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Some particular motivations for thinking about this here

Nature of optical potentials for N–A

Filomena Nunes (and other recent talks): “bipolar thinking” of
effective interaction vs. ab initio self-energy
Surrey group: sensitivity to high-np momenta and D-state
component in (d ,p) reactions [e.g., PRL 117 (2016)]

Short-range correlations (SRC) in nuclear structure and reactions

JLab SRC/EMC correlation experiments [e.g., Hen et al., RMP]

Chen et al. analysis using EFT and OPE [arXiv:1607.03065]

Nuclear contacts (cf. cold atoms), ββ0ν, . . .

And, as usual, what about spectroscopic factors and the like?



Outline

Overview: scale and scheme dependence

Test case: deuteron electrodisintegration

Summary and take-aways

Many back-up slides



Context for scale/scheme dependence: knock-out reactions

E.g., (p,2p) or high-momentum electron scattering on nuclei

Goal is process independent determination of properties

If impulse approximation (IA) in some form is really valid, then
direct extraction of nuclear properties is possible

More generally, process independence requires a controlled
factorization of structure and reaction mechanism

But dividing point is not unique, so scale/scheme dependent

Understanding this dependence is important for:

robust extractions from experiments
to correctly use the structure information in other processes
to understand the impact of approximations for both



Standard story for (e,e′p) [from C. Ciofi degli Atti]

In IA: “missing” momentum pm = k1 and energy Em = E

Choose Em to select a discrete final state for range of pm

FSI and meson exchange currents treated as add-on theoretical
corrections to IA? But mixing with structure is scale dependent!



Let’s check a textbook for conventional wisdom . . .

S. Wong, “Introductory Nuclear Physics”, pg. 358-9:

“Let us recapture what is happening when an intermediate
energy nucleon is scattered off a nucleus. ... The three parts
of a calculation — optical potential, nucleon-nucleon
interactions, and nuclear wave functions — are three distinct
parts of the problem and may be treated quite independently
of each other.”

Even if not so explicit, this viewpoint is often implicit.

Note: there’s no problem with an ab initio calculation that treats all
elements consistently. (Still need factorization to extract properties.)



Parton distributions as paradigm [Marco Stratman]
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Factorization: high-E QCD vs. low-E nuclear

Parton distributions as paradigm [Marco Stratman]
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Separation between long- and
short-distance physics is not
unique =⇒ introduce µf

Choice of µf defines border
between long/short distance

Form factor F2 is independent
of µf , but pieces are not

Q2 running of fa(x ,Q2) comes
from choosing µf to optimize
extraction from experiment

Also has factorization assumptions
(e.g., from D. Bazin ECT* talk, 5/2011)

D. Bazin, Workshop on Recent Developments in Transfer and Knockout Reactions, May 9-13, 2011, Trento, Italy

Conundrum

• Using reactions to study nuclear structure

• One observable, two models

• To extract structure information, need accurate 
reaction model

σ
if

=

∑

|Jf−Ji|≤j≤Jf +Ji

S
if
j σsp

Observable: 
cross section

Structure model: 
spectroscopic factor

Reaction model: 
single-particle
cross section

Is the factorization general/robust?
(Process dependence?)

What is the scale/scheme
dependence of extracted properties
(and the reaction model)?

What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)

Use RG as tool to address questions
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Parton vs. nuclear momentum distributions

From%Povh%et%al.,%
Par$cles)and)Nuclei)

The quark distribution q(x ,Q2) is
scale and scheme dependent

x q(x ,Q2) measures the share of
momentum carried by the quarks
in a particular x-interval

q(x ,Q2) and q(x ,Q2
0) are related

by RG evolution equations
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SRG from λ =∞ to λ = 1.5 fm−1

High momentum tail shrinks as
λ decreases (lower resolution)
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Scheming for parton distributions

Need schemes for both renormalization and factorization

From the “Handbook of perturbative QCD” by G. Sterman et al.

“Short-distance finite parts at higher orders may be
apportioned arbitrarily between the C’s and φ’s. A prescription
that eliminates this ambiguity is what we mean by a
factorization scheme. . . . The two most commonly used
schemes, called DIS and MS, reflect two different uses to
which the freedom in factorization may be put.”

“The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to
know in which scheme any given calculation, or comparison to
data, is carried out.”

Specifying a scheme in low-energy nuclear physics includes
specifying a potential and consistent currents, including regulators,
and how a reaction is analyzed. (EFT is a good framework for this!)
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How should one choose a scale and/or scheme?

To make calculations easier or more convergent

QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorenz
Low-k potential: improve many-body convergence,

or to make microscopic connection to shell model or dft
(Near-) local potential: quantum Monte Carlo methods work

Better interpretation or intuition =⇒ predictability

SRC phenomenology for high-q electron scattering?

Allowing for cleanest extraction from experiment

Can one “optimize” validity of factorization (cf. IA)?
In inclusive high-E QCD, use Q2 of experiment
Ideally extract at one scale, evolve to others using RG

Scale and scheme for nuclear reactions?

Plan: use renormalization group (RG) to consistently relate
scales and quantitatively probe ambiguities
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Set up for 2H(e,e′p) and disclaimers

Simplest knock-out process:
no complications of three-body
forces; neglect relativity, etc.

fL only: dσ
dΩ ∝ vL fL + vT fT + · · ·

=⇒ fL ∼
∑

ms ,mJ

∣∣〈ψf |J0(q)|ψi〉
∣∣2

|ψi〉 is always deuteron

FSI: |ψf 〉 = |φp′〉+ G0(E ′)t(E ′)|φp′〉

Use AV18 as “high-resolution”
initial potential (λ =∞)

Initially only one-body current
〈k1T1|J0(q)|k2T = 0〉 =
1
2

(
Gp

E + (−1)T1 Gn
E

)
δ(k1−k2−q/2) +

1
2

(
(−1)T1 Gp

E + Gn
E

)
δ(k1 − k2 + q/2)

Use similarity RG evolution to
probe scale and scheme
dependence vs. kinematics

✪

✪

✪

✪

✪
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SRG evolution of AV18 potential dHs/ds = [[Gs,Hs],Hs], Gs = T
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Running QCD αs(Q2) vs. running nuclear Vλ

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Heavy Quarkonia
e+e–  Annihilation

Deep Inelastic Scattering

July 2009

The QCD coupling is scale
dependent (cf. low-E QED):
αs(Q2) ≈ [β0 ln(Q2/Λ2

QCD)]−1

The QCD coupling strength αs is
scheme dependent (e.g., “V”
scheme used on lattice, or MS)

Vary scale (“resolution”) with RG

Scale dependence: SRG (or Vlow k ) running
of initial potential with λ (decoupling or
separation scale)

Scheme dependence: SRG generator and
AV18 vs. N3LO (plus associated 3NFs)
but note flow to universality at low k

All λ are (NN) phase equivalent!

