Microscopic modeling of direct and pre-equilibrium emission mechanisms for nucleon induced reactions

NT Program INT-17-1a Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart

20 March, 2017

E. Bauge, G. Blanchon, M. Dupuis, G. Haouat, S. Hilaire, B. Morillon, A. Nasri, S. Péru, P. Romain	CEA, DAM, DIF, France.
T. Kawano	LANL, New Mexico, USA.
M. Kerveno, P. Dessagne, G. Henning	IPHC, Strasbourg, France.
R. Capote	IAEA, Vienna, Austria.

Outline

- Introduction: microscopic models for applications.
- Folding model: direct inelastic scattering and pre-equilibrium emission.
- Applications:
 - Nucleon induced reaction rearrangement corrections.
 - ▶ Pre-equilibrium contribution to (n,*x*n) reactions.
 - Spin-parity distributions and $^{238}U(n,n\gamma)$ cross-sections.
 - Inferring ²³⁹Pu (n,2n) cross-sections form (n,2nγ) measurements: impact of a microscopic description of pre-equilibrium.
- Conclusions, a few questions, future works and perspectives.

Context

Basic science questions: better understanding of nuclear structure and reaction, cross sections for astrophysical models

Applications for security, nuclear energy, waste managment, medical applications etc.

✓ Nuclear reactions observables for a wide range of nuclear masses and incident energies.

\Downarrow

All needed nuclear reaction observables cannot be measured.

Fine precision required: $\left(n,n'\right)$ or $\left(n,2n\right)$ for actinides.

First principles \rightsquigarrow reaction observables for light and a few medium mass nuclei at low incident energy.

Select the relevant parts of the dynamical many-body problem. Use available experimental

knowledge.

Phenomenological Microscopic

Context

Basic science questions: better understanding of nuclear structure and reaction, cross sections for astrophysical models

Applications for security, nuclear energy, waste managment, medical applications etc.

V Nuclear reactions observables for a wide range of nuclear masses and incident energies.

\Downarrow

All needed nuclear reaction observables cannot be measured.

Fine precision required: $\left(n,n'\right)$ or $\left(n,2n\right)$ for actinides.

First principles \rightsquigarrow reaction observables for light and a few medium mass nuclei at low incident energy.

Select the relevant parts of the dynamical many-body problem. Use available experimental knowledge.

Phenomenological Microscopic Our goal: improve modeling of nucleon induced reactions up to actinides

Modeling reaction mechanisms - example of inclusive (n,xn) cross section

Reaction mechanisms

- Direct reactions : elastic, inelastic to discrete states and to giant resonances;
- Large energy transfer: **pre-equilibrium** emission;
- **Compound nucleus** formation then evaporation;

Phenomenological approach

- Optical potential, level densities;
- β_l for discrete states, response functions for G.R. (inferred from electron, hadron scatterings exp.);
- Pre-equilibrium : exciton model (coupling constants from global fit);

²⁰⁸ Pb (n,xn) Talys 1.8 (default) Two-components exciton model [A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)]

Direct models models well constrained: β_l , %EWSR well known.

Modeling reaction mechanisms - example of inclusive (n,xn) cross section

Reaction mechanisms

- Direct reactions : elastic, inelastic to discrete states and to giant resonances;
- Large energy transfer: **pre-equilibrium** emission;
- **Compound nucleus** formation then evaporation;

Phenomenological approach

- Optical potential, level densities;
- β_l for discrete states, response functions for G.R. (inferred from electron, hadron scatterings exp.);
- Pre-equilibrium : exciton model (coupling constants from global fit);

²³⁸U (n,xn) Emission from fission fragments. Talys 1.4 (adjusted) Direct reaction models not well constrained: Evaluations for actinides : + pseudo-states (see ENDFBVII and others).

M. Dupuis (CEA, DAM, DIF)

Connections between mechanisms

Direct + pre-equilibrium:

- Particles emission.
- Residual nucleus: E_x, J, Π .

