bound final N-1 state the spectroscopic factor is given by S = fdﬁKlI{iv‘l a; lP(f/>2
For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has §=0.92 with two additional fragments,
each carrying 0.04, at higher energy.
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| .
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One-body scattering, small scheme dependence —> robust SF



Unitary cold atoms: Is n(k) observable?
@ Tail of momentum distribution + contact [Tan; Braaten/Platter]

n(k)
Theory (lattice)
J. E. Drut, T. A. Lahde, T. Ten
1 Phys. Rev. Lett. 106, 205302 (2011)
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Experiment
J. T. Stewart et al
PRL 104, 235301 (2010)
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@ When R/as < kR < 1 = tiny scheme dependence



Is the tail of n(k) for nuclei measurable? (ct. SrRC's)
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E.g., extract from
electron scattering?

No region where
1/as< k< 1/R
Scheme dependent
high-momentum tail!

n(k) from Vsrg has
no high-momentum
components!

But n(k) from Ua] a, U
is unchanged —-
two-body operator!



Using EFT and field redefinitions as tool
® EFT: Lon = ¢! i + F v — P(wte)? - 2(wty)® +

@ general short-range interactions, but not unique!
@ Try simple field redefinition to check scheme dependence:

v —> w+a (uﬁ;&) a ~ O(1) = “natural” = estimate!

e “new” vertices: 2—body off-shell A, 3-body o o 8% Cy(1)T¢))®

e asymptotic “on-shell” quantities (S-matrix eIements) must be
unchanged by redefinition

@ Energy density is model («) independent if all terms kept
e sum of new terms is zero, so energy is unchanged

& oo

@ What about momentum occupation number?



Occupation No. — Momentum Distribution
@ Insert alak =

n(k) A

ke k
@ But nonzero contribution An(k) from induced vertices:

An(k) = .’A’ + +
A

@ There is no preferred definition for transformed operator
= only defined for specific convention
= momentum distributions for different schemes differ




Analysis of (e,e’p) Experiments? [ct. (e,2e) on atoms]

@ Suppose external source J(x) coupled to fermions
e EFT: need most general current coupled to J(x) for all «

@ Consider lowest order with simplest (o« = 0) current
o if a =0, justimpulse approximation Ji4

P - |

o if v # 0 [recall ¢y — 1 + o35 (¥ 14)y], then same cross
section only if vertex contribution from modified operator and
modified final (and initial) state interactions are included

@ There are always contributions from all three at each order

@ sub-leading pieces are mixed by field redefinitions

— isolating Jv/f¢ is model dependent
e How large is ambiguity? Set by natural size o ~ O(1)



Ab initio electron scattering with LIT [from G. Orlandini]

Large effect of
FSI
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S.Bacca et al., PRL 102 (2009) 162501 S. Quaglioni et al. Phys.Rev. C72 (2005) 064002

@ Ab initio calculations of longitudinal (e, €’) response
functions show importance of FSI for quasi-elastic regime

o PWIA fails for quasi-elastic peak and at low w
e FSI effects decrease with g in peak but not at low w

@ Direct proton knockout and neglect of FSI tested for (e, €'p)
@ Both antisymmetrization effects and FSI play important roles
e Approximate estimates of FSI effects can be poor



Why are ANC’s different? Coordinate space
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@ ANC'’s, like phase shifts, are asymptotic properties
= short-range unitary transformations do not alter them
[e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]

@ In contrast, SF’s rely on interior wave function overlap
@ (Note difference in S-wave and D-wave ambiguities)



Why are ANC’s different? Momentum space

[based on R.D. Amado, PRC 19 (1979)] R
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@ Or, residue from extrapolating on-shell T-matrix to deuteron pole
= invariant under unitary transformations

@ Inverse scattering puzzle: A, uniquely determined because
assumed longest-range part of V from one-pion exchange

@ Next vertex singularity at —(y + m,)?> = same for FSI



What about long-range correlations?

C. Barbieri, PRL 103 (2009)

TABLE L. Spectroscopic factors (given as a fraction of the
IPM) for valence orbits around *°Ni. For the SC FRPA calcu-
lation in the large harmonic oscillator space, the values shown

H H are obtained by including only SRC, SRC and LRC from

° SF CaICUIatlonS Wlth FRPA particle-vibration couplings (full FRPA), and by SRC, particle-

. . vibration couplings and extra correlations due to configuration

(] N3 I—O Hamlltonlan mixing (FRPA + AZ,). The last three columns give the results

of SC FRPA and SM in the restricted 1p0f model space. The

[ SOft — Sma” SRC AZ,s are the differences between the last two results and are

. . taken as corrections for the SM correlations that are not already

L SRC Contl’lbutlon Changes included in the FRPA formalism.
dl’amatlca”y W|th IOWer reSO|UtI0n 10 osc. shells Exp. [29] 1p0f space
FRPA Full FRPA

@ Compare short-range correlations (SRC) FRPA +4Z, FRPA SM_AZ,
. YINi:

(SRC) to long-range correlations viry: osl 079 07 002

H H H H 14 .9 059 .. . ), —U.!

from particle-vibration coupling Vipee 095 065 062 0S8 082 079 —003
Ni:

@ LRC » SRC! W0f7)2 0.69 089 086 —0.03
. Cu:

@ Are long-range correlations 7lpys 096 066 062 080 076 —0.04

w0f's 0.96 0.60 0.58 0.80 0.78 —0.02

scheme dependent? 77'1]:;//22 096 067 065 081 079 —0.02
Co:

70f7,, 095 073 071 0.89 0.87 —0.02




Parton distributions as paradigm: Factorization

@ PDF analysis: part of convolution for cross section can be
calculated reliably for given experimental conditions so that the
remaining part can be extracted as a universal quantity, to be
related to other processes and kinematic conditions

@ For hard-scattering processes with large momentum transfer
scale Q, factorization allows separation of momentum and
distance scales in reaction

e The time scale for binding interactions in the rest frame is time
dilated in the center-of-mass frame, so the interaction of an
electron with a hadron in deep-inelastic scattering is with
single non-interacting partons

e Short-distance part calculated systematically in low-order
perturbative QCD; long-distance part identified in PDF’s
(momentum distribution for partons in hadrons)

@ PDF’s relate deep inelastic scattering of leptons, Drell-Yan, jet
production, and more
@ Measure in limited set of reactions and then perturbative

calculations of hard scattering and PDF evolution enable first
principles predictions of cross sections for other processes



Simpler calculations of pair densities
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Many-body perturbation theory may be sufficient at low resolution!



Simpler calculations of pair densities

n(k) (fm°)
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Many-body perturbation theory may be sufficient at low resolution!



	Overview: scale and scheme dependence
	Test case: deuteron electrodisintegration
	Summary and take-aways
	Many back-up slides