Shift contributions between interaction and
sums over intermediate states



Visualizing the softening of NN interactions
Project non-local NN potential: Vλ(r) =

∫
d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]

Tensor part (S-D mixing) [graphs from K. Wendt et al., PRC (2012)]

=⇒ Note the flow to universal potentials!



Source of scale-dependence for low-E processes

Measured cross section as convolution: reaction⊗structure

but separate parts are not unique, only the combination

Short-range unitary transformation U leaves m.e.’s invariant:

Omn ≡ 〈Ψm|Ô|Ψn〉 =
(
〈Ψm|U†

)
UÔU†

(
U|Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ

Note: matrix elements of operator Ô itself between the
transformed states are in general modified:

Om̃ñ ≡ 〈Ψ̃m|O|Ψ̃n〉 6= Omn =⇒ e.g., 〈ΨA−1
n |aα|ΨA

0 〉 changes

In a low-energy effective theory, transformations that modify
short-range unresolved physics =⇒ equally valid states.
So Õmn 6= Omn =⇒ scale/scheme dependent observables.

RG unitary transformations change the decoupling scale =⇒
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!
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= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ
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All pieces mix with unitary transformation

A one-body current becomes many-body (cf. EFT current):

Ûρ̂(q)Û† = + α + · · ·

New wf correlations have appeared (or disappeared):

Û|ΨA
0 〉 = Û

12C(e, e′p)X

1966 1988 2006

+ · · · =⇒ Z

12C(e, e′p)X

1966 1988 2006

+ α

12C(e, e′p)X

1966 1988 2006

+ · · ·

Similarly with |Ψf 〉 = a†p|ΨA−1
n 〉

E.g., spectroscopic factors are generally scale dependent

Final state interactions (FSI) are also modified by Û

Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H(λ), current operator, FSI, . . .
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Results below the quasi-free ridge (QFR) [More et al. (2015)]

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸
IA

+ 〈φ|t†G†0J0|ψi〉︸ ︷︷ ︸
FSI

Below QFR two terms add constructively

In IA, |ψi〉 probed for 1.7 ≤ k ≤ 3.4 fm−1

=⇒ |〈ψf |J0|ψλi 〉| < |〈ψf |J0|ψi〉|

〈ψλf |J0|ψi〉 = 〈φ|J0|ψi〉+ 〈φ|t†λG†0J0|ψi〉

|〈φ|t†λG†0J0|ψi〉| < |〈φ|t†G†0J0|ψi〉|
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Results below the quasi-free ridge (QFR) [More et al. (2015)]

Scale dependence qualitatively different
above the quasi-free ridge

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸
IA

+ 〈φ|t†G†0J0|ψi〉︸ ︷︷ ︸
FSI

Above QFR two terms add destructively

Can be explained by looking at the effect
of evolution on overlap matrix elements
[SNM et al., PRC 92, 064002 (2015)]

Scale dependence depends on the
kinematics, but in a systematic way
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SRG evolution of AV18 potential dHs/ds = [[Gs,Hs],Hs], Gs = T
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Deuteron wave functions at two resolution scales
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S-wave part: high-momentum tail from coupling of low- and
high-momentum by AV18 (λ =∞) evolved away as λ reduced

Consequent filling of wound at small r (SRCs disappear!)

D-wave part: reduced S-D tensor coupling lowers D-state probability

Note that r -space tails (i.e., ANCs) are RG invariant



S-wave scattering wave functions at different scales
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High-k tail and small r wound evolved away as λ reduced (but same δ)

Local decoupling shows up as p′ increases: suppressed low k



Evolution of current with decreasing resolution λ
3S1 component at fixed q = 6 fm−1; one-body peaked at q/2
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One-body J0 unchanged under SRG, but two-body components grow

Two-body changes are smooth and distributed =⇒ not pathological

Evolved deuteron wf filters current (and then filtered by |ψf 〉)



Evolution of current with decreasing resolution λ
3S1 component at fixed q = 6 fm−1; one-body peaked at q/2
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Evolution of current with decreasing resolution λ
3S1 component at fixed q = 6 fm−1; one-body peaked at q/2
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Evolution of current with decreasing resolution λ
3S1 component at fixed q = 6 fm−1; one-body peaked at q/2
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Evolution of current with decreasing resolution λ
3S1 component at fixed q = 6 fm−1; one-body peaked at q/2
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Evolved deuteron wf filters current (and then filtered by |ψf 〉)



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At QFR, p′ ≈ q/2 where Jλ0 strength is
concentrated, probes small k of deuteron

On-shell kinematics
=⇒ FSI is small for all λ



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At QFR, p′ ≈ q/2 where Jλ0 strength is
concentrated, probes small k of deuteron

On-shell kinematics
=⇒ FSI is small for all λ



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At QFR, p′ ≈ q/2 where Jλ0 strength is
concentrated, probes small k of deuteron

On-shell kinematics
=⇒ FSI is small for all λ



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At larger q2, unevolved high-k tail in |ψf 〉
gives significant FSI strength

But when q/2 > p′, λ, evolved |ψλf 〉 picks up
k ≈ p′ while |ψi〉 restricts k ′ < λ
=⇒ small FSI



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At larger q2, unevolved high-k tail in |ψf 〉
gives significant FSI strength

But when q/2 > p′, λ, evolved |ψλf 〉 picks up
k ≈ p′ while |ψi〉 restricts k ′ < λ
=⇒ small FSI



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At still larger q2, unevolved high-k tail in |ψf 〉
gives even more FSI strength

But when q/2 > p′, λ, evolved |ψλf 〉 picks up
k ≈ p′ while |ψi〉 restricts k ′ < λ
=⇒ small FSI by same argument



FSI at large final p′ = 1.7 fm−1 =⇒ scan in q2 with fixed |ψλf 〉
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At low q2, |ψf 〉 probes current for k > q/2
=⇒ large FSI again

Reduced but significant FSI dependent on λ



Current evolution and SRC story

So FSI can be simpler at low
resolution. What about
short-distance physics in deuteron?