Connections between mechanisms

Direct + pre-equilibrium:

- Particles emission.
- Residual nucleus: E_x, J, Π .

Pre-equilibrium models:

- Account for known doubly-differential cross-sections.
- Junction with direct process arbitrary (continuum).
- *J*,Π distributions of the residual nucleus: ad-hoc prescriptions for exciton models.

$\Rightarrow J, \Pi$ distributions:

- $(n,n'\gamma)$ cross sections (indirect determination of the total (n,n') cross sections)
- Surrogate applications.

M. Dupuis (CEA,DAM,DIF)

 $\begin{array}{l} \mbox{Direct elastic: } \left(K + U^{\mbox{opt}} - E_i\right) \chi^+_{\mbox{\bf k}_i} = 0, \\ U^{\mbox{opt}} = \langle GS | V | GS \rangle. \end{array}$

Direct inelastic scattering to discrete excitations:

$$\frac{d\sigma(\mathbf{k}_i,\mathbf{k}_f)}{d\Omega} \sim \left| \langle \boldsymbol{\chi}_{\mathbf{k}_f}^-, \boldsymbol{E}_{\boldsymbol{X}} \boldsymbol{J}^{\pi} | \boldsymbol{T} | \boldsymbol{\chi}_{\mathbf{k}_i}^+, \boldsymbol{GS} \rangle \right|^2$$

 $T = V + VGV + \dots$ DWBA: $T \simeq V$.

Direct elastic: $(K + U^{\text{opt}} - E_i) \chi_{\mathbf{k}_i}^+ = 0,$ $U^{\text{opt}} = \langle GS | V | GS \rangle.$

Direct inelastic scattering to discrete excitations:

 $T = V + VGV + \dots$ DWBA: $T \simeq V$.

Pre-equilibrium emission: quantum models

$$\frac{d\sigma(\mathbf{k}_{i},\mathbf{k}_{f})}{d\Omega dE_{f}} \sim \frac{1}{2\delta} \int_{E_{f}-\delta}^{E_{f}+\delta} dE \sum_{E_{x}J^{\pi}} \delta(E_{i}-E_{x}-E) \left| \langle \chi_{\mathbf{k}}^{-}, E_{x}J^{\pi} | T | \chi_{\mathbf{k}_{i}}^{+}, GS \rangle \right|$$

Target final states: $|E_{x}J^{\pi}\rangle = \sum_{n,ph} c_{ph}^{n}(E_{x}) |npnh\rangle$

One-step (DWBA) + 2-body interaction: $T \simeq V \implies |GS\rangle \rightarrow c_{ph}^{1}(E_{x})|ph\rangle$

Microscopic description of target states

Target masses up to actinides, ground state and transition properties \Rightarrow Mean-field and beyond nuclear structure models, with phenomenological effective interactions (Skyrme, Gogny etc.).

Microscopic description of target states

Target masses up to actinides, ground state and transition properties \Rightarrow Mean-field and beyond nuclear structure models, with phenomenological effective interactions (Skyrme, Gogny etc.).

Direct inelastic scattering to particle-hole excitations, collective vibrations/rotations for many J^{Π} .

Weak perturbation \Rightarrow small amplitude collective motion \Rightarrow linear response theory.

Microscopic description of target states

Target masses up to actinides, ground state and transition properties \Rightarrow Mean-field and beyond nuclear structure models, with phenomenological effective interactions (Skyrme, **Gogny** etc.).

Direct inelastic scattering to particle-hole excitations, collective vibrations/rotations for many J^{Π} .

6 / 30

Weak perturbation \Rightarrow small amplitude collective motion \Rightarrow linear response theory.

(Quasi-particule) Random phase Approximation $\Rightarrow Nucleus excitation are phonons <math>|E_x, J^{\pi}\rangle = \Theta^{\dagger}|\tilde{0}\rangle$ **RPA** $\Theta^{\dagger} = \sum_{ph} X_{ph}^{J\pi} a_p^{\dagger} a_h + Y_{ph}^{J\pi} a_h^{\dagger} a_p$ **p-h** and **h-p** components **QRPA** $\Theta^{\dagger} = \sum_{\alpha,\alpha'} X_{\alpha\alpha'}^{J\pi} \eta_{\alpha}^{\dagger} \eta_{\alpha'}^{\dagger} + Y_{\alpha\alpha'}^{J\pi} \eta_{\alpha} \eta_{\alpha'}$ **2-qp** creation and annihilation

M. Dupuis (CEA, DAM, DIF)

Folding model for direct elastic and inelastic scattering

Direct inelastic scattering: optical potentials and DWBA matrix elements

$$U^{opt} = \langle GS | V | GS \rangle \qquad \langle \chi_{\mathbf{k}_{f}}^{-}, E_{x} J^{\pi} | V | \chi_{\mathbf{k}_{f}}^{+}, GS \rangle$$

JLM folding model: Brueckner-Hartree-Fock calculation

J.-P. Jeukenne, A. Lejeune, and C. Mahaux. Phys. Rev. C, 16, 1977

- Effective interaction V complex, E, ρ -dependent + normalizations.
- Energy range 1 keV-200 MeV E. Bauge, J. P. Delaroche, and M. Girod. Phys. Rev. C, 63, 2001.
- Local optical and transition potentials, no S = 1 transitions.

Folding model for direct elastic and inelastic scattering

Direct inelastic scattering: optical potentials and DWBA matrix elements

$$U^{opt} = \langle GS | V | GS \rangle \qquad \langle \chi_{\mathbf{k}_{f}}^{-}, E_{x} J^{\pi} | V | \chi_{\mathbf{k}_{f}}^{+}, GS \rangle$$

JLM folding model: Brueckner-Hartree-Fock calculation J.-P. Jeukenne, A. Lejeune, and C. Mahaux. Phys. Rev. C, 16, 1977

- Effective interaction V complex, E, ρ -dependent + normalizations.
- Energy range 1 keV-200 MeV E. Bauge, J. P. Delaroche, and M. Girod. Phys. Rev. C, 63, 2001.

• Local optical and transition potentials, no S = 1 transitions.

Large range of applications:

Unique structure model: HF(B)/(Q)RPA (Gogny D1S interaction).

JLM: **parametrization unchanged** for all calculations.

⇒ Direct elastic, inelastic, pre-equilibrium mechanisms, spherical and deformed targets.

M. Dupuis (CEA,DAM,DIF)

7 / 30

Inelastic scattering to discrete excitations

E_x (MeV)		MeV)	$B(E3,\uparrow)_{exp}(10^{6}.e^{2}.fm^{6})$		
E	<p.< td=""><td>QRPA</td><td>Exp.</td><td>QRPA</td></p.<>	QRPA	Exp.	QRPA	
2.	65	3.73	0.611(15)	0.635	

QRPA with Gogny force, consitent implementation, spherical and axial def.

S.Péru, H.Goutte, Phys.Rev. C 77, 044313 (2008)

M.Martini, S.Peru, M.Dupuis Phys.Rev. C 83, 034309 (2011)

S.Péru, et al. Phys.Rev. C 83, 014314 (2011)

S.Péru, M.Martini, Eur.Phys.J. A 50, 88 (2014)

Consistent description of structure and reactions observables.