Varying λ shuffles physics between
current and structure parts

What happens to SRCs?

λ decreases→ blob size
increases. One-body current
operator develops two-body (and
higher-body) components at high resolution

〈k1T1|J0(q)|k2T = 0〉 =
1
2
(
Gp

E + (−1)T
1 Gn

E
)
δ(k1−k2−q/2) +

1
2
(
(−1)T

1 Gp
E + Gn

E
)
δ(k1−k2 + q/2)

Naive expectation: RG changes to J0(q) complicate calculations



Derivative expansion for the current

Consider region p′ < q/2 and
calculate fL; recall
〈ψf |J0(q)|ψi〉 = 〈ψλf |Jλ0 (q)|ψλi 〉
=⇒ |ψλf 〉 and |ψλi 〉 filter current

∴ Low-momentum part of Jλ0 (q)

will be selected
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Derivative expansion for the current

Consider region p′ < q/2 and
calculate fL; recall
〈ψf |J0(q)|ψi〉 = 〈ψλf |Jλ0 (q)|ψλi 〉
=⇒ |ψλf 〉 and |ψλi 〉 filter current

∴ Low-momentum part of Jλ0 (q)

will be selected
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Derivative expansion for the current

Consider region p′ < q/2 and
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Simple treatment of matrix elements

Add expansions in other waves: 〈3P1; k1|Jλ0 (q)|3S1; k2〉 = k1
λ

(gq
1 + gq

3 k2
2 /λ

2) + · · ·

Only S-wave part of deuteron wf needed: 〈ψλf |Jλ0 (q)|ψλi 〉 ≈ 〈ψλf |Jλ0 (q)|ψλi 3S1
〉

Thus: 〈ψλf |Jλ0 |ψλi 3S1
〉

= 〈ψλf |3S1〉 〈3S1|Jλ0 |3S1〉︸ ︷︷ ︸
use deriv. exp.

〈3S1|ψλi 3S1
〉+ 〈ψλf |3P1〉 〈3P1|Jλ0 |3S1〉︸ ︷︷ ︸

use deriv. exp.

〈3S1|ψλi 3S1
〉+ · · ·

End result is very simple:
〈ψλf |Jλ0 (q)|ψλdeut〉
= gq

0 ψλf
∗
(r)ψλdeut(r)

∣∣∣
r=0

+ · · ·

And it works! f approx
L ≈ f exact

L

Agreement improves with
higher-order terms in expansion
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〈ψf |J0|ψi〉
EFT: S (up to k4)
EFT: S + P
EFT: S + P + D
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Convergence in partial wave channels

[Note: still not fully understood yet!]
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〈ψλf |Jλ0 |ψλi 〉lmax=1 ≡ 〈ψλf ; 3S1|Jλ0 exact|ψλi ; 3S1〉+
∑

i=0,1,2

〈ψλf ; 3Pi |Jλ0 exact|ψλi ; 3S1〉

〈3Pi ; k1|Jλ0 EFT|3S1; k2〉LO ≡ gq
Pi

k1



Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at θ = 0◦

Assume photon momentum absorbed entirely by proton

Scattering on the quasi-free ridge:

q	 d	
Before

Deuteron wave function probed at low momentum
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Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at θ = 0◦

Assume photon momentum absorbed entirely by proton
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Simple pictures at high and low resolution

Can we account for the cross section at both high and low
resolution with simple pictures?

Work in final neutron-proton rest frame at θ = 0◦

Assume photon momentum absorbed entirely by proton

Scattering near threshold with SRC kinematics:

q	 kp	

kn	
two-
body	

Before p′i ≈ low

kp	kn	
After p′f ≈ small

Deuteron wave function probed at low momentum

Cross section from low momentum!



Scale dependence of D-state contribution

Is sensitivity to the deuteron D-state probability scale-independent?

No! Kinematics that probe unevolved deuteron where D-state dominates
(SRCs) will probe low-momentum S-state components at low resolution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

k [fm−1]

10−5

10−4

10−3

10−2

10−1

100

101

ψ
(k

)
[f

m
3/

2
]

ψλ=∞
3S1

ψλ=2
3S1

ψλ=∞
3D1

ψλ=2
3D1

✪

✪

✪

✪

✪

Consider E ′ = 20 MeV with q2 = 36 fm−2

Unevolved contribution to fL mostly D-state but all S-state for evolved

λ evolution shows switch from D-channel to S-channel
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Take-away points from “toy” model study

Scale dependence appears in many places, but systematic

Case studies show:

Decoupling of the final state by RG evolution leads to
decreased contribution from FSI =⇒ increased validity of IA
RG generated scale separation makes low-resolution
potentials well suited for (high-q) reaction calculations (OPE!)
Intuitive picture of reaction can change qualitatively
Sensitivity to specific parts of nuclear wave function can be
highly scale dependent
Explanation of factorization straightforward in low-momentum
picture [in back-up slides]

While extreme kinematics here, non-negligible effects expected
for more ordinary kinematics

Next steps: initial 2-body current, fT , extend to A > 2



How should one choose a scale and/or scheme?

To make calculations easier or more convergent

QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorenz
Low-k potential: improve many-body convergence,

or to make microscopic connection to shell model or dft
(Near-) local potential: quantum Monte Carlo methods work

Better interpretation or intuition =⇒ predictability

SRC phenomenology for high-q electron scattering?

Allowing for cleanest extraction from experiment

Can one “optimize” validity of impulse approximation?
In inclusive high-E QCD, use Q2 of experiment
Ideally extract at one scale, evolve to others using RG

Scale and scheme for nuclear reactions?



Outline

Overview: scale and scheme dependence

Test case: deuteron electrodisintegration

Summary and take-aways

Many back-up slides



Large Q2 scattering at different RG decoupling scales
Correlations in nuclear systems

A!1A

q

A

q

e e

e’ e’

a) b)

A!2

N

N
N

FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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What is this vertex?

k k� q = k − k�

ν = Ek − Ek�
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p2

p�1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!
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SRC explanation relies on high-momentum nucleons in structure



Large Q2 scattering at different RG decoupling scalesCorrelations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus
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then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data
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2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon
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How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!
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RG evolution changes physics interpretation but not cross section!



U-factorization with SRG [Anderson et al., arXiv:1008.1569]
Factorization: Uλ(k ,q)→ Kλ(k)Qλ(q) when k < λ and q � λ

Operator product expansion for nonrelativistic wf’s (see Lepage)

Ψ∞α (q) ≈ γλ(q)

∫ λ

0
p2dp Z (λ)Ψλ

α(p) + ηλ(q)

∫ λ

0
p2dp p2 Z (λ) Ψλ

α(p) + · · ·

Construct unitary transformation to get Uλ(k ,q) ≈ Kλ(k)Qλ(q)

Uλ(k , q) =
∑
α

〈k |ψλα〉〈ψ∞α |q〉 →
[αlow∑
α

〈k |ψλα〉
∫ λ

0
p2dp Z (λ)Ψλ

α(p)
]
γλ(q) + · · ·

Test of factorization of U:

Uλ(ki , q)

Uλ(k0, q)
→ Kλ(ki )Qλ(q)

Kλ(k0)Qλ(q)
,

so for q � λ⇒ Kλ(ki )
Kλ(k0)

LO−→ 1

Look for plateaus: ki . 2 fm−1. q
=⇒ it works!

Leading order =⇒ contact term! 0 1 2 3 4 5
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U-factorization with SRG [Anderson et al., arXiv:1008.1569]
Factorization: Uλ(k ,q)→ Kλ(k)Qλ(q) when k < λ and q � λ

Operator product expansion for nonrelativistic wf’s (see Lepage)
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Nuclear scaling from RG factorization (schematic!)
RG unitary transformation with scale separation: Û → Uλ(k ,q)

Factorization: when k < λ and q � λ, Uλ(k ,q)→ Kλ(k)Qλ(q)

nA(q)

nd (q)
=
〈A|a†qaq|A〉
〈d |a†qaq|d〉

RG
=⇒

Û†Û=1
Û|d〉 → |d̃〉 , Û|A〉 → |Ã〉 , Ûa†qaqÛ†

=⇒ nA(q) ≈ CAnD(q) at large q

nA(k) � CA nD(k)

[From C. Ciofi degli Atti and S. Simula]

Test case: A bosons in toy 1D model
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  Universal 
     p>>λ
dependence
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QOQ

[Anderson et al., arXiv:1008.1569]
[also Bogner, Roscher, arXiv:1208.1734]
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Scaling and EMC correlation via low resolution

SRG factorization, e.g.,
Uλ(k ,q)→ Kλ(k)Qλ(q)
when k < λ and q � λ

Dependence on high-q
independent of A
=⇒ universal [cf. Neff et al.]

A dependence from
low-momentum matrix
elements =⇒ calculate!

EMC from EFT using OPE:

Isolate A dependence, which
factorizes from x
EMC A dependence from
long-distance matrix elements

Short Range Correlations and the EMC effect

Deep inelastic scattering ratio at
Q2 ≥ 2GeV2 and 0.35 ≤ xB ≤ 0.7
and inelastic scattering at
Q2 ≥ 1.4GeV2 and 1.5 ≤ xB ≤ 2.0

Strong linear correlation between
slope of ratio of DIS cross sections
(nucleus A vs. deuterium) and
nuclear scaling ratio

SRG Factorization at leading order:
→ Dependence on high-q

is independent of A
→ A-dependence from low

momentum matrix element
independent of operator

L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

Why should A-dependence of nuclear scaling a2 and the EMC effect be
the same?

Overview Operators Factorization Conclusions Principles Applications

If the same leading operators dominate, then does linear A
dependence of ratios follow immediately?
Need to do quantitative calculations to explore!



q-factorization of fL

fL ≡ fL(p′, θ; q)
p′ and θ: outgoing nucleon
q: momentum transfer

For p′ � q, fL scales with q
fL(p′, θ; q)→ g(p′, θ)B(q)

Note that fL is a strong function of q

Follows from the LO term in EFT
expansion:
〈ψλf |Jλ0 (q)|ψλdeut〉 ≈
gq

0 ψλf
∗
(p′; r)ψλdeut(r)
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Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]

Improving perturbation theory; e.g., in QCD calculations
Mismatch of energy scales can generate large logarithms
Shift between couplings and loop integrals to reduce logs

Identifying universality in critical phenomena
Filter out short-distance degrees of freedom

Simplifying calculations of nuclear structure/reactions
Make nuclear physics look more like quantum chemistry!
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Improving perturbation theory; e.g., in QCD calculations
Mismatch of energy scales can generate large logarithms
Shift between couplings and loop integrals to reduce logs

Identifying universality in critical phenomena
Filter out short-distance degrees of freedom

Simplifying calculations of nuclear structure/reactions
Make nuclear physics look more like quantum chemistry!

AV18, Bonn, Reid93 〈k |VAV18|k ′〉

Coupling of low-k /high-k
modes: non-perturbative,
strong correlations, . . .

Remedy: Use RG
to decouple modes
=⇒ low resolution
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“Vlow k ” Similarity RG

Vlow k : lower cutoff Λi in k , k ′

via dT (k , k ′; k2)/dΛ = 0

SRG: drive H toward diagonal
with flow equation

dHs/ds = [[Gs,Hs],Hs]

Continuous unitary transforms
(cf. running couplings)
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Block diagonal SRG Similarity RG

Vlow k : lower cutoff Λi in k , k ′

via dT (k , k ′; k2)/dΛ = 0

SRG: drive H toward diagonal
with flow equation

dHs/ds = [[Gs,Hs],Hs]
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(cf. running couplings)
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Improving perturbation theory; e.g., in QCD calculations
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Shift between couplings and loop integrals to reduce logs
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Simplifying calculations of nuclear structure/reactions
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AV18:

Decoupling naturally visualized in momentum space for Gs = T

Phase-shift equivalent! Width of diagonal given by λ2 = 1/
√

s
What does this look like in coordinate space?



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]

Improving perturbation theory; e.g., in QCD calculations
Mismatch of energy scales can generate large logarithms
Shift between couplings and loop integrals to reduce logs

Identifying universality in critical phenomena
Filter out short-distance degrees of freedom

Simplifying calculations of nuclear structure/reactions
Make nuclear physics look more like quantum chemistry!

N3LO:
(500 MeV)

Decoupling naturally visualized in momentum space for Gs = T

Phase-shift equivalent! Width of diagonal given by λ2 = 1/
√

s
What does this look like in coordinate space?