Inelastic scattering to discrete excitations: ²⁰⁶Pb 2₁⁺

E_x (MeV)		$B(E2,\uparrow)_{exp}(10^4.e^2.fm^4)$	
Exp.	QRPA	Exp.	QRPA
0.803	1.51	0.1000(20)	0.099

YRAST
$$2_1^+ \rho_{tr}(r)$$

Isoscalar surface vibration $\rho_{tr}(r)$

Inelastic scattering to discrete excitations: ²⁰⁶Pb 2₁⁺

Transition potential: rearrangement

Inelastic process: $\rho_{GS} \rightarrow \rho_{GS} + \delta \rho$: \Rightarrow Dynamical corrections to $V(\rho_{GS})$

Transition potential:

$$\langle E_x, J^{\pi} | V | GS \rangle \equiv \rho_{\text{tr}}^{gs \leftarrow E_x} \left\{ V(\rho_{GS}) + \rho_{GS} \frac{\delta V(\rho)}{\delta(\rho)} \right\}$$

T. Cheon, et al., Nucl. Phys. A437, 301 (1985).

M. Dupuis (CEA, DAM, DIF)

Transition potential: rearrangement

M. Dupuis (CEA, DAM, DIF)

10 / 30

Pre-equilibrium emission $E_{in} < 20$ MeV: one-step direct

 $\frac{d\sigma(\mathbf{k}_{i},\mathbf{k}_{f})}{d\Omega dE_{f}} \sim \frac{1}{2\delta} \int_{E_{f}-\delta}^{E_{f}+\delta} dE \sum_{E_{x}J^{\pi}} \delta(E_{i}-E_{x}-E) \left| \langle \chi_{\mathbf{k}}^{-}, E_{x}J^{\pi} | V | \chi_{\mathbf{k}_{i}}^{+}, GS \rangle \right|^{2}$

Pre-equilibrium emission $E_{in} < 20$ MeV: one-step direct

$$\frac{d\sigma(\mathbf{k}_i,\mathbf{k}_f)}{d\Omega dE_f} \sim \frac{1}{2\delta} \int_{E_f-\delta}^{E_f+\delta} dE \sum_{k_xJ^{\pi}} \delta(E_i-E_x-E) \left| \langle \chi_{\mathbf{k}}^-, E_xJ^{\pi} | V | \chi_{\mathbf{k}_i}^+, GS \rangle \right|^2$$

Target final states: mix of n-phonons states
$$(n = 1 \ 2 \dots)$$

 $|F = E_x J^{\pi}\rangle = \sum_{n,\{k\}} c^F_{n,\{k\}}(E_x) \prod_i^n \Theta^{\dagger}_{\{k\}} |\tilde{0}\rangle = c^F_{1,N} \Theta^{\dagger}_N |\tilde{0}\rangle + c^F_{2,\{N,N'\}} \Theta^{\dagger}_N \Theta^{\dagger}_{N'} |\tilde{0}\rangle + c^F_{2,\{N,N'\}} \Theta^{\dagger}_N \Theta^{\dagger}_N |\tilde{0}\rangle$

One-step + 2-body interaction + Quasi-boson: $|\tilde{0}
angle \rightarrow c_N^F(E_x)\Theta_N^\dagger|\tilde{0}
angle$

Pre-equilibrium emission $E_{in} < 20$ MeV: one-step direct

$$\frac{d\sigma(\mathbf{k}_i,\mathbf{k}_f)}{d\Omega dE_f} \sim \frac{1}{2\delta} \int_{E_f-\delta}^{E_f+\delta} dE \sum_{k_xJ^{\pi}} \delta(E_i-E_x-E) \left| \langle \chi_{\mathbf{k}}^-, E_xJ^{\pi} | V | \chi_{\mathbf{k}_i}^+, GS \rangle \right|^2$$

Target final states: mix of n-phonons states
$$(n = 1 \ 2 \dots)$$

 $|F = E_x J^{\pi}\rangle = \sum_{n,\{k\}} c^F_{n,\{k\}}(E_x) \prod_i^n \Theta^{\dagger}_{\{k\}} |\tilde{0}\rangle = c^F_{1,N} \Theta^{\dagger}_N |\tilde{0}\rangle + c^F_{2,\{N,N'\}} \Theta^{\dagger}_N \Theta^{\dagger}_{N'} |\tilde{0}\rangle + c^F_{2,\{N,N'\}} \Theta^{\dagger}_N \Theta^{\dagger}_N |\tilde{0}\rangle$