Compare changing a cutoff in an EFT to RG decoupling
(Local) field theory version in perturbation theory (diagrams)

Loops (sums over intermediate states)
∆Λc⇐⇒ LECs

d
dΛc

[

︸ ︷︷ ︸∫ Λc d3q
(2π)3

C0MC0
k2−q2+iε

+

︸ ︷︷ ︸
C0(Λc)∝ Λc

2π2 +···

]
= 0

Momentum-dependent vertices =⇒ Taylor expansion in k2

This implements an operator product expansion!

Claim: Vlow k RG and SRG decoupling work analogously
“Vlow k ” SRG (“T” generator)



Approach to universality (fate of high-q physics!)
Run NN to lower λ via SRG =⇒ ≈Universal low-k VNN

q ≫ λ

Vλ

Vλ

k < λ

k′ < λ

=⇒ C0 + · · ·

q � λ (or Λ) intermediate states
=⇒ change is ≈ contact terms:

C0δ
3(x− x′) + · · ·

[cf. Left = · · ·+ 1
2 C0(ψ†ψ)2 + · · · ]

Off-Diagonal Vλ(k , 0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k [fm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
λ(k

,0
) [

fm
]

550/600 [E/G/M]
600/700 [E/G/M]
500 [E/M]
600 [E/M]

λ = 5.0 fm−1

1S0

Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: ∆Vλ(k , k ′) =
∫

Uλ(k , q)Vλ(q, q′)U†λ(q′, k ′) for k , k ′ < λ, q, q′ � λ

Uλ→K ·Q−→ K (k)[
∫

Q(q)Vλ(q, q′)Q(q′)]K (k ′) with K (k) ≈ 1!
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Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: ∆Vλ(k , k ′) =
∫
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Uλ→K ·Q−→ K (k)[
∫
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Factorization: ∆Vλ(k , k ′) =
∫
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Uλ→K ·Q−→ K (k)[
∫
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EMC effect from the EFT perspective

Exploit scale separation between short- and long-distance physics

Match complete set of operator matrix elements (power count!)
Cf. needing a model of short-distance nucleon dynamics
Distinguish long-distance nuclear from nucleon physics

EMC and effective field theory (examples)

“DVCS-dissociation of the deuteron and the EMC effect”
[S.R. Beane and M.J. Savage, Nucl. Phys. A 761, 259 (2005)]

“By constructing all the operators required to reproduce the matrix
elements of the twist-2 operators in multi-nucleon systems, one sees
that operators involving more than one nucleon are not forbidden by the
symmetries of the strong interaction, and therefore must be present.
While observation of the EMC effect twenty years ago may have been
surprising to some, in fact, its absence would have been far more
surprising.”

“Universality of the EMC Effect”
[J.-W. Chen and W. Detmold, Phys. Lett. B 625, 165 (2005)]

“SRCs and the EMC Effect in EFT” [Chen et al., arXiv:1607.03065]



A dependence of the EMC effect is long-distance physics!
EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

F A
2 (x) =

∑

i

Q2
i xqA

i (x) =⇒ RA(x) = F A
2 (x)/AF N

2 (x)

“The x dependence of RA(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators

J.-W. Chen, W. Detmold / Physics Letters B 625 (2005) 165–170 167

symmetries [14–17]. The leading one- and two-body
hadronic operators in the matching are

(4)
Oµ0···µn

q =
〈
xn

〉
q
vµ0 · · ·vµnN†N

[
1+ αnN

†N
]
+ · · · ,

where vµ = ṽµ + O(1/M) is the velocity of the
nucleus. Operators involving additional derivatives
are suppressed by powers of M in the EFT power-
counting. In Eq. (4) we have only kept the SU(4) (spin
and isospin) singlet two-body operator αnv

µ0 · · ·×
vµn(N†N)2. The other independent two-body oper-
ator βnv

µ0 · · ·vµn(N†τN)2, which is non-singlet in
SU(4) (τ is an isospin matrix), is neglected because
βn/αn = O(1/N2

c ) " 0.1 [21], where Nc is the num-
ber of colors. Furthermore, the matrix element of
(N†τN)2 for an isoscalar state with atomic num-
ber A is smaller than that of (N†N)2 by a factor A

[10]. Three- and higher-body operators also appear in
Eq. (4); numerical evidence from other EFT calcula-
tions indicates that these contributions are generally
much smaller than two-body ones [22].
Nuclear matrix elements of Oµ0···µn

q give the mo-
ments of the isoscalar nuclear parton distributions,
qA(x). The leading order (LO) and the next-to-leading
order (NLO) contributions to these matrix elements
are shown in Fig. 1(a) and (b), respectively. For an un-
polarised, isoscalar nucleus,

〈
xn

〉
q|A ≡ vµ0 · · ·vµn〈A|Oµ0···µn

q |A〉

(5)=
〈
xn

〉
q

[
A + 〈A|αn

(
N†N

)2|A〉
]
,

where we have used 〈A|N†N |A〉 = A. Notice that if
there were no EMC effect, the αn would vanish for
all n. Also α0 = 0 because of charge conservation. As-
ymptotic relations [23] and analysis of experimental
data [2,24] suggests that α1 " 0, implying that quarks
carry very similar fractions of a nucleon’ and a nucle-
us’ momentum though no symmetry guarantees this.
From Eq. (5) we see that the ratio

(6)
〈xn〉q|A
A〈xn〉q − 1
〈xm〉q|A
A〈xm〉q − 1

= αn

αm

is independent ofAwhich has powerful consequences.
In all generality, the isoscalar nuclear quark distribu-
tion can be written as

(7)qA(x) = A
[
q(x) + g̃(x,A)

]
.

Taking moments of Eq. (7), Eq. (6) then demands that
the x dependence and A dependence of g̃ factorise,

(8)g̃(x,A) = g(x)G(A),

with

(9)G(A) = 〈A|
(
N†N

)2|A〉/AΛ3
0,

and g(x) satisfying

(10)αn = 1
Λ3
0〈xn〉q

A∫

−A

dx xng(x).

Λ0 is an arbitrary dimensionful parameter and will be
chosen as Λ0 = 1 fm−1. Crossing symmetry dictates

Fig. 1. Contributions to nuclear matrix elements. The dark square represents the various operators in Eq. (4) and the light shaded ellipse
corresponds to the nucleus, A. The dots in the lower part of the diagram indicate the spectator nucleons.

=⇒ 〈x2〉qvµ0 · · · vµn N†N[1 + αnN†N] + · · ·

RA(x) =
F A

2 (x)

AF N
2 (x)

= 1+gF2 (x)G(A) where G(A) = 〈A|(N†N)2|A〉/AΛ0

=⇒ the slope dRA
dx scales with G(A) [Why is this not cited more?]



Partial list of ‘non-observables’ references
Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)

Measurability of the deuteron D state probability, J.L. Friar, (1979)

Problems in determining nuclear bound state wave functions,
R.D. Amado, (1979)

Nucleon nucleon bremsstrahlung: An example of the impossibility of
measuring off-shell amplitudes, H.W. Fearing, (1998)

Are occupation numbers observable?, rjf and H.-W. Hammer, (2002)

Unitary correlation in nuclear reaction theory: Separation of nuclear
reactions and spectroscopic factors, A.M. Mukhamedzhanov and
A.S. Kadyrov, (2010)

Non-observability of spectroscopic factors, B.K. Jennings, (2011)

How should one formulate, extract, and interpret ‘non-observables’
for nuclei?, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on
Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]



Deuteron true and scheme-dependent observables
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Unitary transformations labeled by Λ (Vlow k here)
=⇒ soften interactions by lowering resolution (how far?)
=⇒ reduced short-range and tensor correlations

D-state probability changes (cf. spectroscopic factors)

Asymptotic D-S ratio is unchanged (cf. ANC’s)



Momentum distributions in nuclei

• scaling behavior of momentum distribution functions:

• explained by invoking dominance of two-body interactions and short-range 
correlations in the wave function

• dominance of np pairs over pp pairs at large relative momenta and small 
C.M momenta explained by short-range tensor forces

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′

12 and R′
12) away from a fixed

ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT (q,Q) =
A(A − 1)

2 (2J + 1)

∑

MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.

np pairs

pp pairs

Schiavilla et al. PRL 98, 132501 (2007)

Short-Range Correlations in nuclear systems

nA(p) ≈ CAnD(p) at large p

taken from Ciofi degli Atti, Simula PRC 53, 1689 (1996)

p� + p = Q = 0

p� − p = 2q



Correlation of PD with spectroscopic factors

Calculations from Gad and Muether, Phys. Rev. C 66, 044361 (2002)
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Increased occupation probability with increased non-locality
and correlated reduction in short-range tensor strength

Is the correlation quantitatively predictable?



Cutoff dependence in coupled cluster calculations6

Jπ = 1/2− from 16O using a low-momentum interac-
tion Vlow−k with a cut-off λ = 2.0fm−1. Evidently, the
spectroscopic factor is well converged and depends very
weakly on the size of the model space and the oscillator
frequency !ω. It varies less than 1% over a wide range of
oscillator frequencies. The spectroscopic factor SF(1/2−)
for neutron removal from 16O is almost identical to the
SF(1/2−) for proton removal. Recall that isospin is ap-
proximately conserved in light nuclei.

15 20 25 30 35
h_! (MeV)

0.89

0.9

0.91

0.92

SF

N = 3
N = 4
N = 5
N = 6

FIG. 3: (Color online) Spectroscopic factor SF(1/2−) for pro-
ton removal from 16O as a function of the oscillator spacing !ω
for different model spaces consisting of (N+1) oscillator shells
and a low-momentum interaction with cutoff λ = 2.0 fm−1.

The dependence on momentum cut-off λ is displayed in
Fig. 4. Note that the spectroscopic factor increases with
decreasing cutoff. This is expected, since by lowering the
cutoff the system becomes less correlated and the product
state |φ0〉 becomes an increasingly good approximation,
and the single-particle picture becomes more and more
valid. Note also that isospin is approximately a good
quantum number, as the spectroscopic factors for proton
and neutron removal are almost identical.

Let us also study the center-of-mass problem. The in-
trinsic Hamiltonian (1) depends on the mass number A
of the nucleus, and the calculation of the spectroscopic
factor requires us to employ identical Hamiltonians for
the nuclei with mass numbers A and A − 1. This con-
stitutes dilemma, since no choice of actual value for the
parameter A can satisfy the parent and daughter nuclei
simultaneously. It is thus necessary to investigate how
strongly the spectroscopic factor depends on this value.
Figure 5 shows the spectroscopic factor (in a model space
N = 4 for a momentum cutoff λ = 2.0 fm−1 for different
values of the mass number A of the intrinsic Hamiltonian.
The dependence on A is very weak, and it is similar in
size to the dependence on the parameters of the model
space.

For an intrinsic Hamiltonian, the coupled-cluster wave
function of a closed-shell nucleus factorizes into an intrin-
sic part and Gaussian for the center of mass of coordi-
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FIG. 4: (Color online) Spectroscopic factor SF(1/2−) for neu-
tron and proton removal as a function of the oscillator spacing
!ω for nucleon-nucleon interactions with different cutoffs in a
model space with N = 6.
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FIG. 5: (Color online) Spectroscopic factor SF(1/2−) for pro-
ton removal from 16O as a function of the oscillator spacing !ω
computed for different values of the mass number A employed
in the intrinsic Hamiltonian (1). The model space consists of
N + 1 = 5 oscillator shells, and the momentum cutoff of the
nucleon-nucleon interaction is λ = 2.0 fm−1.

nate [42]. Following the procedure of Ref. [42], we con-
firmed that this factorization is present for the ground
states of 15O and 15N in the largest model space we con-
sidered. We found that this factorization even takes place
if the value A = 16 for the mass number is employed
in the intrinsic Hamiltonian (1) for the computation of
the nuclei 15O and 15N. These results suggest that our
approach to calculate spectroscopic factors within the
coupled-cluster method is practically free of any center-
of-mass contamination.

So far, we focused on the spectroscopic factors for re-
moval of a Jπ = 1/2− proton and neutron from 16O.
We finally also compute the spectroscopic factor for re-

[From Ø. Jensen et al.,
PRC 82, 014310 (2010)]

SF increases as SRG
resolution λ decreases
from 2.2 to 1.6 fm−1

Wave functions are more single-particle-like as Λ/λ decreases,
but do reaction operators become significantly less one-body?



Changing the scheme: (short-range) NN potential
Vlow k or SRG unitary transformations to soften interactions
Project non-local NN potential: Vλ(r) =

∫
d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]
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Tensor part (S-D mixing) [graphs from K. Wendt]
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Are wave functions measurable? [from W. Dickhoff]

Green’s functions I 16

 

!
1s(p) = 2

3/ 2"
1

(1+ p
2
)
2

Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms studied with the (e,2e) reaction

But compare approximations for (e,2e) on atoms to those
for (e,e′p) on nuclei! (Impulse approx., FSI, vertex, . . . )



Spectroscopic factors in atoms

  

! 