One-step + 2-body interaction + Quasi-boson: $|\tilde{0}
angle \rightarrow c_N^F(E_x)\Theta_N^\dagger|\tilde{0}
angle$

Statistical hypothesis:

$$\left\langle c_{N}^{F}(E_{x}) c_{N'}^{F}(E_{x}) \right\rangle_{E} = \delta_{N,N'} \left| C_{N}^{F}(E_{x}) \right|^{2} \\ \left| c_{N}^{F}(E_{x}) \right|^{2} = \frac{\Gamma_{N}}{2} \frac{1}{(E_{x} - E_{N})^{2} + \frac{\Gamma_{N}^{2}}{4}} \\ \Gamma_{N} = \text{damping widths: phenomenologica} \\ \text{prescription.}$$

M. Dupuis (CEA,DAM,DIF)

Pre-equilibrium emission $E_{in} < 20$ MeV: one-step direct

$$\frac{d\sigma(\mathbf{k}_i,\mathbf{k}_f)}{d\Omega dE_f} \sim \frac{1}{2\delta} \int_{E_f-\delta}^{E_f+\delta} dE \sum_N \frac{\Gamma_N}{2} \frac{1}{(E_i-E-E_N)^2 + \frac{\Gamma_N^2}{4}} \left| \left\langle \chi_{\mathbf{k}}^-, N^{RPA} \left| V \right| \chi_{\mathbf{k}_i}^+, \tilde{0} \right\rangle \right|^2$$

Target final states: mix of n-phonons states $(n = 1 \ 2 \dots)$ $|F = E_x J^{\pi}\rangle = \sum_{n,\{k\}} c^F_{n,\{k\}}(E_x) \prod_i^n \Theta^{\dagger}_{\{k\}} |\tilde{0}\rangle = c^F_{1,N} \Theta^{\dagger}_N |\tilde{0}\rangle + c^F_{2,\{N,N'\}} \Theta^{\dagger}_N \Theta^{\dagger}_{N'} |\tilde{0}\rangle +$

One-step + 2-body interaction + Quasi-boson: $| ilde{0}
angle \ o \ c_N^F(E_x)\Theta_N^\dagger| ilde{0}
angle$

Statistical hypothesis: $\langle c_N^F(E_x) c_{N'}^F(E_x) \rangle_E = \delta_{N,N'} |C_N^F(E_x)|^2$ $|c_N^F(E_x)|^2 = \frac{\Gamma_N}{2} \frac{1}{(E_x - E_N)^2 + \frac{\Gamma_N^2}{4}}$ Γ_N = damping widths: phenomenological prescription.

M. Dupuis (CEA, DAM, DIF)

One-step direct (n,n') - ²⁰⁸Pb(n,xn)

JLM with RPA excitations (natural parities)

JLM: no spin flip possible.

 $V_{JLM} \Rightarrow V_{CDM3Y}$ non-natural parity transitions $(0^+ \rightarrow J^{\pi} \text{ with } \pi = -(-)^J)$ CDM3Y: real, ρ -dependent, include two-body spin-orbit and tensor interactions.

One-step direct (n,n') - ²⁰⁸Pb(n,xn)

Comparison to calculations from Talys 1.8 (default settings).

M. Dupuis (CEA, DAM, DIF)

One-step direct (n,n') - ²⁰⁸Pb(n,xn)

(n,n') from RPA states: spin-parity distributions / impact of rearrangement.

M. Dupuis (CEA, DAM, DIF)

Nucleon induced direct reactions for spherical nuclei:

- Inelastic scattering to discrete states
- First step of pre-equilibrium emission

 \Rightarrow Application to $n + actinides \longrightarrow axial deformation.$

M. Dupuis (CEA,DAM,DIF)

Neutron induced reactions on actinides

JLM model + HFB axial densities : L = 0, 2, 4... multipoles.

QRPA with axial deformation, good quantum numbers:

- Projection K , of the total angular momentum \vec{J} on the symmetry axis O_{Z_i}
- Parity π .

Target excitations in the intrinsic frame : $|\alpha K\Pi\rangle = \Theta^+_{\alpha K\Pi} |\tilde{0}_I\rangle$.

QRPA with axial deformation, good quantum numbers:

- Projection K , of the total angular momentum \vec{J} on the symmetry axis Oz,
- Parity π .

Target excitations in the intrinsic frame : $|\alpha K\Pi\rangle = \Theta^+_{\alpha K\Pi} |\tilde{0}_I\rangle$.

Target states in the laboratory frame : projection on total angular momentum \Rightarrow rotational bands, on for each intrinsic excitation, $J \ge K$

QRPA with axial deformation, good quantum numbers:

- Projection K, of the total angular momentum \vec{J} on the symmetry axis O_{z_i}
- Parity π .

Target excitations in the intrinsic frame : $|\alpha K\Pi\rangle = \Theta^+_{\alpha K\Pi} |\tilde{0}_I\rangle$.

Target states in the laboratory frame : projection on total angular momentum \Rightarrow rotational bands, on for each intrinsic excitation, $J \ge K$

E3 transition probabities

15 / 30

M. Dupuis (CEA.DAM.DIF)

QRPA with axial deformation, good quantum numbers:

- Projection K , of the total angular momentum \vec{J} on the symmetry axis Oz,
- Parity π .

Target excitations in the intrinsic frame : $|\alpha K\Pi\rangle = \Theta^+_{\alpha K\Pi} |\tilde{0}_I\rangle$.

Target states in the laboratory frame : projection on total angular momentum \Rightarrow rotational bands, on for each intrinsic excitation, $J \ge K$

15 / 30

QRPA with axial deformation, good quantum numbers:

- Projection K , of the total angular momentum \vec{J} on the symmetry axis Oz,
- Parity π .

Target excitations in the intrinsic frame : $|\alpha K\Pi\rangle = \Theta^+_{\alpha K\Pi} |\tilde{0}_I\rangle$.

Target states in the laboratory frame : projection on total angular momentum \Rightarrow rotational bands, on for each intrinsic excitation, $J \ge K$

11-18 MeV (n,xn) ²³⁸U spectra

Direct emission component:

$$\frac{d\sigma(\mathbf{k}_i, \mathbf{k}_f)}{d\Omega dE_f} = \frac{1}{2\delta} \int_{E_f - \delta}^{E_f + \delta} dE \sum_{N = K^{\pi}, J \ge K} \frac{\Gamma_N}{2} \frac{1}{(E_i - E - E_N)^2 + \frac{\Gamma_N^2}{4}} \frac{d\sigma_N}{d\Omega}$$

11-18 MeV (n,xn) ²³⁸U spectra

Direct emission component:

E. (MeV

 $11.8 \ \text{MeV}$

18. MeV

E, (MeV)

M. Dupuis (CEA, DAM, DIF)

E. (MeV)

Comparison to previous more phenomenological calculations

 \Rightarrow need n.n.p states and 2-step process for $E_{in} \simeq 10$ MeV

M. Dupuis (CEA, DAM, DIF)

Residual nucleus: E_x, J^{π}

Strasbourg, France.

M. Dupuis (CEA,DAM,DIF)

18 / 30

M. Dupuis (CEA, DAM, DIF)

Inter-band transitions

Direct + Preequilibrium from JLM+QRPA E1-M1 response functions: RIPL \longrightarrow QRPA : S. Goriely PL002, I387 (S. Hilaire).