S = d
r 
p "n

N#1
a r 

p "0

N
2

$For a bound final N-1 state the spectroscopic factor is given by 

For H and He the 1s electron spectroscopic factor is 1

For Ne the valence 2p electron has S=0.92 with two additional fragments, 

each carrying 0.04, at higher energy.

Argon

3p and 3s

strength

Closed-shell

atoms

n(!) = 0 or 1 

One-body scattering, small scheme dependence =⇒ robust SF



Unitary cold atoms: Is n(k) observable?
Tail of momentum distribution + contact [Tan; Braaten/Platter]

n(k)
k→∞−→ C

k4New results: Momentum distribution
Experiment

J. T. Stewart et al
PRL 104, 235301 (2010)

Plateau seen both in theory and experiment!
T/TF = 0 - 0.5
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Theory (lattice)
J. E. Drut, T. A. Lähde, T. Ten
Phys. Rev. Lett. 106, 205302 (2011)

When R/as � kR � 1 =⇒ tiny scheme dependence



Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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E.g., extract from
electron scattering?

No region where
1/as � k � 1/R

Scheme dependent
high-momentum tail!

n(k) from VSRG has
no high-momentum
components!

But n(k) from Ua†kakU†

is unchanged =⇒
two-body operator!



Using EFT and field redefinitions as tool
EFT: Left = ψ†

[
i ∂∂t + ∇ 2

2M

]
ψ − C0

2 (ψ†ψ)2 − D0
6 (ψ†ψ)3 + . . .

general short-range interactions, but not unique!

Try simple field redefinition to check scheme dependence:

ψ −→ ψ+α
4π
Λ3 (ψ†ψ)ψ α ∼ O(1) =⇒ “natural” =⇒ estimate!

“new” vertices: 2–body off-shell 4 , 3–body ◦ ∝ 8πα
Λ3 C0(ψ†ψ)3

asymptotic “on-shell” quantities (S-matrix elements) must be
unchanged by redefinition

Energy density is model (α) independent if all terms kept
sum of new terms is zero, so energy is unchanged

� � � �

What about momentum occupation number?



Occupation No. =⇒ Momentum Distribution
Insert a†kak =⇒ ×

�

�

Fk k

n(k)

1

But nonzero contribution ∆n(k) from induced vertices:

∆n(k) = × + × +
×

+
×

There is no preferred definition for transformed operator
=⇒ only defined for specific convention
=⇒ momentum distributions for different schemes differ



Analysis of (e,e’p) Experiments? [cf. (e,2e) on atoms]

Suppose external source J(x) coupled to fermions
EFT: need most general current coupled to J(x) for all α

Consider lowest order with simplest (α = 0) current
if α = 0, just impulse approximation Jψ†ψ

× ⊗ × ×

if α 6= 0 [recall ψ −→ ψ + α 4π
Λ3 (ψ†ψ)ψ], then same cross

section only if vertex contribution from modified operator and
modified final (and initial) state interactions are included

There are always contributions from all three at each order
sub-leading pieces are mixed by field redefinitions

=⇒ isolating Jψ†ψ is model dependent
How large is ambiguity? Set by natural size α ∼ O(1)



Ab initio electron scattering with LIT [from G. Orlandini]
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Ab initio calculations of longitudinal (e,e′) response
functions show importance of FSI for quasi-elastic regime

PWIA fails for quasi-elastic peak and at low ω

FSI effects decrease with q in peak but not at low ω

Direct proton knockout and neglect of FSI tested for (e,e′p)

Both antisymmetrization effects and FSI play important roles
Approximate estimates of FSI effects can be poor



Why are ANC’s different? Coordinate space
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ANC’s, like phase shifts, are asymptotic properties
=⇒ short-range unitary transformations do not alter them
[e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]

In contrast, SF’s rely on interior wave function overlap

(Note difference in S-wave and D-wave ambiguities)



Why are ANC’s different? Momentum space
[based on R.D. Amado, PRC 19 (1979)]

1 k2

2µ 〈k|ψn〉+〈k|V |ψn〉 = − γ
2
n

2µ 〈k|ψn〉

=⇒ 〈k|ψn〉 = −2µ〈k|V |ψn〉
k2 + γ2

n

2 〈r|ψn〉 =
∫ d3k

(2π)3 eik·r〈k|ψn〉
|r|→∞−→ Ane−γnr/r

3 integral dominated by pole from 1.

4 extrapolate 〈k|V |ψn〉 to k2 = −γ2
n
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singularities

D-wave part

S-wave part

Or, residue from extrapolating on-shell T-matrix to deuteron pole
=⇒ invariant under unitary transformations

Inverse scattering puzzle: An uniquely determined because
assumed longest-range part of V from one-pion exchange

Next vertex singularity at −(γ + mπ)2 =⇒ same for FSI



What about long-range correlations?

SF calculations with FRPA
N3LO Hamiltonian

Soft =⇒ small SRC
SRC contribution changes
dramatically with lower resolution

Compare short-range correlations
(SRC) to long-range correlations
from particle-vibration coupling

LRC� SRC!!

Are long-range correlations
scheme dependent?

C. Barbieri, PRL 103 (2009)

gðr; r0;!Þ ¼
X

n

ðc Aþ1
n ðrÞÞ%c Aþ1

n ðr0Þ
!& ðEAþ1

n & EA
0 Þ þ i!

þ
X

k

c A&1
k ðrÞðc A&1

k ðr0ÞÞ%
!þ ðEA&1

k & EA
0 Þ & i!

; (2)

where the residues are the overlap amplitudes (1) and the
poles give experimental energy transfers. These refer to
nucleon pickup (knockout) to the excited states of the
systems with Aþ 1 (A& 1) particles. The propagator (2)
is obtained by solving the Dyson equation [gð!Þ ¼
gð0Þð!Þ þ gð0Þð!Þ!?ð!Þgð!Þ], where gð0Þð!Þ propagates
a free nucleon. The information on nuclear structure is
included in the irreducible self-energy, which was split
into two contributions:

!?ðr; r0;!Þ ¼ !MFðr; r0;!Þ þ ~!ðr; r0;!Þ: (3)

The term !MFð!Þ includes both the nuclear mean field
(MF) and diagrams describing two-particle scattering out-
side the model space, generated using a G-matrix resum-
mation [24]. As a consequence, it acquires an energy
dependence which is induced by SRC among nucleons

[23]. The second term, ~!ð!Þ, includes the LRC. In the

present work, ~!ð!Þ is calculated in the so-called Faddeev
random phase approximation (FRPA) of Refs. [21,25].
This includes diagrams for particle-vibration coupling at
all orders and with all possible vibration modes, see Fig. 1,
as well as low-energy 2p1h=2h1p configurations. Particle-
vibration couplings play an important role in compressing
the single-particle spectrum at the Fermi energy to its
experimental density. However, a complete configuration
mixing of states around the Fermi surface is still missing
and would require SM calculations.