M. Dupuis (CEA, DAM, DIF)

19 / 30

Odd actinides - early developments

Direct excitation process in ²³⁹Pu:

Transitions: $|\frac{1}{2}^+
angle \ o \ |j^\pi
angle$

Odd actinides - early developments

Direct excitation process in ²³⁹Pu:

Transitions: $|\frac{1}{2}^+
angle \rightarrow |j^{\pi}
angle$

$$a_{rac{1}{2}^+}|0^+
angle \ o \ a_{rac{1}{2}^+}|N
angle \ .$$

 $|N\rangle \Rightarrow$ phonons calculated in ²⁴⁰Pu \Rightarrow weak-coupling approximation. Main features of collective responses in A and $A \pm 1$ are expected to be similar

Odd actinides - early developments

Direct excitation process in ²³⁹Pu:

Transitions: $|\frac{1}{2}^+\rangle \rightarrow |j^{\pi}\rangle$

$$a_{rac{1}{2}^+}|0^+
angle \ o \ a_{rac{1}{2}^+}|N
angle \ .$$

 $|N\rangle \Rightarrow$ phonons calculated in ²⁴⁰Pu \Rightarrow weak-coupling approximation. Main features of collective responses in A and $A \pm 1$ are expected to be similar

14. MeV 239 Pu(n,xn)

M. Dupuis (CEA.DAM.DIF)

²³⁹Pu (n,2n) : reaction mechanisms

BRC (P. Romain, B. Morillon, H. Duarte).

²³⁹Pu (n,2n) : reaction mechanisms

10

²³⁹Pu (n,2n) : reaction mechanisms

Measurements and evaluations ²³⁹Pu (n,2n) ²³⁸Pu

GEANIE/GNASH (Bernstein 2002) : (n,2n) extrapolated (using GNASH code) from partial (n,2n γ) measured cross sections (GEANIE : Germanium array).

M. Dupuis (CEA, DAM, DIF)

Measurements and evaluations ²³⁹Pu (n,2n) ²³⁸Pu

Large discrepancies between various evaluations :

for E_{in} in the 6.5 - 8 MeV range for $E_{in} > 11$ MeV.

M. Dupuis (CEA, DAM, DIF)

GEANIE measurements

LANL 1999 height measured transitions (seven cross sections) $(n,2n\gamma)$ Difficulties

- E < 6.5 < MeV (n,2n) without γ emission.
- Internal conversion : $2^+_1 \rightarrow 1^+_1 \gamma$ -ray conversion : 735.
- γ from fission fragments, sample activity.
- exemple: the 4⁺₁ → 2⁺₁ γ-ray yields was overwhelmed by a fission-product γ-ray.

Pre-equilibrium models - ²³⁹Pu (n,xn) spetrum

Excitons (two-components, TALYS impl.)

Discussion

Discussion: ²⁴¹**Am(n,2n)**

Conclusions and questions

- Direct inelastic and pre-equilibrium (first-step): QRPA one phonon excitations.
- ho-dependent effective interaction ightarrow large rearrangement corrections.
- Improve high energy neutron spectra in (n,xn) and $(n,n'\gamma)$ cross-sections for ^{238}U .
- Future of folding models for low energies ? Which interactions ?
- Folding models / inelastic processes / rearrangement : full-folding models (Melbourne), link with beyond low density expansions NM theories (H. Arellano, Univesity of Chile).

Future works

Work in progress

- Analysis of (n,xn) and $(n,xn\gamma)$: ²³⁹Pu and ²⁴¹Am, ²³²Th and Tungsten (IPHC, GELINA).
- $^{239}\mathsf{Pu}$ (n,2n) cross section extracted from (n,2n γ) data : new analysis with microscopic direct reaction modeling.

Plans for model improvements

Better interaction, two-step process with 2-phonon states, qp-blocking+QRPA for odd-nuclei, QRPA charge exchange, consistent description of structure and reaction

Actinides: microscopic derivation of coupling non-local potentials, solving coupled channels for a large coupling scheme (PhD of A. Nasri, CEA, DAM, DIF, Bruyères-le-Châtel)