Each spectroscopic amplitude c A'1ðrÞ appearing in
Eq. (2) has to be normalized to its respective SF as

Z" ¼
Z

drjc A'1
" ðrÞj2 ¼ 1

1& @!?
"̂ "̂ð!Þ
@!

!!!!!!!!!¼'ðEA'1
" &EA

0 Þ
; (4)

where !?
"̂ "̂ð!Þ ( hĉ "j!?ð!Þjĉ "i is the matrix element

of the self-energy calculated for the overlap function itself
but normalized to unity (

R
drjĉ "ðrÞj2 ¼ 1). By inserting

Eq. (3) into (4), one distinguishes two contributions to the
quenching of SFs. For model spaces sufficiently large, all

low-energy physics is described by ~!ð!Þ. Then, the de-
rivative of !MFð!Þ accounts for the coupling to states
outside the model space and estimates the effects of SRC
alone [26].
In general, the self-consistent (SC) self-energy (3) is a

functional of the one-body propagator itself, !? ¼ !?½g*.
Hence, the FRPA equations for the self-energy and the
Dyson equation have to be solved iteratively. The mean-
field part, !MF½g*, was calculated exactly in terms of the
fully fragmented propagator (2). For the FRPA, this pro-

cedure was simplified by employing the ~!½gIPM* obtained
in terms of a MF-like propagator

gIPMðr; r0;!Þ ¼
X

n=2F

ð#nðrÞÞ%#nðr0Þ
!& "IMP

n þ i!

þ
X

k2F

#kðrÞð#kðr0ÞÞ%
!& "IMP

k & i!
; (5)

FIG. 1 (color online). Left. One of the diagrams included in

the correlated self-energy, ~!ð!Þ. Arrows up (down) refer to
quasiparticle (quasihole) states, the "ðphÞ propagators include
collective ph and charge-exchange resonances, and the gII in-
clude pairing between two particles or two holes. The FRPA
method sums analogous diagrams, with any numbers of pho-
nons, to all orders [21,25]. Right. Single-particle spectral distri-
bution for neutrons in 56Ni, obtained from FRPA. Energies above
(below) EF are for transitions to excited states of 57Ni (55Ni).
The quasiparticle states close to the Fermi surface are clearly
visible. Integrating over r [Eq. (4)] gives the SFs reported in
Table I.

TABLE I. Spectroscopic factors (given as a fraction of the
IPM) for valence orbits around 56Ni. For the SC FRPA calcu-
lation in the large harmonic oscillator space, the values shown
are obtained by including only SRC, SRC and LRC from
particle-vibration couplings (full FRPA), and by SRC, particle-
vibration couplings and extra correlations due to configuration
mixing (FRPAþ#Z"). The last three columns give the results
of SC FRPA and SM in the restricted 1p0f model space. The
#Z"s are the differences between the last two results and are
taken as corrections for the SM correlations that are not already
included in the FRPA formalism.

10 osc. shells Exp. [29] 1p0f space
FRPA
(SRC)

Full
FRPA

FRPA
þ#Z" FRPA SM #Z"

57Ni:
$1p1=2 0.96 0.63 0.61 0.79 0.77 &0:02
$0f5=2 0.95 0.59 0.55 0.79 0.75 &0:04
$1p3=2 0.95 0.65 0.62 0.58(11) 0.82 0.79 &0:03

55Ni:
$0f7=2 0.95 0.72 0.69 0.89 0.86 &0:03

57Cu:
%1p1=2 0.96 0.66 0.62 0.80 0.76 &0:04
%0f5=2 0.96 0.60 0.58 0.80 0.78 &0:02
%1p3=2 0.96 0.67 0.65 0.81 0.79 &0:02

55Co:
%0f7=2 0.95 0.73 0.71 0.89 0.87 &0:02

PRL 103, 202502 (2009) P HY S I CA L R EV I EW LE T T E R S
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Parton distributions as paradigm: Factorization
PDF analysis: part of convolution for cross section can be
calculated reliably for given experimental conditions so that the
remaining part can be extracted as a universal quantity, to be
related to other processes and kinematic conditions

For hard-scattering processes with large momentum transfer
scale Q, factorization allows separation of momentum and
distance scales in reaction

The time scale for binding interactions in the rest frame is time
dilated in the center-of-mass frame, so the interaction of an
electron with a hadron in deep-inelastic scattering is with
single non-interacting partons
Short-distance part calculated systematically in low-order
perturbative QCD; long-distance part identified in PDF’s
(momentum distribution for partons in hadrons)

PDF’s relate deep inelastic scattering of leptons, Drell-Yan, jet
production, and more

Measure in limited set of reactions and then perturbative
calculations of hard scattering and PDF evolution enable first
principles predictions of cross sections for other processes



Simpler calculations of pair densities

• scaling behavior of momentum distribution functions:

• explained by invoking dominance of two-body interactions and short-range 
correlations in the wave function

• dominance of np pairs over pp pairs at large relative momenta and small 
C.M momenta explained by short-range tensor forces

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′

12 and R′
12) away from a fixed

ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT (q,Q) =
A(A − 1)

2 (2J + 1)

∑

MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.

np pairs

pp pairs

Schiavilla et al. PRL 98, 132501 (2007)

Short-Range Correlations in nuclear systems

nA(p) ≈ CAnD(p) at large p

taken from Ciofi degli Atti, Simula PRC 53, 1689 (1996)

p� + p = Q = 0

p� − p = 2q
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Simpler calculations of pair densities

• scaling behavior of momentum distribution functions:

• explained by invoking dominance of two-body interactions and short-range 
correlations in the wave function

• dominance of np pairs over pp pairs at large relative momenta and small 
C.M momenta explained by short-range tensor forces

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′

12 and R′
12) away from a fixed

ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT (q,Q) =
A(A − 1)

2 (2J + 1)

∑

MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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